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Abstract: The objective of this paper is to investigate the stress-dependence of the complex and 

relaxation moduli of dense graded asphalt mixtures. Complex modulus tests at four different confining 

pressures were conducted. Then, the stress dependence of the long-term equilibrium modulus of 

asphalt mixture based on Prony series model was modeled by Uzan model. The Maxwell components 

of the relaxation modulus were determined by a two-step method. Finally, the stress dependence of the 

relaxation modulus was quantified by relaxation spectrum of the material. The results show that for 

the selected dense-graded asphalt mixtures, the dynamic modulus increases, and phase angle decreases 

with the increasing confining pressures at relatively low reduced loading frequency. However, the 

stress dependence is insignificant in a relatively high-reduced loading frequency. The Uzan model 

coefficient of the long-term equilibrium modulus of the relaxation modulus can be determined 

effectively by the proposed deviatoric stress master curves. To obtain reliable and accurate Maxwell 

component coefficients, it is recommended that: a) the measured loss moduli rather than the storage 

moduli should be used to calculate Maxwell component coefficients if collocation method is utilized, 

and b) a log-scaled least squared regression minimization objective should be used as the regression 

objective for the coefficient determination. The relaxation spectrum of asphalt mixture can be modeled 

by Gaussian function, where the size of the relaxation spectrum increases but the shape and position 

of the relaxation spectrum remain unchanged when the confining pressure increases. 

Keywords: Asphalt mixture; Complex modulus; Relaxation modulus; Uzan model; Stress 

dependence; Master curve
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1. Introduction 

Considering the frequency and temperature dependence of the asphalt mixture in pavement 

under repeated traffic loads, dynamic modulus of asphalt mixture is being widely utilized, 

which correlates well with the field performance of the asphalt pavements [1, 2]. Now the 

investigations of the dynamic modulus are mainly focused on the test configurations, conditions 

[3] and the construction of the dynamic modulus master curve [4,5]. The existing studies also 

demonstrated that confining pressures could significantly affect the dynamic moduli of asphalt 

mixtures. Lacroix et al. [6] found that the linear viscoelastic characteristics of asphalt mixtures 

are affected by the confinements and the elastic modulus at equilibrium is stress dependent. 

Zeiada et al. [7] found that a confinement of 138kPa was the threshold value, below which a 

higher confinement will dramatically increase the dynamic modulus of asphalt mixture. In 

contrast, an increase of the confining pressure above 138kPa would insignificantly increase its 

modulus. Sotil et al. [8] developed point-slope and slope proportion methods to predict the 

confined dynamic modulus from the unconfined modulus. Pellinen and Witczak [9] presented 

a method to construct a stress-dependent complex modulus master curve of asphalt mixture 

based on k1 to k3 nonlinear elasticity model. 

The stress-dependent properties and behaviors of paving materials have been characterized by 

various models. Witczak and Uzan [10] proposed a universal material model to represent the 

resilient modulus of the unbound granular materials, which reasonably represents the stiffening 

effect observed by laboratory experiments. Lytton [11] argued that unbound granular materials 

in pavements were normally unsaturated and applied the principles of unsaturated soil 

mechanics to the above model by adding a matric suction term to the bulk stress. Lade and 

Nelson [12] proposed a nonlinear, isotropic stress dependent model for the elastic behavior of 

granular materials based on the principle of conservation of energy. Collop et al. [13] developed 

a stress-dependent elasto-viscoplastic constitutive model with damage for asphalt mixture. 

Given the master curves of dynamic modulus and phase angle, the coefficients of the Prony 

series model can be identified to apply this model to the theoretical and numerical predictions. 

Many researchers developed different methods to obtain the Ei in Prony series model from the 
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master curve data. Baumgaertel and Winter [14] proposed a useful technique to calculate a 

discrete relaxation modulus. The sensitivity of this solution was tested with model data that 

were free of experimental error. Emri and Tschoegl [15] proposed an iterative computer 

algorithm to determine Ei from given test data, and the main advantage of this algorithm lies in 

its avoidance of negative values of relaxation moduli that violate physical meanings. Cost and 

Becker [16] developed a multidata method which can employ all experimental data and result 

in the reduction of error in the determination of components of relaxation modulus. Schapery 

[17] introduced an easily applied collocation method to fit the response of finite-element Prony 

series model to test stress-strain curves. Tschoegl [18] extended Schapery’s method to all 

response functions such as relaxation modulus or retardation compliance in time scale and 

harmonic responses of storage and loss moduli or compliances in frequency scale. 

Some efforts have been devoted to achieving the stress-dependent properties of long-term 

equilibrium modulus of asphalt mixtures. However, they only consider the effect of the bulk 

stress but neglect the effect of octahedral stress. Furthermore, due to lacking a simple and robust 

method to obtain the accurate and reliable enough Ei in the Prony Series model of asphalt 

mixture, there are no studies of stress-dependent properties of Ei. Therefore, it is uncertain how 

the stress affects the viscoelastic properties of asphalt mixture when Prony series model is used. 

The objective of this paper is to investigate the stress dependence of the asphalt mixture under 

different combinations of deviatoric and confining stresses. The methodology employed in this 

paper can be illustrated in Figure 1. 

Material Selection & Characterization
Different Deviatoric

 & Confining stresses
Different Temperatures

 & Frequencies

Master Curve of Complex Moduli under Different Stress States

Stress Dependence of E∞ with Uzan ModelMethod of Master Curve of 
Deviatoric Stresses

Stress Dependence of Relaxation Spectrum
Improved Collocation 
Method to Calculate Ei

Gaussian Function of 
Relaxation Spectrum

Stress Dependence of Parameters of Gaussian Function
 

Fig. 1. Research methodology adopted in this study 
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The authors understand that the application of the result of this paper into pavement structure 

is important and some preliminary application of the results can be found elsewhere [19]. In 

this paper, however, due to the paper length limit, the effects of stress dependent properties on 

pavement performances were not included but they will be investigated in a following paper, in 

which the stress dependent viscoelastic parameters will be used to determine the pavement 

performances under different traffic loading levels with a verified finite element model. 

2. Experiments of Complex Moduli of Asphalt Mixtures under 

Different Confinements 

This section experimentally measured dynamic moduli and phase angles of asphalt mixtures 

under different confinements. Figure 2 shows the material properties of asphalt binder, 

aggregates, and mineral powder and the gradation of the aggregates. Cylindrical specimens of 

the asphalt mixtures were compacted by Superpave Gyratory Compactor to a height of 174mm 

and a diameter of 150mm. The design air void content (VA) was 4%, and the optimum asphalt 

content was 4.4% based on the AASHTO test protocol (i.e., T209 and T166). After demolding, 

all cylindrical specimens were stored in an environmental chamber for one day, and then cored 

to 100 mm in diameter and saw cut to a final height of 150mm. For each of asphalt mixtures 

three replicates were tested. 
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Key Binder Properties
Penetration (25� , 100g, 5s) (0.1mm) 65.3

Penetration Index -1.05
Ductility (15� , 5cm/min) (cm) 178

Softing Point (R&B) (� ) 48.6

Dynamic Viscosity (60� ) (Pa·s) 213

Desity (15� ) (g/cm3) 1.038

Key Coarse Aggregate Properties
Aggregate Type Basalt

Crushing Value (%) 20.1
Apparent Specific Gravity 2.763

Key Fine Aggregate Properties
Aggregate Type Basalt

Sand Eqivalent (%) 78.6
Apparent Specific Gravity 2.821
Key Mineral Powder Properties

Apprarent Density (g/cm3) 2.721

Moisture Content (%) 0.4

Grain size less than 0.6mm (%) 100
Grain size less than 0.15mm (%) 97.5

Grain size less than 0.075mm (%) 88.2

Hydrophilic coefficient 0.5 Selected Aggregate Gradation

 

Fig. 2. Key material properties and gradation of aggregates of asphalt mixtures 
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The complex modulus tests were conducted at four different confining pressures (0, 35, 138, 

207kPa) in a strain-controlled manner and in accordance with AASHTO protocol. The key steps 

of the tests are described as follows. After mounting linear variable differential transducer 

(LVDT) studs on the lateral side of the specimens, asphalt mixtures were put in the 

environmental chamber for half day to dry up the glue between the studs and the specimen. 

Before testing, the specimen was encased in a polyethylene membrane and then put in the 

chamber at the target testing temperature for at least three hours to ensure that the specimen 

fully reached the equilibrium temperature. Greased double polyethylene membranes were 

placed between the specimen ends and the steel loading platens to eliminate the frictional force 

between them. Three loose-core LVDTs over a gauge length of 70 mm were glued to the lateral 

surface of the asphalt mixture specimen at an angle of 120° apart from each other to record 

specimen axial deformation. Details of the testing device with the specimen mounted can be 

found in Figure 3. 

 

Fig. 3. Details of the experimental setup (Simple Performance Tester) 

To minimize any potential damage to asphalt mixture specimen at the low frequency before the 

next sequential test, tests were conducted in an increasing order of temperature, and at each 

temperature level, the specimens were tested in a decreasing order of loading frequency. 

According to Lacroix et al. [6], each of the constant confining pressures (35, 138, and 207kPa) 

is applied for at least 1 hour before the confined tests to mitigate the effect of bulk creep. The 

confinement around the specimen was supplied by pressurized air in the pressure vessel and 

different combinations of the deviatoric and confinement loads could be applied to the specimen 

by setting up the software control panel of the Simple Performance Tester for asphalt mixture. 
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According to AASHTO Designation T342-11[20], the dynamic load should be adjusted to 

obtain axial compressive strains between 50 and 150μɛ. The purpose of this requirement was to 

ensure that the mixture was tested in an undamaged condition. Although the specific 

constitutive relationship and its key parameters are considerably affected by asphalt mixture 

composition and test environment, the viscoplastic strain and damage are always ignored when 

the axial compressive strain are less than 150μɛ [21, 22]. When the axial compressive strains 

are below 50μɛ, the viscoelastic properties of asphalt mixture can be regarded as linear or stress/ 

strain independent [23]. Nevertheless, the linear viscoelastic characterization is out of the 

research interest of this paper that is focused on the nonlinear stress-dependent viscoelastic 

behavior. In consideration of actual strain level used in most dynamic modulus tests, 50 to 150μɛ 

is accepted as the standard controlled strain. Thus, different deviatoric stresses were employed 

and recorded by setting different axial strain levels ranging from 50 to 150. Complex 

modulus tests are conducted at six frequencies (0.1Hz, 0.5Hz, 1Hz, 5Hz, 10Hz, and 25Hz), four 

temperatures (10°C, 20°C, 40°C, and 60°C), and four confinements (0, 35kPa, 138kPa, and 

207kPa). It should be noted that the negative temperature was not used because the stress-

dependence of complex and relaxation moduli are negligible at low temperatures when the 

compressive strain is controlled between 50 and 150μɛ. At low temperatures, the mixture 

behaves more linearly with stress independency. The high temperature was selected based on 

the temperature measurements in the field pavement sections in China, where the highest 

temperature of surface layer of asphalt pavement is 60°C or higher. Therefore, a temperature 

ranges from 10 to 60°C was used to construct the master curve of complex modulus to 

investigate the nonlinearity of viscoelastic properties of asphalt mixture. For the dynamic 

modulus, the calculated coefficient of variation (defined as the value of the standard deviation 

divided by the mean) is between 0.8% and 17.3%. For the phase angle, the calculated coefficient 

of variation is between 1.1% and 20.5%. In general, there is no obvious relationship between 

the coefficient of variations and test temperatures and frequencies. 

3. Results and Discussion 

3.1 Stress-dependent Complex Modulus and its Master Curve 
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Commonly used master curve models are sigmoidal model for dynamic modulus [4] and beta 

model for phase angle [24], which can be shown as follows: 

 

   

     

*
10

10

max

1

0 0

log
1 exp log

exp 1 1/ / 1 /

R

R R

E

 


  


     

    



    

 (1) 

Where δ and  are the minimum value and the span of log10(|E*|), respectively.  and  are shape 

parameters. max is the maximum value of phase angle.  is the location parameter with 

dimension of frequency, at which max occurs.  is the fitting parameter that determines the 

curvature of the master curve of phase angle. R is reduced frequency that can be obtained by: 

  R T    (2) 

Where α(T) is a time-temperature shift factor.  is loading frequency, and T is temperature. 

The relative mean-square error Δ2 arising from any mismatch between the predicted and the 

measured magnitude and phase angle of complex modulus is shown as: 
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Where * pre

i
E , pre

i , * mea

i
E , mea

i  are the ith predicted and measured magnitude and phase 

angle of complex modulus, respectively. N1, N2 are the total number of the observed data of the 

magnitude and phase angle, respectively. 

Table 1 presents the regression parameters of , , , , max, 0,  shown in Equation (1). 

Table 1 Parameters of master curves of complex moduli of asphalt mixtures 

Confinement 
Dynamic Modulus Master Curve Phase Angle Master Curve 

    R2 max 0  R2 

0 -1.57 2.89 -0.49 -0.53 0.999 38.22 0.01 0.02 0.994 

35kPa -1.27 2.62 -0.53 -0.54 0.999 33.18 0.03 0.03 0.994 

138kPa -0.24 1.53 -0.07 -0.87 0.999 28.30 0.05 0.02 0.994 

207kPa -0.11 1.45 -0.60 -0.81 0.999 22.42 0.20 0.02 0.989 
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Figure 4 gives the master curves of complex moduli of asphalt mixtures at 20°C at different 

confinements. It shows that both dynamic modulus and phase angle are stress-dependent. At 

the low and intermediate reduced frequencies (e.g., less than 104 Hz) the dynamic modulus 

increases as the increase of the confinement. However, at relatively high reduced frequencies 

(e.g., greater than 104 Hz) there are no obvious differences among the dynamic moduli at 

different confinements. In terms of phase angle, as the confinement increases the phase angle 

decreases at relatively low reduced frequencies (e.g., less than 10 Hz). However, at the 

intermediate and high reduced frequencies (e.g., greater than 10 Hz), no significant differences 

were observed among all phase angles under different confinements. 
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Fig. 4. Complex moduli of asphalt mixtures under different confinements 

The fundamental reasons of the above phenomena can be explained by the stress-dependent 

behaviors of the aggregate skeleton and the viscosity changes of the asphalt binders under 

different confining pressures [6, 7]. At a low reduced frequency, the binder of asphalt mixture 

is relatively less elastic and becomes soft with a low viscosity. Therefore, the aggregates and 

their skeleton and contact dominate the mechanical behavior of asphalt mixture when a 

compressive stress is applied. In this case, the stiffness of the binder is so low that the asphalt 

mixture behaves more like the unbound granular material, which means the aggregate contacts 

and skeleton in the asphalt mixture are significantly affected by the loading conditions and the 

material modulus is highly stress-dependent as demonstrated in Figure 4. On the contrary, the 
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binder becomes more elastic and harder with a high viscosity at a high-reduced frequency. In 

this case, both the binder and aggregates will affect the mixtures’ response. The effect of the 

confinement on the aggregate skeleton and contact will much less significant than that at a low 

reduced frequency, due to the higher stiffness of the binder and the elevated adhesion at the 

binder-aggregate interfaces. The asphalt mixture behaves as a linear elastic solid with much less 

effect of the stress conditions on the material properties. 

3.2 Stress-dependent Long-term Equilibrium Modulus 

Apart from the complex modulus, the relaxation modulus is also commonly used as a material 

property to characterize the material viscoelastic behavior. In this section, Prony series 

representation shown in Equation (4) is used to model the relaxation modulus of asphalt mixture. 

  
1

exp
N

i
i i

t
E t E E




 
   

 
  (4) 

Where E∞ is long-term equilibrium modulus. Physically E∞ is the dynamic modulus when the 

reduced frequency becomes zero and mathematically E∞ equals to 10. Ei is the modulus in the 

ith Maxwell component. i is relaxation time in the ith Maxwell component. t is loading time. In 

addition, N is total number of Maxwell components. 

Asphalt mixture manifests the similar stress-dependent modulus behavior as the unbound 

granular materials in a low frequency, as demonstrated in Figure 4. Therefore, it is proposed to 

employ the Uzan Model to characterize the stress-dependence of E∞ of the asphalt mixtures: 
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   
 (5) 

Where Pa is atmospheric pressure. I1 is bulk stress. oct is octahedral stress. k1, k2, and k3 are 

model coefficients. It is noted that the values of I1 and oct in Equation (5) should be calculated 

at the infinite loading time or the infinitesimal reduced frequency according to the definition of 

E∞ in Equation (4). Therefore, a master curve method was proposed herein to obtain the 

deviatoric stresses at the infinitesimal reduced frequency under different confining pressures. 

The deviatoric stresses recorded during the complex modulus tests are shown in Figure 5. 
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Fig. 5. Deviatoric stresses recorded in the tests and their master curves at 20°C 

Figure 5 shows that the deviatoric stresses recorded during the complex modulus tests are 

frequency (or time) and temperature dependent. The concept of master curve used herein is to 

estimate the deviatoric stresses at the infinitesimal frequency. Like the dynamic modulus model 

shown in Equation (1), the model for deviatoric stress master curve can be proposed as 

  10

10

log
1 exp log d

d

R


 
  

 
 

 (6) 

Where d is the deviatoric stress.  is the maximum value of log10d. - is the span of log10d. 

 and Ψ are the shape parameters for the proposed master curve. d
R
  is the reduced frequency 

used to describe the master curve of d, which can be obtained by: 

  d
R T    (7) 

Where, (T) is a time-temperature shift factor for the master curve of d,  is loading frequency, 

and T is temperature. 

Figure 5 demonstrates that the time-temperature superposition principle and the master curve 

models are applicable to the deviatoric stress in the complex modulus test. This is 

fundamentally because the complex modulus tests are conducted in a strain-controlled mode. 
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According to the definition of dynamic modulus, the changes of dynamic modulus remains the 

same as that of the deviatoric stress when the strains are controlled unchanged with load cycles 

in each test. Therefore, the time-temperature superposition can be used to construct the master 

curve for not only the dynamic modulus but also the deviatoric stresses. 

The deviatoric stress at the infinitesimal reduced frequency can be calculated by 

 , 10d
  

   (8) 

Where, d,∞ is the deviatoric stress at the infinitesimal reduced frequency.  and  are explained 

in Equation (6). Based on equation (8), the values of d,∞ are determined as 12.19 kPa, 10.08 

kPa, 1.95 kPa and 1.91 kPa at the confinements of 0, 35 kPa, 138 kPa, and 207 kPa respectively. 

After the determinations of d,∞, hydraulic bulk stress I1 and octahedral shear stress oct can be 

calculated, and Equation (5) allows for the use of Microsoft Excel spreadsheets and solver 

function to attain the regression values of k1, k2, and k3 with the known values of E∞. The values 

of k1, k2, and k3 are 9.406, 0.207, and -1.315, respectively, with a R2 of 0.992. The positive k2 

and negative k3 indicate that a hydraulic bulk stress will strengthen E∞ while the octahedral 

stress will weaken E∞, which is consistent with the resilient modulus behavior of the unbound 

granular aggregate materials. The high R2 value and the consistency with the unbound materials 

demonstrate that the commonly used Uzan model can characterize the stress-dependent 

behavior of E∞ of asphalt mixtures. The Uzan model coefficient can be determined effectively 

by using the proposed deviatoric stress master curves that gives the stress states over the full-

reduced frequency range. 

3.3 Stress-dependent Modulus in ith Maxwell Component 

After determining the stress dependence of the long-term equilibrium modulus, the focus of this 

section is to analyze the modulus and relaxation time in the Maxwell components in Prony 

Series model of relaxation modulus. Thus, the Maxwell component coefficients (Ei and i in 

Equation (4)) will be determined and their stress dependence will be discussed. Different 

methods [14-17] are available to obtain the Maxwell component coefficients based on the 

master curves of complex modulus of polymer. However, it’s demonstrated that the above 

methods may not applicable for asphalt mixture due to the inclusion of air voids, aggregates, 
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adhesion between bitumen and aggregates, and test environment [25]. Therefore, a simple and 

robust method will be proposed in the first part of this section followed by a discussion of the 

stress dependence of relaxation spectrums of asphalt mixtures at different confining pressures. 

3.3.1 Determination of the Maxwell component coefficients 

One of the most common techniques used to calculate the relaxation modulus is collocation 

method proposed by Schapery [26]. Figure 6 gives the results of relaxation spectrum (Ei~i) 

of asphalt mixtures, which is calculated with Schapery’s collocation method. 
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Fig. 6 Relaxation spectrum of asphalt mixture at 20°C and different confining pressures 

Figure 6 shows that the relaxation spectrums obtained from storage and loss moduli are different 

for the same asphalt mixture. This implies that the collocation method used herein may not 

reliable. Actually, Ei obtained from the loss moduli is a little more reasonable than the one 

calculated from the storage moduli. The reason is that there are one (for 0, 35 and 207kPa) or 

two negative (for 138kPa) Ei generated when the measured storage moduli are used. However, 

no negative Ei was obtained when the loss moduli are used. To obtain accurate enough Ei, a 

two-step procedure (improved collocation method) is proposed. The first step is to estimate the 

initial values of Ei with Schapery’s collocation method. The second step is to obtain accurate Ei 

by a generalized reduced gradient nonlinear least-squares regression method and the initial 

values of Ei . The key in the second step is to choose a proper regression minimization objective 

(RMO). Therefore, the below four candidate regression objectives are proposed: 
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(9) 

To determine which of the four RMOs give the best accuracy of the regression, four important 

criteria are employed. They are highest value of R2, least value of Error calculated by Equation 

(10), least difference between the Errors calculated from the measured storage and loss moduli, 

and least difference for Ei calculated from the storage and loss modulus. 
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Where  mea iE   and  pre iE   are the ith measured and predicted storage modulus; 

 mea iE   and  pre iE   are the ith measured and predicted loss modulus, respectively. 

Figures 7 presents the results of RMOs, where 
2
i Storage  and 2

i Loss  are the RMOs when the 

measured storage and loss moduli were used in the collocation method, respectively. Moreover, 

2
i i  implies the difference of Errors. 

Figures 7 shows that 2
3  shown in Equation (9) is the best one to calculate Ei because it yields 

a relatively larger value of R2, a relatively smaller value of Error calculated by Equation (10), 

and the least difference of the Errors calculated from the measured storage and loss moduli. In 

addition, only 2
3  can yield the identical Ei when storage and loss moduli were used, 

respectively. In addition, Figure 8 presents the measured and predicted (RMO 2
3 ) storage and 

loss moduli with the improved collocation method. 

In summary, the key points of estimating Ei can be summarized as: 1) it is suggested to use the 

measured loss moduli rather than storage moduli to calculate Ei if the collocation method is 
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utilized; and 2) the RMO 2
3  in Equation (9) should be used as the regression criterion during 

the coefficient determination. 
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Fig. 7. R2, Error, and difference of Errors of asphalt mixtures at different confinements 
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Fig. 8. Measured and predicted storage and loss moduli of asphalt mixtures 

3.3.2 Stress Dependence of Relaxation Spectrum 

The mechanical analogs of Prony series model can be represented by a solid-like generalized 

Maxwell model, and the long-term equilibrium modulus can be regarded as a special component 

of relaxation modulus with relaxation time equaling to ∞. Now that the long-term equilibrium 

modulus E∞ can be fitted with Uzan model, it is spontaneous to utilize the same regression 
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function to model the stress dependence of Ei. Considering that the master curves of deviatoric 

stresses have been obtained in Figures 5, we can use the similar procedure as dealing with E∞ 

to analyze the stress dependence of Ei. However, because there are many Maxwell element 

branches in the generalized Maxwell model, and if we investigate the stress dependence of Ei 

one by one, it is a time-consuming and labor-intensive process. Moreover, this method will 

generate too many coefficients to be determined, which will make the regression results 

unreliable. Therefore, we propose an alternative way to deal with the stress dependence of Ei. 

The dotted data in Figure 9 show the relaxation spectrum based on the predicted storage and 

loss moduli of asphalt mixtures at different confinements. 
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Fig. 9. Relaxation spectrum of asphalt mixtures at 20°C 

It is found that Ei increases with the increase of confining pressure. Physically, only the size of 

relaxation spectrum is stress dependent, and the flatness of shape and the position of the 

maximum of Ei are stress independent. Hence, each relaxation spectrum can be modeled by 

Gaussian function as in Equation (11) and shown as the dashed lines in Figure 8: 

     2 2, exp (log log )Ri Ri

a
E t b t c





      (11) 

Where, tRi is the ith relaxation time (second).  is stress (GPa). a(), b, and c are fitting 

parameters with a dimension of GPa, 1, and second, respectively. The parameter of a() is stress 

dependent. Parameters of a, b, and c in Equation (11) can be obtained and shown in Table 2. 
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Table 2 Coefficients of Gaussian function of the relaxation spectrum of asphalt mixtures 

Confinements (kPa) 0 35 138 207 

a (GPa) 4.502 4.997 7.854 9.385 

b 0.379 0.379 0.379 0.379 

c (second) 0.009 0.009 0.009 0.009 

R2 0.994 0.996 0.996 0.996 

As seen from Table 2 and Figure 9, Equation (11) delivers a very good approximation of Ei of 

asphalt mixtures at different confining pressures. A regression equation like Equation (5) is 

utilized to characterize the stress dependence of parameter a: 

  
2 3

1
1

l l

oct
a

a a

I
a l P

P P


   

    
   

 (12) 

Where l1, l2, and l3 are the regression parameters. The values of l1, l2, and l3 are 215.711, 0.057, 

and 3.240, respectively, with R2 equaling to 0.997. 

Another eight different lab-fabricated asphalt mixtures were fabricated and tested to determine 

E∞ and Ei of relaxation modulus using the improved collocation method proposed in this paper. 

Uzan model mentioned herein can also be utilized to calculate E∞ and Ei of two of them 

accurately (another six mixtures are only tested in one confining pressure), and the model 

coefficients (k1, k2, k3, l1, l2, and l3) are different because of the difference in the mixture 

components. We did not include the above information in this paper due to that this paper is 

focused on the model development of the stress dependent modulus including only a 

preliminary validation on one mixture. A comprehensive validation on the eight mixtures will 

be presented in the following publications. It would become a lengthy paper if put the two 

significant work in one paper which will beyond the journal word limit. 

4. Summary and Conclusions 

This paper investigated the stress dependence of asphalt mixtures by strain-controlled complex 

modulus tests at different confining pressures. The master curves of dynamic modulus and 

phase angle at different confining pressures were firstly constructed using sigmoidal model and 

beta model, respectively. Then the stress dependence of the long-term equilibrium modulus of 



16 

 

asphalt mixture based on Prony series model was modeled by Uzan model, in which the concept 

of deviatoric stress master curves are firstly proposed to obtain the stress states of asphalt 

mixtures over the full loading frequency. After that, the Maxwell components of the relaxation 

modulus were determined by an improved collocation method in which two critical criteria 

were proposed to regress reliable and accurate model coefficients. Finally, the stress 

dependence of the relaxation modulus was quantified by the relaxation spectrum. The main 

findings and conclusions of this paper are summarized as follows: 

(1) For selected dense-graded asphalt mixtures, the dynamic modulus increases, and phase 

angle decreases with an increasing confining pressures at relatively low reduced loading 

frequency (e.g., less than 10 Hz). However, the stress dependence is insignificant in a relatively 

high reduced loading frequency (e.g., greater than 104 Hz). This phenomenon can be ascribed 

to the stress-dependent behaviors of the aggregate skeleton and the viscosity changes of the 

asphalt binders at different confining pressures. 

(2) The commonly used Uzan model is demonstrated to be able to characterize the stress-

dependent behavior of the long-term equilibrium modulus of the relaxation modulus for the 

asphalt mixtures. The Uzan model coefficient can be determined effectively by using the 

proposed deviatoric stress master curves that give the stress states over the full-reduced 

frequency range. 

(3) To obtain the reliable and accurate Ei, it is recommended that: a) the measured loss moduli 

rather than the storage moduli should be used if the collocation method is utilized; and b) the 

log-scaled least squared regression minimization objective 2
3  in Equation (9) should be used 

as the regression criterion during the coefficient determination. 

(4) The relaxation spectrums of asphalt mixtures can be modeled by Gaussian function, where 

the size of the relaxation spectrum increases but the shape and position of the relaxation 

spectrum remain unchanged when the confining pressure increases. Furthermore, the size 

parameter a in the Gaussian function can be modeled by Uzan model to quantify the stress-

dependence of the relaxation modulus of asphalt mixtures. 
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