
 

 

The Application of Forensic Linguistics in 
Cyber Crime Investigations.  
Forensic Linguistics 

Forensic linguistics can be broadly defined as the study or analysis of language in legal settings 

(Kniffka, 2007; Rock, 2006). It is predominantly a sub-field of applied linguistics, in which 

linguistic knowledge, analysis and methodologies are applied to forensic and criminal 

situations. Svartvik (1968) was one of the earliest academics to call for forensic linguistics to 

be considered as a distinct field (Perkins & Grant, 2013).   In 1965-1966 he applied existing 

linguistic knowledge to a series of statements of disputed authorship. Using qualitative and 

quantitative analysis he demonstrated that there were inconsistencies in the language used 

across the statements, and importantly, within the grammar of the incriminating sections. 

Through this he also demonstrated that applied linguistics (and particularly sociolinguistics) 

can contribute beyond the traditional realms of language teaching and machine translation, 

and be of use in forensic or criminal contexts too.  

Forensic Linguistics began to develop an identity as a distinct field in the UK in the 1980s and 

90s with the cases of Professor Malcolm Coulthard, the most famous of which was the 

Birmingham Six appeal. In 1993, the International Association of Forensic Linguists (IAFL) was 

established. Forensic Linguistics is now largely recognised as its own distinct field; it has 

spread around the world, broadening in scope and becoming recognised and utilised in a 

variety of jurisdictions and contexts.  

Cybercrime relies very heavily on text based communication; in fact ‘most forms of abuse 

online manifest textually’ (Williams, 2001, p. 164). The growth and popularity of electronic 

and social media means that there are now many new opportunities for collecting evidence 

or data, benefiting both investigators and forensic linguists (Bhatia & Ritchie, 2013). Forensic 

linguists have been working with emerging technologies from cases involving phone SMS 

messages to more recent cases involving tweets and forum messages. It would be impossible 

to cover all the areas in which forensic linguistics can contribute to cybercrime investigation; 

this is in part because both fields are constantly evolving. This article will introduce some of 

the key areas where forensic linguistics has been documented to be of use, as well as 

discussing how future collaboration might be of benefit for all parties. It also presents findings 

from a research study on Native Language Influence Detection (NLID); showing that NLID is 

possible through a sociolinguistic explanation based approach, and indicating which features 

are of particular interest when considering native (L1) Persian speakers writing online in 

English. Moreover it also serves to demonstrate how linguists can contribute to developing 

systems that can have practical applications for cybercrime casework.  



The majority of existing forensic linguistic work relates to three broad categories: written legal 

language (for example analysis of how PACE instructions are interpreted and understood), 

spoken legal language (such as analysing power in interviews), or investigative linguistics and 

the provision of evidence (Coulthard, Grant, and Kredens, 2011). It is this third category that 

is most closely allied to work done in relation to cybercrime investigations. Within the area of 

investigative linguistics and the provision of evidence, there are a variety of different tasks 

that forensic linguists perform; these include: comparative authorship analysis, sociolinguistic 

profiling, interactional meaning, determining meaning, trademark disputes and copyright 

infringement.  

Comparative authorship analysis is usually a closed set analysis in which a text of anonymous 

or disputed authorship is credibly believed by investigators to be written by one of a limited 

number of authors. Forensic linguists can then compare the linguistic style and features of 

the questioned text to known texts by the suspect author or authors. Comparative authorship 

of long texts is increasingly dependent on heavily multivariate computational techniques, 

which can be shown to be reliable but offer little explanation as to the outcome. This validity 

deficit means that forensic analysts tend not to depend on such techniques and, in any case, 

such techniques often require more text than is available in forensic casework (Grant, 2007). 

Perhaps surprisingly, considerable progress in forensic comparative authorship analysis has 

been made with the very short texts found in SMS text messaging and other short form 

messages such as Twitter feeds. There have been a number of UK cases when a person is 

missing, presumed dead, but their mobile phone has continued to send text messages. In such 

cases, linguists have been consulted to see if the suspect messages are consistent with those 

of the missing person, the suspect, or neither (see Grant (2010) for a description of one such 

case and the analysis performed).  

Some crimes are inherently linguistic in that they are committed through language, for 

example: threatening, extorting, and bribing. Shuy (1996) termed these ‘language crimes’ 

(also discussed by Solan & Tiersma, 2005). In his work, Shuy (1996, 2005) demonstrates that 

covertly recorded conversations involving an undercover agent can make for poor forensic 

evidence of what was said and what was meant. He demonstrates how the imbalance in 

knowledge between the participants in the conversation can warp interpretation of the 

communications, leading to prosecutions on the basis of linguistically questionable evidence. 

The role of forensic linguists and linguists in determining meaning is perhaps more apparent 

when considering multilingual texts; but even within monolingual situations, a forensic 

linguist can have much to offer, particularly when slang is involved. Grant (2017) identifies 

four main roles a linguist can have when seeking to determine slang meaning, with each role 

or situation requiring a different combination of methodologies. An example of one variety is 

Grant’s work in a conspiracy to murder case (Coulthard, Grant, & Kredens, 2011; Grant, 2017), 

which took place over internet relay chat (IRC).The suspects were Grime musicians that spoke 

Multicultural London English, a variety of East London slang which draws heavily on Jamaican 

English. One key phrase from the IRC chat transcript was ‘I’ll get da fiend to duppy her den’. 

In this instance Grant was able to explain to the Court the origin and the meaning of the verb 

‘to duppy’ (which can be traced back to Jamaican English and its approximate meaning of 

‘ghost’) and that it did indeed indicate a threat against the victim.  



Sociolinguistic profiling is directly descended from the field of sociolinguistics and is based on 

the concept that an individual’s linguistic output is influenced by a number of social factors 

including age, gender, geographical background, other languages spoken, and educational 

status. In sociolinguistic profiling casework, the forensic linguist will aim to determine 

information about an anonymous author or the origins of the text. A linguist may not make 

psychological observations about the author or their intentions but, dependent on the 

features within the text, they might be able to describe the author’s social origins or 

background. Sociolinguistic profiling has been used extensively with computer mediated 

communications, and there have been numerous documented cases of it being beneficial to 

the outcome of a case and the provision of justice (Kniffka, 1996; Leonard, 2005; Schilling & 

Marsters, 2015).  Conclusions about the likely social background of an anonymous author are 

unlikely to ever be certain enough to provide evidence for courtroom use, but as evidenced 

through previous casework, they can be used investigatively to good effect.  

Native Language Influence Detection 

One area of sociolinguistic profiling that is of increasing interest and that holds much potential 

for impacting law enforcement work is native language influence detection (NLID) (Dras & 

Malmasi, 2015; Grant, 2008; Koppel, Schler, & Zigdon, 2005; Li, 2013; Malmasi, 2016; 

Tetreault, Blanchard, & Cahill, 2013). A simplified definition of NLID is that it seeks to indicate 

an author’s native language, also termed L1, from the way they write in a second language 

(or L2). As multilingualism is becoming increasingly prevalent and there are now more 

multilingual than monolingual speakers in the world (Thomason, 2001), application of NLID 

holds much potential benefit. While it is difficult to define exactly what level of expertise is 

required for someone to be considered a speaker of a second language, it is estimated that 

the number of second language (L2) English speakers could outnumber the number of native 

English (L1) speakers (Bhatia & Ritchie, 2004). Unsurprisingly, this trend continues online, with 

approximately 80% of the 40 million internet users communicating in English (Bhatia & 

Ritchie, 2013). It is therefore logical to conclude that a considerable number of English 

language forensic texts are likely to be produced (or at least potentially produced) by non-

native English speakers. Bhatia and Ritchie (2013) highlighted the growing link between 

computer mediated communication, multilingualism and forensic linguistics, stating ‘In a 

world connected by social media and globalization, the role of the study of multilingualism in 

forensic linguistics is increasing rapidly.’(Bhatia & Ritchie, 2013, p. 672).  

There is an established social belief that one can identify a person’s L1 from the way they use 

a second language, and the link to potential forensic application is not new. A similar concept 

can be seen in the Bible with the Gileadites using the term ‘Shibboleth’ to distinguish whether 

a person was a Gileadite or an Ephraimite based on their pronunciation of the first phoneme. 

It can also be witnessed through fictional literature, in a Scandal in Bohemia (Doyle, 1892), 

Sherlock Holmes uses interlanguage principles and the positioning of a verb to identify that 

the author of an anonymous note is a native German speaker. Whereas Parker Kincaid, Jeffery 

Deaver’s (1999) fictional forensic document expert, uses linguistic typologies to determine 

that an anonymous author is merely pretending to be a non-native English speaker, as the 

features do not indicate a specific language.  



 There are few real cases involving NLID that have been publicised, likely due to the sensitive 

situations surrounding them. Two real life cases that involve forensic linguistics have been 

documented by Kniffka (1996) and Hubbard (1996). Kniffka discussed a case in which he was 

consulted about threatening letters being sent within a German company. The content 

indicated that the anonymous author was one of the company’s employees. Kniffka’s analysis 

uncovered occurrences of marked linguistic constructions of the German language including; 

unusual spelling errors with umlauts, awkward lexical collocations and non-idiomatic use of 

German proverbs. He concluded that the author was likely a non-native German speaker with 

a high level of German fluency. This information fed into the investigation with police 

changing their focus from an L1 German suspect, to the two L2 German employees, one of 

whom was later found writing another threatening letter.  

The field of NLID is strongly influenced by the concepts of interlanguage and cross-linguistic 

influence which developed from second language acquisition studies from a pedagogic 

perspective. In this field, researchers, for example Lado (1957) and Hopkins (1982), indicated 

that an understanding of a learner’s first language (L1) and their target or second language 

(TL or L2) can be used to predict the errors they might make. Similarly after successfully using 

linguistic analysis to aid in a prosecution on a South African case involving the questioned 

authorship of a series of extortion letters and an L1 Polish speaking suspect, Hubbard (1996) 

concluded that ‘error analysis can have forensic value’ (Hubbard, 1996, p. 137). Although 

these areas have different motivations to NLID, and NLID is interested more in general 

linguistic patterns than errors, they still set up a theoretical precedence.  

Native Language Identification (NLI) is a very closely related field to Native Language Influence 

Detection (NLID), approaching the same question of indicating an author’s native language, 

but from a computational perspective. The field of NLI was pioneered by computational 

researchers such as Tomokiyo & Jones (2001), Jarvis, Castaneda-Jiménez, & Nielsen (2004), 

and Koppel, Schler, & Zigdon (2005).  Koppel et al. (2005) in particular have been taken as the 

standard for future research. 

Koppel et al. drew their data from the ICLE corpus (International Corpus of Learner English), 

which comprises classroom essays on common topics across the different language sub-

corpora. The use of language student data has been replicated by many other studies. 

Malmasi (2016) noticed a trend emerging in 2012 for research using data other than from the 

ICLE corpus; the motivation seemed mainly to prevent topic bias, rather than to better mimic 

forensic data as the majority of studies still focused on data from second language learners. 

In keeping with this, the majority of new data sets were still based on language learner texts. 

In a 2013 shared task on NLI (Tetreault et al., 2013), the majority of the participating teams 

based their work on the TOEFL11 corpus test data (Blanchard, Tetreault, Higgins, Cahill, & 

Chodorow, 2013). Those that found other data used other corpora of English learners, 

arguably the most interesting being the use of the Lang-8 (www.lang-8.com) corpus by 

(Brooke & Hirst, 2013). Lang8 is an online learning resource where users post diary journal 

entries which are then corrected by native speakers of the language. This is potentially more 

valid data for the development of forensic and intelligence applications, as much forensic data 

is also produced online. However the purpose and audience are still firmly grounded in the 

http://www.lang-8.com/


language-learning domain. While there is little consistency in what constitutes a forensic text, 

they rarely resemble student texts which are written in unique conditions and for the purpose 

of evaluating the author’s language, rather than for communicating content.  

In contrast to most existing NLI studies, the present NLID study uses real life data collected 

from weblogs. This contrasts with elicited data or student data which is written for a particular 

purpose. NLID takes a data-driven bottom-up approach using sociolinguistic explanations to 

indicate which languages might have an influence over the language that is being analysed. 

This allows a more nuanced perspective of why certain features are important and indicative, 

and means that the analyst can better explain what is happening and the analysis better adapt 

to genre changes as well as authors with more complicated linguistic histories. Some NLI 

studies do incorporate interlingual explanations of the features, most notably Brooke & Hirst 

(2012) and Bykh, Vajjala, Krivanek, & Meuers (2013). The latter used linguistically informed 

features, rather than just surface focused n-grams, to develop a more accurate system in the 

2013 NLI shared task. This demonstrated that linguistic explanations can make automatic 

analytical systems more accurate, as well as being of use to the human analyst.  

NLI also tends to take a closed-set approach to the problem; identifying an author’s language 

from a limited set of options. As there are approximately 7,000 languages in the world 

(Simons & Fennig, 2017), and the majority of speakers have contact with more than one 

language, a closed set approach is of limited use to forensic profiling. NLID (Native Language 

Influence Detection) and OLID (Other Language Influence Detection) are more focused on 

influence, using explanations to indicate potential influences on an anonymous author’s 

language, and allowing for more complex linguistic backgrounds, which many authors and 

potential authors have. 

Study - Methodology  

This article presents findings from two studies within a wider series of studies: the first looks 

at features of native Persian speakers writing online, as opposed to native English speakers; 

The second was a sub-study to indicate whether the features identified were indicative of 

Persian, as opposed to non-native speech or the wider Persian language family. For this 

purpose, it analysed weblogs from L1 authors of two related languages: Azeri and Pashto. The 

study does not analyse these languages fully; instead they are used as a scoping study to 

determine if the features identified as indicating L1 Persian influence can distinguish between 

languages that are geographically or linguistically close to Persian.  

The data comprises publically accessible weblogs from authors writing in English. The data for 

the main study contains two corpora; one of weblogs written by native Persian speakers and 

a control corpus of weblogs by L1 English speaking authors. The blogs were collected from a 

range of sources and cover a variety of topics. 25 authors who self-identified as being an L1 

(or mother-tongue or native) speaker of the relevant language without apparent self-

contradiction were selected for each corpus. The data for the second smaller study into 

related languages, comprises 5 L1 Azeri authors and 5 L1 Pashto authors blogging in English. 

The L1 Persian corpus from the main study served as the control corpus.  



Feature identification was based on a data-driven approach. Initial analysis was undertaken 

through a close analysis of a sub-set of the data, any occurrence of marked language was 

noted. Marked language in this case is the use of language in a way that an L1 English speaker 

would unlikely do; this includes errors and grammatically correct (but unusual) preferences.  

It was noticed that the marked language clustered around certain features. Many of these 

features had clear interlingual explanations. The features were loosely grouped into 

hierarchical categories, of which this article is focusing on the mid-level features. There are 

both higher level features which reflect the broad grammatical class of the feature (e.g. 

preposition, ordering and positioning, or lexical), and lower level features that contain more 

specific information about the marked language, how marked it is, and potential influences. 

Under the higher level categories the features clustered around several areas within each 

category: Marked Presence, Marked Absence, Marked Choice, or Marked Construction. In 

some situations Marked Position or Ordering was also a possibility. This resulted in the 29 

mid-level features including: Verbal Marked Choice, Article Marked Choice, Pronoun Marked 

Choice, and Pronoun Marked Presence. 

After the full feature set was established, the entire data set was coded (with lower level 

specific descriptive features being fitted into the framework as they appeared). A total of over 

300 features across the levels were identified, many of which were very precise lower level 

descriptors.  

 

Findings and Application 

After the blogs were coded for all of the features, logistic regression analysis was used to 

determine which of the mid-level features had the highest discriminatory power. Logistic 

regression is a statistical analysis that has been demonstrated to be a useful tool in forensic 

analysis and criminal justice (Weisburd & Britt, 2007). It predicts the outcome of a situation, 

based on a set of variables, which in this case are the 29 mid-level features. The potential 

outcomes for the first study are that any given author could belong to the L1 Persian speaker 

set, or the L1 English speaker set. In the second sub-study the potential outcomes are that 

the author could belong to the L1 Persian speaker set, or the group of authors from the closely 

related languages (L1 Azeri and L1 Pashto).  

Initially, all the 29 mid-level features were used, but given the high number of variables, it is 

not surprising that the Hosmer-Lemeshow test indicated that the model was over-fitted to 

the data and hence would not be generalizable or adapt well to other data. This is a particular 

issue in the forensic context where there is no standard genre of forensic texts; instead there 

is great variability in what a forensic text can look like. The number of variables included in 

the model can be reduced by eliminating features with lower predictive power as identified 

through low Wald X2 scores, to find an optimal model that is a balance between good 

prediction and over-fitting.  

The features that comprise the optimum models for each study can be seen in Table 1 below. 

For Study 1, the optimum model contained 10 features as follows (in order of descending 

discriminatory power): Verbal Marked Choice, Article Marked Choice, Verbal Marked 



Construction, Lexical Marked Absence, Article Marked Presence, Lexical Marked Presence, 

Conjunction Marked Absence, Adverb Marked Presence, Pronoun Marked Choice, and 

Pronoun Marked Presence. The optimum model for Study 2 contained 12 features, of which 

five were different to Study 1 and seven repeated. The statistical output also gives us the B 

value for each feature (see Table  below), which relates to how much the presence of that 

particular feature alters the probability of membership to each group. The polarity indicates 

which group the feature relates to. A positive B value in Study One increased the probability 

that the author belonged to the second group, that of L1 Persian speakers. In Study Two, a 

negative B value increases the probability of L1 Persian authorship. In both studies, the 

following 3 features indicated an increased probability that the author belonged to the L1 

Persian speakers group: Conjunction Marked Absence, Pronoun Marked Presence, and Lexical 

Marked Presence.  

[Table 1 preferred location] 

It is also possible to use these optimum models and the information contained in the table 

above to perform analysis in case-work situations. This information also enables much greater 

understanding of the features, avoiding a ‘black-box’ approach to analysis. 

The optimum models have the added benefit that they are much more easily implementable, 

as the analyst can focus on these features in isolation, and hence only has to code for the 

seventeen distinct mid-level features, rather than over 300 features. This means that the 

analysis is practical for casework, which tends to be very time sensitive.  

The application can be demonstrated as follows. Below is a short extract from an online blog 

that did not constitute part of the data for this research. In an ideal situation, the forensic 

linguistic analysis would use as much data as it is possible to gather. However, often there is 

not much data that the linguist is able to access. Coulthard (1994) estimated that forensic 

texts tend to be between 400 and 700 words in length. The increase of forensic data linked 

to computer mediated communication, such as text messages or tweets, means that even 

briefer texts are becoming more relevant to forensic contexts (Silva & Laboreiro, 2011). It is 

unlikely that data as short as the text would constitute good forensic data, but it serves as a 

useful example here.  

My name is [Username] but my friends call me [Name], I am a 

student at the University of [City] where I *265* studying in the 

Faculty of Law and Political Sciences. My professor is [Full 

Name]. I *251* start this blog site as a school project. I *251* 

provide information on world affairs but mostly I know my own 

country Iran the best. My native language is Persian but I know 

some English and Arabic. This blog site will *251* write in 

English since I *265* trying to speak and write English better. I 

will update this blog *122* site often. (Jaleh, 2011) 
 

The features are marked in the text with *numbers* that correspond to the relevant features 

(see list below).  The text contains the following features: 



- *251* = Verbal Marked Choice x3 occurrence  

- *265* = Verbal Marked Construction x2 occurrence 

- *122* = Lexical Marked Presence x1 occurrence 

Each study much be considered in turn. Firstly, the features relating to Study 1 can be input 

to the following equation to determine the probability that the text was authored by an L1 

Persian speaker 

Likelihood of membership to second group = (B value of feature for 

specific study x number of occurrences) + (B value of next feature x 

number of occurrences) [...] 

Study 1 Likelihood that the author belongs to the L1 Persian group = (1.727 x 3) + (-1.058 x 2) 

+ (26.623 x 1) = 5.181 + -2.116 + 26.623 = 29.688 times more likely to be L1 Persian 

This demonstrates, that despite the reduced volume of text, the features indicate that the 

author is an L1 Persian speaker, which matches how the author self-identified within the blog. 

The likelihood ratio constitutes moderate evidence by the standards of Champod & Evett, 

(1999)’s scale. 

Study 2 Likelihood that the author belongs to the L1 ‘other languages’ = (0.073 x 3) + (-0.383 

x 2) + (-1.691 x 1) = -2.238 times more likely to be an L1 other languages speaker = 2.238 times 

more likely to be an L1 Persian speaker 

This again is in keeping with the blogger’s self-identification as an L1 Persian speaker. The 

reduced likelihood ratio only constitutes limited evidence on Champod and Evett’s 1999 scale 

for evaluating likelihood scales as evidence. However, the fact that even with a very small 

section of text, the results are as expected, supports the reliability of the features and their 

use in forensic situations. It is likely that a greater volume of text would yield more features, 

and hence the weight of evidence might increase. 

The study above indicates that native language influence detection is possible, it can be used 

by forensic linguists to indicate influences from other languages on an anonymous author’s 

second language. It can distinguish between languages that are closely related (especially 

linguistically, geographically, or culturally). It can be useful with very short texts (such as one 

might find in forensic contexts). Previous research (Perkins, 2013) has also demonstrated that 

it is not easily susceptible to confusion by authors disguising their language. 

The research presented above is a small element of a wider series of research projects that 

has been progressing at Centre for Forensic Linguistics at Aston University. There are many 

more questions that cannot be presented here that are being considered, and analysed. This 

includes questions around inter- and intra-rater reliability, considering more languages, 

distinguishing between related languages, as well as developing features that are 

computationally tractable and developing a semi-automated system that is grounded within 

interlingual explanations. Through this approach, the projects seek to develop a system that 

incorporates elements of computational NLI approaches, combined with the theoretical 



grounding of NLID, to develop a system that will be of benefit to investigators and law 

enforcement agents.  

What is clear is that as technology and globalisation enables more regular contact with 

different L1 speakers around the world, understanding the impact of cross linguistic influence 

and developing multilingual forensic linguistics systems of analysis will become more 

important. It is also likely that advances in technology will significantly influence this field, not 

just through the evolution of software available to law enforcement and researchers, but also 

with those seeking to evade detection, potentially with methods such as spoofing software. 

This in turn will necessitate further work to understand the implications and impact of this, 

as well as how it can be countered.   

The author of this article has undertaken several cases which required elements of native 

language influence detection, sometimes to great effect. Casework experience has indicated 

that NLID is seldom used on its own, but as part of a wider profile, and hence it forms a useful 

tool in the sociolinguistic profiler’s toolbox. It is expected that with continuing globalisation 

through technology, NLID will be of even more use in the future.  

Discussion and Conclusions 

This article has introduced some of the key areas in which forensic linguists are currently 

supporting cyber investigations, using NLID as an example to demonstrate how research 

motivated by casework situations can be of use. The cases on which forensic linguists consult 

on are needs-driven and reflect the socio-political climate. It is interesting to note that, 

increasingly, cases revolve around language data produced as part of computer mediated 

communication, as well as cases involving speakers of multiple languages. However, it would 

be erroneous to think that the work presented in this article represents the full extent of what 

is possible within the field of forensic linguistics. Cyber criminals are constantly evolving, 

leveraging technological developments and adopting new strategies and organisational 

structures across countries. This results in law enforcement agencies and officers having to 

adapt and evolve to keep up (Choo & Smith, 2008). Similarly, language evolves and changes 

in many ways (Heine & Kuteva, 2005) and it can do so very quickly (Keller, 1994). It is therefore 

unsurprising that the work of a forensic linguist is constantly evolving and growing. 

Technological advances have led to an increase in perceived and actual anonymity online, 

leading to a greater emphasis on fields such as forensic linguistics to help investigators 

(Hughes et al., 2008).  

The key message of this article, and the main take home for police or investigative 

practitioners, is that an awareness of forensic linguistics, what it is and does, can be of great 

use in cybercrime investigations. An understanding of potential linguistic features can help 

investigators know when and how forensic linguistic analysis might be of use. The majority of 

forensic linguists who work with cybercrime are also academics, and as such they are involved 

with three main areas of work: casework, research, and teaching. It is the view of this article, 

that collaboration across all three areas will enhance the utility of forensic linguistics, meaning 

greater success in cybercrime investigations, and the delivery of justice.  



One of the growing areas in which forensic linguists have been of use, is in the delivery and 

facilitation of linguistic training for investigators. Once such example is the linguistic training 

delivered as part of the Pilgrim course for police staff who work with online material (HM 

Inspectorate of Constabulary and Fire & Rescue Services (HMICFRS), 2014). Officers are 

trained to recognise different levels of linguistic feature, which in turn enhances their ability 

to assume different (and sometimes very specific) identities online (Grant & Macleod, 2016). 

This is an area that is having demonstrable investigative impact, thanks to research 

collaboration. Similarly the author of this article was seconded to a British Policing Unit as 

part of a previous forensic linguistic research project. As far as we are aware, this is the first 

situation of a forensic linguist being embedded into an investigative unit. Working in close 

proximity for an extended period enabled not just better results for that particular research 

project, but also an ongoing understanding in of each other’s work that would not have been 

possible otherwise. It is the contention of this article that collaboration in any form is positive. 

Developing a working relationship has led to casework, further research, and training, 

enhancing the practices on both sides and ensuring long lasting impact.  

It is impossible to accurately predict the future direction of forensic linguistics. What is clear 

is that through collaboration with casework, research, and training forensic linguists can 

continue to support those working to prevent and solve cybercrime. Similarly, through 

engaging with forensic linguists, investigators and law enforcement officers can enable us to 

better support investigations and the provision of justice, at case level and beyond.  

 

Tables 

 

Table 1 - Study 1 and 2 - Optimum Model Features 

Rank Study One Wald  B Study Two Wald B 

1 Verbal Marked 
Choice 

4.101 1.727 Conjunction Marked Absence 3.535 4.364 

2 Article Marked 
Choice 

3.355 2.628 Pronoun Marked Presence 2.463 6.313 

3 Verbal Marked 
Construction 

1.629 -1.058 Preposition Marked Absence 2.134 -1.632 

4 Lexical Marked 
Absence 

0.853 1.355 Lexical Marked Choice 2.109 0.242 

5 Article Marked 
Presence 

0.84 1.161 Lexical Marked Absence 0.852 -2.52 

6 Lexical Marked 
Presence 

0 26.623 Lexical Marked Construction 0.83 0.103 

7 Conjunction 
Marked Absence 

0 -53.241 Lexical Marked Presence 0.657 -1.691 

8 Adverb Marked 
Presence 

0 -74.842 Verbal Marked Construction 0.385 -0.383 

9 Pronoun Marked 
Choice 

0 80.921 Pronoun Marked Absence 0.352 0.385 

10 Pronoun Marked 
Presence 

0 -16.168 Verbal Marked Choice 0.053 0.073 



11       Conjunction Marked Presence 0 -40.801 

12       Adverb Marked Absence 0 -26.574 
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