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This study offers an explanation for the occurrence of magnetization exchange bias in antiferromag-
nets with ferromagnetic inclusions during pre-cooling the system in a magnetic field. The ferromag-
netic (FM) subsystem ordered in this field at the Néel temperature leads to an inhomogeneous state
of the antiferromagnetic (AFM) matrix with the finite mean effective field at the FM/AFM inter-
face. This field causes exchange bias in the dependence M =M(H) during further remagnetization
of the heterogeneous system. To describe the proposed scenario for such an effect, a simple model
of a two-dimensional system with round inclusions of the FM phase was considered. Using numeri-
cal calculations and previously obtained analytical results, the study determines magnetization
dependencies on the external field, which qualitatively explains the features of exchange bias in
experimentally studied heterogeneous systems. Published by AIP Publishing.
https://doi.org/10.1063/1.5060970

1. Introduction

The phenomenon of ‘exchange bias’ (EB) is observed in
inhomogeneous systems contacting ferromagnetic (FM) and
antiferromagnetic (AFM) subsystems. It consists in the shift
of the magnetization dependence of a magnet on the external
magnetic field M (H) from a symmetrical shape (relative to
the field direction) by the value ΔHeb. This effect was first
observed in oxidized Co powder, i.e. ferromagnetic Co parti-
cles covered by a thin layer of antiferromagnetic CoO.1

Subsequently, it was studied primarily using contacting FM/
AFM films.2,3

Exchange bias can be explained as follows.4 It is
believed that, in an ideal homogeneous ferromagnet (FM),
magnetic moments are collinearly aligned along an easy axis
of magnetization. In an ideal homogeneous two-sublattice
antiferromagnet (AFM), the moments of the sublattices are
anticollinearly ordered in the same direction as in a ferro-
magnet. On certain sections of FM/AFM interfaces, AFM
magnetic moments from one sublattice are present, i.e. they
are collinearly ordered although they correspond to ideal
antiferromagnetic ordering [see section ab in Figure 1 and N
sections in Fig. 2(a)–(c)] (hereinafter ‘the uncompensated
interface’). At the same time, they create an effective surface
magnetic field (Heff ) acting on the FM subsystem in addition
to the external field. In the case of other interface orientations
[section bc in Fig. 1 and C sections in Fig. 2(a)–(c)], the
effective surface magnetic field Heff acting on the ferromag-
net is cancelled out because these two have AFM magnetic
moments from different sublattices (hereinafter ‘the compen-
sated interface’). (Further, in order to be specific, it is
assumed that the AFM subsystem is ordered in a chessboard
arrangement.) An additional total field created by uncompen-
sated interface sections determines the exchange bias of the
Heb field.

The exchange bias effect is determined by the interface
between a ferromagnet and an antiferromagnet, the exchange

bias value being normally as follows: ΔHeb ∼ J0S/L, where
J0 is the magnitude of the exchange interaction between the
FM and AFM subsystems through the interface, S is the area
of the uncompensated interface sections, and L is the charac-
teristic size of the FM structure (FM clusters). Therefore,
exchange bias is most prominently manifested in systems
with a large interface surface, namely in contacting FM/
AFM films with an uncompensated interface, or in a finely-
dispersed heterogeneous medium with FM and AFM compo-
nents. This primarily refers to multilayer systems made from
thin FM and AFM films in which large surfaces of uncom-
pensated interfaces can be created in the production process,
and in which the volume of thin films is commensurate with
the volume of boundaries. Such systems, manifesting the
exchange bias effect, are successfully used in data recording
and storage devices in which the surface of FM/AFM con-
tacts is completely uncompensated and the effect manifests
itself most strongly. However, the exchange bias effect was
first observed in oxidized fine-grained cobalt powder with a
large FM/AFM contact surface area, although in this system
the average AFM magnetization at the interface must be
zero. Therefore, despite a large number of both theoretical
and experimental studies, this effect is yet to be thoroughly
explained.4,5 Firstly, the problem is related to the complex
structure of FM/AFM interfaces, which can include sections
with ideal surfaces and compensated (with zero total mag-
netic moment) and uncompensated structures, as well as
interface sections with differing degrees of roughness.
Secondly, the exchange bias effect is significantly influenced
by the conditions of sample production (cooling in an exter-
nal magnetic field and the rate of this cooling).

One of the methods for studying these features of the
exchange bias effect is the experimental study of heteroge-
neous FM/AFM systems, which are inclusions of FM clus-
ters in an AFM matrix. This system is convenient because it
has a large network of FM/AFM interfaces, i.e. it has a large
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area (S) and is relatively small in size (L). Researchers study
both metamaterials in which ferromagnetic elements form an
ordered two-dimensional lattice on an AFM surface6 and dis-
ordered heterostructures in which FM clusters of different
sizes and shapes are randomly incorporated into an AFM
matrix.7–9 When cooled in an external magnetic field, a part
of the system with ferromagnetic interparticle interaction
transfers to a ferromagnetically ordered state. In the case of
sufficiently large clusters, this can be associated with a coop-
erative phase transition in separate clusters, and at lower tem-
peratures, it can be related to a bulk phase transition. In this
case, the FM subsystem creates the mean field Heff acting on
the AFM matrix at its interface. The field acts within uncom-
pensated interface sections, which serve as centres of nucle-
ation of the AFM phase at the Néel temperature. However, in
the case of a two-sublattice antiferromagnet, an increase in
sections of the AFM phase from discrete FM clusters and
from particular interface sections is accompanied by the for-
mation of a system of AFM boundaries [Fig. 2(d)].

Recently, these heterogeneous systems have been inten-
sively studied experimentally.7 In particular, they were

investigated in two studies8,9 that have reported observations
of the exchange bias phenomenon. In this paper, we provide
a model for the possible occurrence of exchange bias in het-
erogeneous FM/AFM systems. This model is investigated
analytically and numerically using the results of theoretical
studies10,11 of the field dependencies of planar FM/AFM
interfaces.

The proposed scenario for the occurrence of exchange
bias in heterogeneous systems can be described as follows.
When a heterogeneous system is cooled in an external mag-
netic field Hcool, clusters with ferromagnetic interaction
between magnetic moments pass into a magnetically ordered
state with a non-zero average magnetization of the FM sub-
system in the direction of the field. Given the finite size of
the clusters, we are referring to the so-called ‘cooperative
transition’, which is not accompanied by field dependence.
At the same time, the ordered ferromagnet does not affect
the AFM ordering on compensated interface sections (bc in
Fig. 1). On uncompensated interface sections (ab in Fig. 1),
the ferromagnet affects one of the AFM sublattices through
the effective field directed along the external field, seeking to
order it. At temperature TN, uncompensated interface sec-
tions act as centres of nucleation of the AFM phase.

However, due to the two-sublattice AFM structure, dis-
tinct interface sections order particular AFM sublattices, and
some of the emerging sections of the AFM phase do not
connect with each other [see Fig. 2(d)], forming AFM
domain boundaries (DB).

With a further decrease in temperature, the magnetic
structure of the entire magnet is fixed and remains unchanged
when the field is turned off. In particular, the AFM domain
structure and the nature of AFM ordering at the boundaries
with the FM are fixed. In this case, it is the AFM that affects
FM clusters, which results in the effective field Heff occur-
ring on the uncompensated sections (ab in Fig. 1) and acting
on the FM. This field is absent on the compensated sections
(bc in Fig. 1). It is important that the total effective field
acting on the surface of FM clusters on the part of the AFM

Fig. 2. AFM matrix ordering at the
boundary with FM-ordered clusters (a),
(c) and in areas between FM clusters
(b), (d).

Fig. 1. Compensated (bc) and uncompensated (ab) interfaces between FM
and AFM phases.
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subsystem throughout the entire sample is non-zero. With
further inclusion of a weak external field (smaller than the
spin-flop field) and with further change in its orientation, the
AFM system remains ‘frozen’ and the FM subsystem
changes its magnetization direction. In this process, an
important role is played by the ‘reverse’ effect of the Heff

field on FM clusters through uncompensated boundaries
from the AFM. It acts as a field that is complementary to the
external field and causes exchange bias.

2. Model

Let us consider a model of an FM cluster in an AFM
matrix at low temperatures when both FM and AFM subsys-
tems are magnetically ordered. To qualitatively describe this
phenomenon and provide a clearer picture of remagnetiza-
tion, we shall use a two-dimensional (2D) model of an AFM
matrix and FM cluster (three-dimensional models are consid-
ered in Ref. 12). Cluster sizes and shapes are an extremely
complicated issue because such sizes vary in experimental
studies from 10 to 105 Å.13 At the same time, some studies
consider metamaterials of 2D lattices of magnetic clusters
with fixed sizes and shapes.6 Therefore, Sections 2 and 3,
respectively, deal with large symmetrical clusters and small
clusters of complex configuration. Moreover, we shall
assume that an AFM matrix is an antiferromagnet whose
magnetic moments are arranged in chessboard order
[Fig. 2(a)]. The dots in the figure indicate the positions of
FM moments in a cluster, and the fat arrows represent
‘frozen’ magnetic moments of the AFM matrix adjacent to
the interface with an FM cluster.

The position of the cluster is selected so that its AFM
environment in the ordered AFM state induces the maximum
effective field Heff = 20J0M0 on the cluster surface and
causes its ordering in the direction of the vector M.

On the other hand, in the presence of a cooling field that
causes the ordering of the cluster in the M direction, the
cluster at the Néel transition also induces an effective field
(Heff ) at the boundary, which results in ordering of the AFM
matrix in its vicinity, as indicated in the figure. It is assumed
that the symmetry of magnetic anisotropy and the size of a
unit cell in the FM subsystem coincide with those in the
AFM. This corresponds to the experimental situation in a
number of studies7–9,13 that consider systems in which differ-
ent magnetic subsystems have the same crystallographic
structure but different charge states, which leads to ferro- and
antiferromagnetic ordering. In addition, we assume that the
external field is directed along the magnetic anisotropy axis
common to the FM and AFM, and the field is smaller than
the field of spin-flop transition in the AFM. In the case of a
magnetically rigid AFM, the directions of the magnetic
moments of the AFM are fixed, and FM moments can
change orientation. For simplicity and clarity, let us also
assume that, in the system, there is strong planar magnetic
anisotropy which ‘places’ magnetic moments in a plane
where they rotate.

Fig. 2(a) shows an FM cluster with 145 moments ori-
ented along the axis of easy magnetization. In this case, the
cluster radius R is 6a, where a is the interatomic distance. It
is shown below that, once a cluster has this radius, a further
increase in its size has little effect on remagnetization. It can

be seen that for the selected location of the cluster centre,
sections of compensated (C) and uncompensated (N) bound-
aries alternate at the interface. In this case, the effective
fields of all uncompensated sections have one direction and
the total uncompensated effective field is maximal.

However, if the same cluster is shifted in the AFM
matrix by an odd number of interatomic distances (in the
fixed ordering of the AFM matrix!), then the total effective
field acting through the boundary on the FM core of the
cluster will change its sign [the cluster on the right in
Fig. 2(b)]. In the cluster configuration shown in Fig. 2(b), the
total effective field acting on two clusters on the part of the
AFM equals to zero, and, in the magnetic field at T < TN,
the total magnetization of the clusters will be zero without
freezing. It should be noted that, in this case the entire AFM
space outside these clusters can be ideally ordered without
the emergence of domain boundaries. In addition, the total
mean effective field acting on a cluster depends both on its
shape and size.

For example, Fig. 2(c) shows a cluster similar to that
shown in Fig. 2(a), although it is ‘flattened’ by one inter-
atomic distance and contains 132 FM moments.

For this cluster, the total effective field associated with
the ordered AFM matrix equals zero. In this figure, N– and
N+ denote uncompensated sections with the opposite direc-
tion of the effective field. If the size of the cluster remains
the same, it is possible to obtain the total effective field
through the cluster interface in the interval −H* < Heff < H*
(where H* ∼ (2πR/a)J0M/2) by slightly varying the cluster’s
shape and position in the AFM matrix in the perfect fixed
alternation of AFM moments. Thus, in the absence of an
external magnetic field during cooling, the mean effective
field acting on the FM subsystem on the part of the AFM
should be zero. In this case, the exchange bias effect is not
observed, which was demonstrated experimentally in.8,9

However, the situation can change as a result of the AFM
passing into an ordered state when FM clusters have average
magnetization oriented in one direction and caused by previ-
ous cooling in an external magnetic field. As indicated in the
Introduction, ferromagnets have an ordering effect on antifer-
romagnets, and N sections at cluster boundaries act as nuclei
of the AFM phase. In particular, with the same magnetization
of the clusters in Fig. 2(d), the magnetic moments of the
AFM subsystem on the N sections of the interface of the right
cluster [see Fig. 2(d)] will be oriented in the direction of FM
magnetization, i.e. in the direction opposite to that shown in
Fig. 2(b). When the sample is further demagnetised, the exter-
nal field acts weakly on the AFM subsystem, but the AFM’s
remaining mean field results in the occurrence of magnetiza-
tion exchange bias in FM clusters. However, it is apparent
that, in such a scenario, AFM domain boundaries (like those
shown in Fig. 2(d) between two clusters) are certain to arise,
and some of the domain boundaries can ‘begin’ and ‘end’ at
cluster boundaries. The additional energy of the system is
associated with the emerging domain walls, and this energy
must compete with the energy of an ordering mismatch
between the FM and the AFM on N-type sections of inter-
faces in the absence of AFM boundaries. The number of
AFM domain boundaries depends on the system’s cooling
rate at the Néel phase transition. The resulting exchange bias
should increase with an increase in the cooling rate.
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3. Remagnetization of large radially symmetric clusters

Let us qualitatively consider remagnetization of a large-
sized FM-ordered cluster in a magnetically ordered AFM
matrix. In Ref. 12, this process was considered numerically
using the mean field method and the Monte Carlo method
for three-dimensional FM particles of spherical shape. The
calculations showed that with a change in the external field
in an FM cluster, the FM clusters contain areas of the phase
ferromagnetically ordered along the field [N– regions in
Figs. 3(a) and 3(b)], which emerge from the ‘uncompensated’
sections of FM/AFM interfaces oriented against the field.

In the case of large-radius clusters (R>>a), the inner
areas of a ferromagnetic cluster can be qualitatively repre-
sented as alternating FM bands in contact with the boundar-
ies (N+ – NC – N– – NC) of uncompensated sections oriented
along (N+) and against (N–) the field, and of compensated
sections (NC), with the length deep into the cluster (L ∼ R),
and with a width of Δ ∼ πR/4. On these sections, the magne-
tization is approximately uniform along the width of the
bands and varies only in the direction of the cluster centre
[Fig. 3(b)]. In this figure, the lengths of the transition order-
ing regions along the field in the compensated and uncom-
pensated regions are denoted as LC and LN. They are
essentially different: LC << LN.

In the case of large-sized FM clusters, regions in contact
with compensated and uncompensated AFM boundaries are
rather wide. Therefore, for simplicity, we do not take into
account the interaction between these regions, as we consider
their contribution to the overall magnetization of a cluster as
additive and understand the magnetization therein to be
homogeneous along the width of the layer. In this case, the
problem reduces to calculating the field dependencies of
magnetization of individual FM regions that come into
contact with various AFM boundaries, as is shown in
Figure 3(b). This one-dimensional problem was previously
investigated with respect to layered FM/AFM systems for
uncompensated interfaces in Refs. 10 and 11 and for com-
pensated and disordered boundaries in Refs. 14 and 15

This issue was considered theoretically in Refs. 10 and 11
with respect to FM films of finite thickness L = aN, where N
is the number of FM atomic layers. A classical two-
dimensional Heisenberg model was used for an easy-plane
ferromagnet with additional weak anisotropy within the ‘easy
plane’. A number of studies7–9 describe experiments on com-
pounds in which manganese ions with spin S = 2 acted as

magnetic moments, which justifies the classical description of
the system. It was assumed that the main anisotropy was suf-
ficiently large, the magnetization vectors did not come out of
the easy plane and were characterized by only one scalar
value, namely the angle of deviation w from a favourable
direction in the easy plane (the easy axis of magnetization).
Since in regions with a compensated boundary (NC) there are
lines with different moment directions, which alternate along
this boundary, the total energy in these regions, as calculated
for the structure period along the boundary, can be written as
follows:

EC ¼�
XN
i¼1

X
j¼1,2

J cos (w(j)
i �w(j)

iþ1)þ
β

2
cos2w(j)

i þH cosw(j)
i

� � 

þ J cos (w(1)
i �w(2)

i )

!
�
X
j¼1,2

J0 cos (w
(j)
1 �ψ (j)),

(1)

where J is the exchange interaction constant in the FM
cluster, J0 is the exchange constant across the FM/AFM
interface, β is the single-ion magnetic anisotropy constant in
the easy plane (the easy direction of magnetization in the FM
and AFM is assumed to be the same and to coincide with the
direction of the external magnetic field H). AFM magnetiza-
tion is assumed to be fixed, i.e. the directions of magnetic
moments in two AFM sublattices at the interface are charac-
terized by the angles ψ(1) = 0 and ψ(2) = π.

Fig. 3. Distribution of magnetization in FM cluster regions that are in
contact with compensated (C) and uncompensated (N±) boundaries at the
interface.

Fig. 4. Field dependencies of magnetization of FM regions with compen-
sated and uncompensated boundaries of different signs (a) and the average
dependence M (H) for a system with the zero mean effective field of the
AFM subsystem (b), i.e. where C = 1/2.
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In regions with uncompensated boundaries (N+) and
(N–), we assume that ψ( j) = 0 and ψ( j) = π respectively, and
the energies as calculated for two layers perpendicular to the
interface, are as follows:

EN+ ¼ �2
XN+

i¼1

j cos (w(j)
1 � w(j)

iþ1)þ
β

2
cos2w(j)

i þ H coswi

� �

+2J0 coswi,

(2)

Possible stable states of magnetization w(j)
i (H) are determined

by solving the equations @E=@w(j)
i ¼ 0 and define the total

magnetization of the system: M(H) ¼ Ð Ni¼1 (cosw
(1)
i (H) þ

cosw(2)
i (H)). The analytical dependencies of magnetization

(M (H)) as a function of the parameters of the model J, J0
and β are discussed in detail in Refs. 10 and 11.

First of all, let us consider the simple case of absence of
magnetic anisotropy in FM clusters. For illustration, we
present the field dependencies of magnetization (obtained
numerically using the relaxation algorithm) for an isotropic
FM with β = 0 and with the ratio of exchange constants
J0/J = 2.7 for the case N = 4, which is somewhat smaller than
the cluster sizes shown in Fig. 2. The magnetization M/J
normalized to unity as a function of the field H/J (hereinafter
M =M (H)) for different FM cluster regions (N+, C, N–)
is shown in Fig. 4(a). The dependencies M =M (H) for

uncompensated sections (N±) are similar to those obtained
analytically in Ref. 16 using long wave approximation. If a
sample is cooled in the absence of a field, then the sample
average number of N+ and N– regions is equal and is half the
number of regions with a compensated boundary. In this
case, the field dependence of magnetization is symmetrical
with respect to the direction of the field and there is no
exchange bias. The complete (normalized) dependence M
(H) is as follows: M(H) ¼ (2MC þMNþ þMN� )=4. It is
presented for the particular case of the cluster shown
in Fig. 4(b).

If a heterogeneous FM/AFM system is cooled in a field,
the concentration of sections of uncompensated boundaries
with different directions of magnetization in FM clusters
becomes different and is determined by the direction and
magnitude of the external field, the total average field depen-
dence of magnetization to be described by the following
formula:

M(H) ¼ (MC þ (1� C)MNþ þ CMN� )=4: (3)

For example, this dependence is shown in Fig. 5(a) in
respect of the concentration C = 1/4 for which the areas of
surfaces oriented along and against the field differ by a factor
of three. The figure shows the occurrence of exchange bias
of a magnetization curve. However, since critical field values
at which magnetization begins to deviate from nominal
values do not change, exchange bias does not reduce simply
to a shift of the entire previously symmetrical curve along
the value axis of fields. The magnetization curve deforms
significantly and the asymmetry of the field dependence M
(H) arises. Apart from the exchange bias of the curve along
the field, there is also additional bias in magnetization mag-
nitude. This was noted when discussing the results of experi-
ments in Ref. 9.

Fig. 5(b) shows similar curves for different C concentra-
tions over the range 0 <C < 1 as determined by the magni-
tude of the external field in cooling samples and by the rate
of such cooling.

In this figure, we can see only some of the dependencies
for one field direction (H < 0). The full picture of field depen-
dencies can be obtained as follows: H → −H, M → −M and
C → 1 − C. In the field region H1 <H < 0, magnetization
curves are characterized by a parallel shift along the M axis,
proportional to concentration C.

The results obtained allow us to plot the dependencies
of exchange bias magnitude on the effective impact of the
AFM subsystem on FM clusters, which provides some
insight into the influence of cooling field magnitude and
cooling rate on the magnetic structure of a cluster surface.
This issue was discussed earlier in Ref. 9: the boundary line
in Fig. 5(b) for concentrations C = 0 corresponds with the
line MC (H) in Fig. 4(a). The M (H) dependencies shown in
Fig. 5(b) allow us to find a relationship between the magni-
tude of exchange bias and the characteristic of the magnetic
structure of a cluster surface, i.e. the concentration of various
uncompensated sections. In this case, it is necessary to use
the typical exchange bias of a magnetization curve along the
field ΔHeb = ΔHeb (C) and over magnetization magnitude in a
zero external field ΔEeb = ΔEeb (C).

Fig. 5. Field dependence of magnetization of a heterogeneous FM/AFM
system with the concentration of uncompensated boundaries C = 1/4 (bold
curve) and the dependence from Fig. 4(b) for the concentration C = 1/2 (a)
(thin line). Analogous field dependencies for different concentrations over
the range 0 <C < 1. Thick lines correspond to concentrations C = 0.1/2.1 (b).

Low Temp. Phys. 44 (11), November 2018 M. L. Pankratova and A. S. Kovlev 1165



This magnitude is strictly linear in terms of concentra-
tion and is shown in Fig. 6(a) as straight line A. Bias field
dependencies are slightly different from the magnetization
bias [line B in Fig. 6(a)]. In the field region H1 <H < 0, it
replicates the field dependence of magnetization at a fixed
concentration, and at high concentrations, it is almost linear.
Therefore, using the experimental results for exchange bias
as a function of the cooling field Hcool as obtained in Ref. 9
[Fig. 5(a) in Ref. 9], we can plot the dependence of concen-
tration C and the effective field Heff on the field Hcool. It is
shown qualitatively in Fig. 6(b).

Figures 4–6 present the results of calculations for clus-
ters whose characteristic size (cluster radius or the length of
the region in contact with a homogeneous section of the
boundary) is chosen equal to N = 4.

The figures clearly show all the features of the magneti-
zation curves and their shifts depending on the values of the
external field and magnetization.

4. Influence of cluster sizes and magnetic anisotropy on the
nature of the remagnetization of a heterogeneous system

Let us discuss the effect of cluster size on the exchange
bias effect if the cluster radius is sufficiently large. Figs. 7(a)
and 7(b) show how the form of the field dependencies of
magnetization in regions with compensated and uncompen-
sated C and N– boundaries (shown in Fig. 3(a) for N = 4)

changes with a change in cluster size. Contained here are
results obtained for 1≤N≤ 8. It can be seen that, with an
increase in cluster size, the magnitude of exchange bias
decreases. This is consistent with the results obtained in
Ref. 10 in the long-wavelength limit for FM films bordering
the AFM system:ffiffiffiffiffiffiffiffiffiffiffiffi

Hþ=J
p

tg N
ffiffiffiffiffiffiffiffiffiffiffiffi
Hþ=J

p� �
¼ (J0=J),ffiffiffiffiffiffiffiffiffiffiffiffi

H�=J
p

th N
ffiffiffiffiffiffiffiffiffiffiffiffi
H�=J

p� �
¼ (J0=J):

(4)

In the case of the H+ field boundary, there is good quan-
titative agreement between the analytical and numerical
results: H+/J ≈ (π/2N)2. For the H– boundary, the agreement
is of a qualitative nature, which is associated with the effect
of lattice discreteness. ‘Shelves’ in the dependencies of mag-
netization on the field for the selected parameters correspond
to a revolution of magnetization in a layer of the order of one
interatomic distance (the result of considering a discrete
model). Therefore, in the normalized variables M =Mtot/
πR2a, it decreases and is on the order of 1/N. Qualitatively,
however, the M (H) dependencies have the same form as
shown in Fig. 4.

Finally, let us discuss the effect of weak anisotropy in
the magnetic easy plane (β ≠ 0) on the magnetic characteris-
tics of clusters (see Ref. 16). Fig. 8(a) shows the field depen-
dencies of magnetization of an FM region in contact with a
compensated AFM boundary in the case N = 4, J0/J = 2.7 in
the presence of anisotropy, β/J = 0.25 (thick line), and in the
absence of this additional anisotropy (thin curve).
Anisotropy leads to hysteresis in field dependence; however,
these dependencies coincide quite well, both qualitatively
and quantitatively.

Figure 8(b) shows the dependence of magnetization in a
system with equal concentrations of sections of compensated
and uncompensated interphase boundaries (J0/J = 2.7, β/J =
0.25, N = 4, and C = 0). Its comparison with the dependence
in Figure 4 for the system without taking into account anisot-
ropy (C = 1/4) reveals that the presence of weak anisotropy
does not qualitatively change the nature of field dependence
and its bias, but results in the occurrence of narrow hysteresis
loops.

5. Conclusion

Thus, this paper proposes a scenario for the occurrence
of exchange bias in heterogeneous systems, which are an

Fig. 6. Dependence of the exchange bias of magnetization (A) and a field
(B) on the concentration of the uncompensated section of the interface
(effective bias field) (a). Qualitative dependence of the concentration C of
uncompensated sections of cluster boundaries on the cooling field (b).

Fig. 7. Field dependencies of magnetization of FM sections bordering the
uncompensated (a) and compensated (b) sections of the FM/AFM boundary
for different values of size N.

Fig. 8. Field dependencies of an FM region with a compensated boundary
with an AFM taking into account anisotropy (bold curve) and in the case of
an isotropic easy plane (thin curve) (a). The same applies for the case of
equal concentrations of compensated sections (C) and uncompensated sec-
tions (N+), i.e. where C = 0 (b).
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ensemble of FM clusters in an AFM matrix. When a system
is cooled in an external magnetic field, FM ordering arises in
clusters. With a further decrease in temperature in the Néel
transition region, this leads to an ordering of the AFM sub-
system, which results in an effective field occurring at FM/
AFM interfaces and action upon the FM via the AFM
through uncompensated interfaces. This field is associated
with the domainization of the antiferromagnet, which persists
after the external field is turned off. With further application
of a differently directed weak external field, the exchange
bias is determined by the combined influence of external and
effective fields.

To describe the proposed scenario, the authors consider
a simple model of a two-dimensional system with round
inclusions of the FM phase. Using previously obtained ana-
lytical results and numerical calculations, we have estab-
lished the dependencies of magnetization on the external
field for small clusters, which qualitatively explain the fea-
tures of exchange bias in heterogeneous systems. Emphasis
is placed on the differing type of exchange bias in relation to
the magnitude of the field and the magnitude of magnetiza-
tion. Experimental data obtained for exchange bias in hetero-
geneous systems are also discussed.
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