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ABSTRACT 

The premises of stored agricultural products and food consists of a complex 

ecosystem in which several pests can seriously affect the quality and quantity of the 

products. In this study we utilize a 4-level hierarchical linear multilevel model in 

order to assess the effect of temperature, relative humidity (RH) and interspecific 

competition on the population size and damage potential of the larger grain borer, 

Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae) and the lesser grain borer, 

Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). As RH was increased, we 
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observed higher percentage of live insects, while increased levels of temperature 

significantly decreased the percentage of live insects. The combination of R. dominica 

and P. truncatus lead to reduction of the percentages of live insects in comparison to 

single species treatments. However, P. truncatus is more damaging than R. dominica 

in maize, based on the proportion of damaged kernels which were infested by each 

insect species. We expect our results to have bearing in the management of these 

species. 

 

1. Introduction 

The knowledge of abundance of living organisms through time is a central goal in 

ecology (Hall et al., 1992; Ehrlén and Morris, 2015; Boyce et al., 2016). Birth and 

death rates, as well as migration, are the main factors that determine the population 

size of species and therefore their temporal and spatial dynamics (Huddleston, 1983; 

McCoy and Gillooly, 2008; Taylor and Norris, 2010; Papanikolaou et al., 2014). The 

population of a species may experience the effect of several abiotic factors during its 

lifetime. Temperature is a key abiotic factor that affects several biological features of 

insects, such as development, survival and fecundity (Honěk and Kocourek, 1988; 

Mironidis and Savopoulou Soultani, 2008; Papanikolaou et al., 2013; Athanassiou et 

al., 2014, Kavallieratos et al., 2017b; Athanassiou et al., 2017a). This results in a 

further effect on insects’ performance and growth rate, leading to several fluctuations 

through time (Kontodimas et al., 2007; Papanikolaou et al., 2014). Like temperature, 

relative humidity (RH) may affect life history traits of insects and consequently their 

growth rate. For example Pelletier (1995) reported that the larvae, pupae and adults of 

the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: 

Chrysomelidae) regulate the equilibrium of water in their organisms through different 
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mechanisms according to the environmental conditions they face. Guarneri et al. 

(2002) found that eggs of the blood-sucking bug, Triatoma brasiliensis Neiva 

(Hemiptera: Reduviidae) substantially reduce hatching at 9.3% RH to avoid 

desiccation during this process. Similarly, 20% RH reduced the number of hatched 

eggs of the pine caterpillar Dendrolimus tabulaeformis Tsai and Liu (Lepidoptera: 

Lasiocampidae) and increased mortality or prolonged development of first instar 

larvae (Han et al. 2008). 

Resource competition is a common biotic factor that may affect the population 

outcome among living organisms (Le Bourlot et al., 2014; Pedruski et al., 2015). It 

may affect several biological features, such as population size of herbivorous species 

(Karban, 1986; Athanassiou et al., 2014, 2017a; Kavallieratos et al., 2017b), progeny 

production, fitness and prey consumption of beneficial insects (Xu et al., 2013; 

Cusumano et al., 2016; Papanikolaou et al., 2016). In addition, direct or indirect 

competitive interactions between species may lead to displacement of established 

species from a habitat (Reitz and Trumble, 2002). 

The premises of stored agricultural products and food consists of a complex 

ecosystem in which several pests (e.g. insects, mites, rodents) can seriously affect the 

quality and quantity of the products (Athanassiou et al., 2005, 2011; Hubert, 2012; 

Mason and McDonough, 2012; Kumar and Kalita, 2017). For example, insects, 

mainly coleopterans, are responsible for huge grain losses of up to 57% in Africa 

(Kumar and Kalita 2017). Several stored-product coleopterous species co-exist in 

storage facilities and consequently compete for the same food resources (Smith and 

Lessells, 1985; Smith, 1990, 1991; Athanassiou et al., 2003, 2005, 2011, 2017a; 

Kavallieratos et al., 2017b). Although competition is considered a serious issue in 

storage ecosystem (Smith and Lessells, 1985; Smith, 1990, 1991; Kavallieratos et al., 
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2017b) there is a gap of knowledge regarding interspecific competition. The 

significance of interspecific competition in stored-product insect pests has recently 

been highlighted, demonstrating its effect in community structure (Athanassiou et al. 

2014, 2017a; Kavallieratos et al. 2017b). 

The larger grain borer, Prostephanus truncatus (Horn) (Coleoptera: Bostrychidae), 

is one of the most damaging insect pests of stored maize and cassava tubers (Muatinte 

et al., 2014). It is not clear whether P. truncatus can develop on commodities other 

than maize or cassava (Howard, 1983; Hodges et al., 1983; Hodges, 1986). In a recent 

study, Athanassiou et al. (2017b) reported that triticale, rice, whole barley flour, 

whole oat flakes, white soft wheat flour, whole soft wheat flour, white hard wheat 

flour and whole rye flour favored the marginal surviving of P. truncatus but most 

probably did not favor its population growth. Prostephanus truncatus was 

accidentally introduced from Central America into Africa and thereafter it was spread 

in numerous countries in this continent (Farrel and Schulten, 2002; EPPO, 2018). 

Prostephanus truncatus is also distributed in Asia, North and Central America 

(EPPO, 2018). Currently, in certain countries of Asia (i.e., Israel, Jordan) and Oceania 

(i.e., New Zealand) it is of quarantine importance (EPPO, 2018). It is a primary 

colonizer and can easily infest the intact kernels (Hill et al., 2002; Nansen and Meikle, 

2002). Adults of P. truncantus live long and can multiply rapidly, only in a few weeks 

(Nansen and Meikle, 2002; Hill et al., 2002). Furthermore, due to its longevity, this 

species has a long period to devastate the stored grains (Nansen and Meikle, 2002).  

The lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae), is a 

serious pest of stored grains that has global distribution causing serious damages in 

grains (Hagstrum and Subramanyam, 2009). As a primary colonizer, it can easily 

infest sound kernels (Hill, 2002). Adult females oviposit among grain kernels and the 
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young hatched larvae consume the grain debris or dust and later, complete their 

development inside the grain seed (Hill, 2003; Mason and McDonough, 2012). 

Contrary to other primary insect pests of stored products, R. dominica can develop 

and reproduced rapidly in dry grains (Edde, 2012) given that it is able to grow in 

grains even with 9% moisture content (Hill, 2003), which is an inhibitive level for 

other primary pests to survive.  

It has previously been documented that temperature is an abiotic factor that 

crucially regulates the overall performance of interspecific competition between 

stored-product psocids (Psocoptera) (Athanassiou et al. 2014) or among stored-

product coleopterans (Giga and Canhao 1993; Kavallieratos et al. 2017b). However, 

there is a gap of knowledge when another important abiotic factor (RH) of the storage 

ecosystem participates in this type of competition. Therefore, the aim of this study 

was to investigate the effects of temperature, RH, and competition between P. 

truncantus and R. dominica on their population size and damage potential infesting 

stored-maize. In this study, we utilize a 4-level hierarchical linear multilevel (HLM) 

model (Raudenbush and Bryk, 2002) in order to assess the effect of the previously 

described covariates on the dependent variables. The HLMs belong to the family of 

Ordinary Least Squares (OLS) models and are preferred when the predictor variables 

differ at more than one level.  

 

2. Materials and Methods 

2.1. Insects 

Prostephanus truncatus and the lesser grain borer, Rhyzopertha dominica (F.) 

(Coleoptera: Bostrychidae) were cultured on whole maize in a Sanyo MLR-

350T/350HT incubator set at 30 
o
C, 65% RH and continuous darkness. The P. 
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truncatus colonies were started in 2003 while the R. dominica colonies, initially 

collected from Greek storage facilities, were established in 2002. All cultures were 

maintained in the Agricultural Zoology and Entomology laboratory, Agricultural 

University of Athens. The individuals that were used in the experiments were unsexed 

P. truncatus and R. dominica adults < 2 weeks old. 

 

2.2. Commodities 

Clean maize, Zea mays L. (var. Dias) that was free of previous infestation and 

pesticides was used in the tests. Prior to experimentation, the moisture content of 

grains was adjusted to 13.5 ± 0.5% as determined by a moisture meter (mini GAC 

plus, Dickey-John Europe S.A.S., Colombes, France). Thus, grains were dried inside 

an oven at 50 
o
C or by adding distilled water according to their initial moisture 

content (Kavallieratos et al., 2012, 2017b). 

 

2.3. Bioassays 

Three groups of insects of the two tested species were prepared in various density 

combinations as follows: 10 adults of P. truncatus, 10 adults of R. dominica, and 10 

adults of P. truncatus with 10 adults of R. dominica. Each group was prepared three 

times. The groups were placed separately into cylindrical glass vials (7 cm diameter, 

12 cm height) containing 40 g (Precisa XB3200D compact balance, Alpha Analytical 

Instruments, Gerakas, Greece) of maize. The lids of the vials had a 1.5 cm diameter 

opening in the middle that was covered by muslin gauze to permit sufficient aeration. 

To prevent insects from escaping, the internal walls of the vials were covered by 

polytetrafluoroethylen (60 wt % dispersion in water) (Sigma-Aldrich Chemie GmbH, 

Taufkirchen, Germany) with swap, 1 d before the introduction of the insects inside the 
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vials. Afterwards, all vials were put inside incubators (Elvem, Spata, Greece) set at 25 

°C and 55% RH. The vials were opened after 65 days and the total numbers of 

individuals alive and dead per species within each vial were recorded. Identification 

of P. truncatus and R. dominica was based on Rees (2004). The numbers of damaged 

kernels by insects (kernels with holes and/ or chewings) per sample of 30 kernels per 

vial was recorded and the percentage of damaged kernels in each sample per vial was 

calculated. The progeny production and the damaged kernels by insects were 

determined under an Olympus stereomicroscope at 57x total magnification (SZX9, 

Bacacos S.A., Athens, Greece). The test was repeated three times, by preparing new 

series of insects and maize in new vials each time. Two new more series of insects, 

maize and vials were prepared as above, at the same conditions, but the vials were 

opened after 130 or 195 days. The same procedure was followed for 25 °C and 75% 

RH, 25 °C and 75% RH, 30 °C and 55% RH, 30 °C and 75% RH, 35 °C and 55% RH, 

35 °C and 75% RH by preparing new series of insects, maize and vials. 

 

2.4. Modeling specification 

Based on the variables chosen and in order to assess the effect of the explanatory 

variables on the two dependent variables, i.e., the ratio of insects alive divided by the 

total number of insects (percentage of insects alive), and the percentage of damaged 

kernels, we utilize two separate HLM models (Raudenbush and Bryk, 2002). The 

model for the percentage of insects alive (progeny model) is a four-level hierarchical 

model in the sense that the model’s independent variables are measured on different 

levels on the dependent variable (in this case four levels). The same structure holds 

for the model for the percentage of damaged kernels (damage model). The HLM 

belong to the family of Ordinary Least Squares (OLS) and are used when the 
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predictor variables vary at more than one level. An important advantage of this 

methodοlogy approach is that it provides the ability to perform a within- and between-

group comparison. Multilevel models recognize this hierarchy, allowing for residual 

components at each level. Furthermore, in can incorporate missing data and multiple 

continuous and discrete depended variables in the same analysis (Raudenbush and 

Bryk, 2002). These types of models are most suitable for multilevel research, offering 

better capacity for handling the model complexity of nested correlated data, in 

comparison to cross-section or time-series models (Katahira, 2016). 

Since it is rational to assume that the measurements taken from the same insect 

species are more likely to be correlated when compared with the measurements taken 

from different insect species, the possible within-insect species correlation in the data 

should be considered. In addition, nesting of measurements within other categories 

may also generate correlated observations, such as RH and temperature levels, which 

should also be taken into account for their modeling.  

Specifically, the general framework of the HLM-type modeling approach follows 

the following format: There are jkn  replications ( 3,2,1i ) responses on the two 

dependent variables, nested within each of the 2 ,1j  RH levels (i.e., 55 and 75%), in 

turn nested within each of 3,2,1k categories of temperature levels (i.e., 25 
o
C, 30 

o
C 

and 35 
o
C). Finally, for the progeny model, the measurements are nested within the 

variable of insect species combination ( 3,2,1 ) (i.e., R. dominica, P. truncatus and 

their combination). Then, the fitted HLM models are expressed as: 

Level - 1: 

0 1ijk ijk ijk ijk ijky X e      
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where ijky  denotes  the continuous response variable, ijkX  are the level-1 predictor 

variable and  2,0~ eijk Ne   . With ijk0  and ijk1  we denote the intercept and slope of 

level-1 independent variable. As level-1 predictor we hypothesize the covariate of 

[replication], ijkX . 

Level - 2: 

The  -coefficient of replication slope is subsequently treated as response variable 

through the following equation: 

 jkjkjkjkijk rXbb  1101 , 

where jkX  is the level-2 predictor of [RH], the sb'  are the intercept and slope of RH 

and  2,0~ rjk nr  . 

Next, we define the level-3 equation as follows: 

Level - 3: 

 kkkkjk uXb  101   

where kX  denotes the level-3 predictor of [temperature]. 

Finally, the level-4 equation is given by: 

Level - 4: 

 vXk  101  , 

with X  denoting the variable of [insect species]. 

In the previous model formulation, the outcome variables  measure the percentage 

of insects alive and percentage of damaged grains for the two models, respectively. 

The factors of replication, RH, temperature and insect species constitute the fixed-

effects incorporated into our models. We have designated the subpopulation category 

of replication = “replication 1” as a reference category for the replication factor. 

ijky
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Accordingly, RH = “55”, temperature = “25 
o
C”, insect species = “R. dominica” are 

the reference categories assigned for the rest of the independent factors. 

 

2.5. Assessment of model fit 

In order to assess model fit, we obtain a model comparison approach, by starting 

fitting a null model (denoted by Model 1) including as predictors only the grand 

mean, i.e.: 

1) Model (null 0  ijkjkijk ey    

and subsequently add one new predictor variable each time to perform the comparison 

between the two models. 

In the current analysis, we are performing both model selection as well as covariate 

selection through a model comparison approach, which includes the comparison of all 

nested models, starting from the null model (which includes only an intercept as 

explanatory variable) and adding sequentially all (nested) covariates. The overall 

significance of each model is then evaluated through the deviance statistic (based on 

the likelihood of each model), which acts as a stand-alone measure of goodness-of-fit, 

as well as through the model comparisons. Thus the (non)-significance of each model 

is assessed through the (non)-significance of the added covariate in comparison to the 

previous model. Particularly, to test the significance of each model fitted we conduct 

likelihood ratio tests (LRT) comparing each time the initially fitted model (null 

model) with the alternative model including an additional parameter (Raudenbush and 

Bryk, 2002). (Model 2 is tested against the null Model 1 that includes only a grand 

mean term in the form of an intercept, subsequently Model 3 is tested against the 

Model 2 etc.).  
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The rational of the LRT is to compare the likelihood of the two models (Model i 

with Model i-1) with each other through the following likelihood ratio statistic: 

 )ln()ln(2 1 MiMi likelihoodlikelihoodD , 

where with Mi-1 we denote the reduced model and with Mi the model with the 

additional parameter. 

 

2.6. Sensitivity analysis in the models parameters 

A deterministic sensitivity analysis was performed to provide quantitative 

measurable results regarding the magnitude of impact of the explanatory indicators on 

the two models’ dependent variables, i.e., the percentage of insects alive and the 

percentage of damaged kernels. Sensitivity analysis methods are suitable for 

understanding how the explanatory variables, contribute to the response, of statistical 

models in a simple and efficient way. The main reason is to determine which of the 

two model’s inputs contribute most to the variability of the dependent variables. 

Conceptually, the common approach for performing sensitivity analysis is to 

repeatedly vary one parameter of an explanatory variable at a time while holding the 

others fixed at their medium values. Saltelli et al. (2000) provides an overview of the 

field of sensitivity analysis. To perform sensitivity analysis for our two models, the R 

package “pse” is utilized (Chalom and Prado, 2012). In particular, we used as input 

data for performing sensitivity analysis the estimation results obtained from the fit of 

the two HLM models, i.e., we utilized regression coefficient estimates along with the 

use of the uniform distribution to cover the complete range of values taken by the 

explanatory variables. These issues were formulated as an R function and 

subsequently the R package “pse” has been used for performing sensitivity analysis. 
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2.7. Implementation details 

We have used the R software (R Core Team, 2012) and specifically the lme4 

library (Bates et al., 2015) to fit the linear mixed effects hierarchical models of the 

relationship between our dependent variables and the explanatory factors. R’s main 

commands for the fit of multilevel models are included in the lme4 library. We used 

the lmer() function to fit the linear mixed-effects multilevel models. 

 

3. Results 

3.1. Progeny model results 

Table 1 shows the results of covariate comparisons for the Progeny HLM model. 

Specifically, the values of the likelihood ratio statistics (D) and corresponding 

significances (P values) show that, among the examined covariates, only replication 

effects are non-significant to explain variations of percentage of insects alive (P = 

0.905). All remaining factors are significant (P < 0.01). Hence, RH, temperature and 

interspecific competition affect the percentages of insects alive and thus the 

population size of P. truncantus and R. dominica. Table 2 shows the best selected 

model’s (Model 5 in Table 1) parameters estimates and corresponding 95% 

confidence intervals for the Progeny model. 

The three replications do not differ significantly to each other, on their effect on 

the dependent variable of percentage of insects alive. As RH increases, we observed 

higher percentage of insects alive (b = 0.144; P < 0.05). On the other hand, increased 

levels of temperature significantly decreased the percentage of insects alive (b = - 

0.091 and b = - 0.386 for temperatures of 30 
o
C and 35 

o
C, respectively, in 

comparison to the reference level of 25
 o

C). Finally, the combination of the two insect 
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species R. dominica and P. truncatus lead to reduction in the percentages of insects 

alive (b = - 0.066; P< 0.05) in comparison to single species treatments. 

 

3.2 Damage model results 

The replication effects were not significant for the dependent variable (D = 

12,770). On the contrary, RH, temperature and insect species effects are all important 

predictors for percentage of damaged kernels, since the stepwise inclusion of each one 

of these covariates improved model fit (Table 3). The corresponding parameter 

estimate results and corresponding significances are presented in Table 4. The 

increase in RH from 55 to 75% significantly increased the levels of percentage of 

damaged kernels (b = 6.745; P < 0.05). Variations in temperature levels also 

differentiated percentage of damaged kernels, with the latter being lower at 35 
o
C (b = 

- 5.783; P < 0.05). However no differences were observed between 25 
o
C and 30 

o
C. 

When P. truncatus was alone or competed with R. dominica the percentage of 

damaged kernels was increased (b = 10.29 and 11.487, respectively) in comparison to 

R. dominica alone. 

Finally, Fig. 1 shows the assessment of model fit, for the two HLM models through 

the percentages of total variance of the dependents explained. The highest percentage 

of variance is explained by the first model (Progeny model), with the factors included 

explaining a total of approximately 66.3% of the total variance of the percentage of 

insects alive. 

  

3.3. Sensitivity analysis in the models parameters 

The results of sensitivity analysis of each significant explanatory variable for each 

of the two fitted models are summarized in Fig. 2 to 5. A scatterplot of the sensitivity 
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analysis result displays the function of each parameter for the progeny model (Fig. 2). 

It is clear that the higher levels of sensitivity are due to RH and temperature. On the 

other hand, the dependent variable of percentage of insects alive was found to be less 

sensitive to changes of the insect species. Fig. 3 presents the partial rank correlation 

coefficients for each one of the covariates. This coefficient measures how strong the 

associations are between the dependent variable and each input parameter, after 

removing the effects of the rest of covariates. Accordingly, Fig. 4 shows the summary 

of results of sensitivity analysis for the damage model, where the percentage of 

damaged grains is varying with respect to the significant factors identified from HLM 

modeling, i.e., RH, temperature, and insect species. The percentage of damaged 

kernels is more sensitive to the changes in the values of RH and temperature; however 

the former is more robust to changes in the insect species variable. The sensitivity 

analysis results regarding the damage model are completed by the partial correlation 

coefficients shown in Fig. 5. The partial correlation coefficients measure how strong 

is the association between the damaged grains and each independent variable, after 

removing the effect of the other independents. Inspection of the graph verifies that all 

three independent variables are strongly associated with the damaged grains. 

 

4. Discussion 

Our results indicate that abiotic factors alter the population size of stored-product 

insects and the magnitude of damage in stored-products. As temperature increased 

from 25 to 35 °C, we detected reduced proportion of R. dominica and P. truncatus 

adults alive, which is depicted to the reduced percentage of damaged kernels, albeit 

insignificant between 30 and 35 °C. However, an increase of RH from 55 to 75% 

resulted in increased proportion of R. dominica and P. truncatus live adults, as well as 
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in increased percentage of damaged kernels. It has been previously reported that 

elevated temperatures (34 – 36
o
C) lead to rapid development of R. dominica (Birch, 

1945; Mason and McDonough, 2012) and consequently to earlier death. Similarly, 35 

o
C caused high mortality (42%) to immature developmental stages (eggs, larvae and 

pupae) of P. truncatus (Bell and Walters, 1982). Relative humidity also plays an 

important role in the development of stored-product insects as the majority of them 

are favored by 60 – 80% (Rees, 2004; Mason and McDonough, 2012). Although both 

R. dominica and P. truncatus develop in a wide range of RH levels, they respond 

better to 70% and 70 – 80%, respectively (Bell and Walters, 1982; Driscoll et al., 

2000; Edde, 2012).  

The percentage of live adults of both tested species is negatively affected by the 

presence of a competitor. The reduced population sizes of R. dominica and P. 

truncatus in the presence of a competitor could be the result of either interference or 

exploitative competition. Interference competition occurs via direct interactions 

between foraging species (Begon et al., 1996). On the other hand, exploitative 

competition refers to situations where individuals are affected by the quantity of the 

remaining resources, which have been previously exploited and therefore have been 

depleted (Begon et al., 1996). We can not exclude any of these situations that take 

place between R. dominica and P. truncatus, since they have coexisted for a long 

time. Competition could start from the very early stages of their lives. Although, R. 

dominica and P. truncatus are internal feeders, newly hatched larvae of both species 

feed externally on the kernel and later bore inside (Hodges, 1986) and consequently, 

they easily compared with each other. In a previous competition study between P. 

truncatus and another internal feeder, the maize weevil, Sitophilus zeamais 

(Motschulsky) (Coleoptera: Curculionidae), Giga and Canhao (1993) reported that S. 
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oryzae outcompeted P. truncatus at 25 
o
C. Contrary to P. truncatus, S. oryzae follows 

a different strategy to oviposit by laying the eggs directly inside the kernel and covers 

the hole with a secretion (Mason and McDonough, 2012). Thus, the advantage of 

insusceptible development falls towards S. oryzae. However, the competition 

continues when larvae of both species enter maize kernel given that only a certain 

number of adults can maximally emerge per single kernel, i.e., 5 in the case of R. 

dominica (Adams, 1976), and 6 in the case of P. truncatus (Vowotor et al., 1998). 

Further experimentation is needed to clarify these issues. 

The presence of P. truncatus is more damaging than R. dominica on maize, based 

on the proportion of damaged kernels which are infested by each insect species. The 

size of P. truncatus differs from that of R. dominica. Adults and larvae of the former 

are 3.5 – 4 mm and maximally 10 mm, respectively vs. 2 – 3 mm and maximally 3.9 

mm respectively of the latter (Potter, 1935; Farrell and Haines, 2002; Suma and Ruso, 

2005). Therefore, P. truncatus, as a bigger species, which bears powerful mandibles 

(Farrell and Haines, 2002), would cause more elevated damage in the maize kernels 

than the smaller R. dominica. It should also be noted that the biomass of P. truncatus 

is about 4 times more than that of R. dominica (Demianyk and Sinha, 1988). The big 

body size of P. truncatus is linked with the food consumption that is needed to cover 

its developmental requirements and consequently with the losses of the infested 

commodities. Demianyk and Sinha (1988) reported that larval and adult consumption 

of P. truncatus reached 252 and 4210 J upon maize while the respective consumption 

of R. dominica upon wheat was 86 and 2637 J. Furthermore, Nansen and Meikle 

(2002) and Athanassiou et al. (2017b) have reported high population growth of P. 

truncatus in whole maize kernels, given that this commodity, along with dried 

cassava, is mostly preferred (Hodges, 1986). 
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Concluding, we expect our results to have bearing on the management of R. 

dominica and P. truncatus. The findings of the conducted statistical analysis showed 

that fluctuations in RH and temperature are crucial predictors of the insects’ 

population size and damage potential. Insect species is also a major factor for the 

variability of the data. Therefore, the application of insecticides or other management 

strategies against R. dominica and P. truncatus should be adapted according to the 

presence of each species, alone or in competition, in conjunction with the prevailing 

conditions of RH and temperature of the storage environment. The fact that 

competition negatively affects the population growth of both species tested should not 

be overlooked since P. truncatus exhibits strong ravenous activity on preferred 

commodities (Demianyk and Sinha, 1988; Athanassiou et al. 2017b). Competition 

could be considered as a natural vehicle of moderation of the activity of both species 

but also working as a reservoir of potential elevated damage if the participating 

species are splitted and start developing without competitor. This is a realistic 

scenario since both species are able to bore packaging material and easily escape 

(Kavallieratos et al., 2017a). Given that P. truncatus is under quarantine inspection in 

several countries, further competition studies involving it with other major stored-

product insects will shed light on the complexity of associations among species that 

regulate damages during storage. 
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Fig. 1. Percentage of variance of dependent variables explained by the two fitted 

HLM models.  
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Fig. 2. Sensitivity analysis plots for the progeny model. 

Fig. 3. Partial correlation coefficients (PRCC) for the progeny model. 

Fig. 4. Sensitivity analysis plots for the damage model. 

Fig. 5. Partial correlation coefficients (PRCC) for the damage model. 
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Table 1 Model comparisons of the HLM models via likelihood ratio test (LRT) 

(D: likelihood ratio statistic; P: p-value of the statistical significance of LRT). 

 Dependent variable 

D
 

P 

Model 1 (Null Model) 341.32 ---- 

Model 2 (Replication effects) 341.12 n.s. 

Model 3 (Model 2 + RH effects) 305.59 ** 

Model 4 (Model 3 + temperature effects) 80.67 ** 

Model 5 (Model 4 + insect species effects) 67.60 ** 

*
Significant at a 5% level of significance 

**
Significant at a 1% level of significance 

n.s.: non-significant 
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Table 2 Parameter estimates for the best selected model [MODEL 5] (5% level of 

significance) along with the 95% confidence intervals. 

Covariate Estimate 95% confidence intervals 

Intercept 0.608 (0.421, 0.789) 

Replication (ref. category: replication 1) 

Replication 2 - 0.005 (- 0.053, 0.042) 

Replication 3 0.007 (- 0.040, 0.055) 

RH (Ref. category: RH 55%) 

RH 75% 0.144 (0.105, 0.184) 

Temperature (Ref. category: 25 
o
C) 

Temperature 30 
o
C - 0.091 (- 0.139, - 0.042) 

Temperature 35 
o
C - 0.386 (- 0.434, - 0.338) 

Insect species (Ref. category: R. dominica) 

P. truncatus 0.011 (- 0.062, 0.096) 

R. dominica - P. truncatus - 0.066 (- 0.119, - 0.007) 
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Table 3 Model comparisons of the HLM models via likelihood ratio test (LRT) (D: 

likelihood ratio statistic; P: value of the statistical significance of LRT). 

 Dependent variable 

D
 

P 

Model 1 (Null Model) 12,770 ---- 

Model 2 (Replication effects) 12,770 n.s. 

Model 3 (Model 2 + RH effects) 12,724 ** 

Model 4 (Model 3 + temperature effects) 12,691 ** 

Model 5 (Model 4 + insect species effects) 12,575 ** 

*
Significant at a 5% level of significance 

**
Significant at a 1% level of significance 

n.s.: non-significant 
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Table 4 Parameter estimates for the best selected model [MODEL 5] (5% level of 

significance) along with the 95% confidence intervals. 

Covariate Estimate 95% confidence intervals 

Intercept - 3.647 (- 6.558, - 0.736) 

Replication (ref. category: replication 1) 

Replication 2 - 0.169 (- 2.424, 2.087) 

Replication 3 - 0.189 (- 2.445, 2.065) 

RH (Ref. category: 55%) 

RH 75 6.745 (4.903, 8.586) 

Temperature (Ref. category: 25 
o
C) 

Temperature 30 
o
C 0.444 (- 1.811, 2.699) 

Temperature 35 
o
C - 5.783 (- 8.038, - 3.527) 

Insect species (Ref. category: R. dominica) 

P. truncatus 10.290 (8.035, 12.546) 

R. dominica - P. truncatus 11.487 (9.231, 13.743) 

 

Highlights 

 Temperature and RH alter the population size of stored-product insects 

 Temperature and RH alter the magnitude of damage in stored-products 

 Temperature and RH affected the % survival and level of kernel damage (%) 

 Competition reduced the % survival and level of kernel damage (%) 

 




