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We demonstrate a passively harmonic mode-locked (PHML) fiber laser operating at L-band using 

carbon nanotubes polyvinyl alcohol (CNTs-PVA) film. Under suitable pump power and appropriate 

setting of polarization controller (PC), the 54th harmonic pulses at L-band are generated with the 

side mode suppression ratio (SMSR) better than 44dB, and repetition frequency of 503.37 MHz. 

Further increasing pump power leads to higher frequency of 550 MHz with compromised stability 

of 38.5 dB SMSR. To the best of our knowledge, this is the first demonstration on the generation of 

L-band PHML pulses from an Er-doped fiber laser based on CNTs. 
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1. Introduction 

With the widespread application of optical communication system, the conventional C-

band (1530-1565 nm) is unable to meet the ever-increasing requirements for 

transmission capacity. To alleviate this problem, L-band (1565-1625 nm) as an 

extended wavelength range has been proven to be able to enlarge the optical 

communication capacity, where the silica fibers also feature low loss.[1] Moreover, it is 
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worth noting that some potential applications such as high speed optical sampling, 

frequency comb generation and optical communication are in high demand for 

repetition rate. [2-4] In consequence, exploring mode locked fiber laser which combines 

two features of L-band operation and high repetition rate is of great importance.  

In general, mode locked operation can be realized either actively or passively. 

Compared to active mode locking, passive mode locking is more desirable since it 

offers great merits of compactness, simplicity, stability and better pulses quality. [5] 

Nowadays, various technologies have emerged to realize passive mode locking, for 

instance, semiconductor saturable absorber mirror (SESAM),[6] nonlinear polarization 

rotation (NPR),[7] CNTs[8] and some other novel materials.[9, 10] Especially, CNTs are 

identified as effective mode lockers since they exhibit distinct merits of ultra-short 

recovery time, easy fabrication, and wide operation wavelength range.[11] Previous 

studies have been successfully conducted at L-band from fiber lasers based on CNTs. 

Sun et al reported an L-band fiber laser firstly by using a CNTs-PVA saturable 

absorber(SA) with a broad absorption at 1.6 µm.[12] In 2013, a passively mode-locked 

L band fiber laser using a 180 cm highly doped bismuth–erbium-codoped fiber as gain 

medium was presented, with given pulse energy of 440 pJ and pulse duration of 460 

fs.[13] In order to achieve ultra-short pulses in this region, Kwon et al designed a 

stretched-pulse L-band laser generating 110 fs pulse with 70 dB signal-to-noise ratio 

(SNR).[14]However, all of the reports do not concentrate on the repetition rate of the 

lasers, where the frequency limits at tens of Megahertz. Ordinarily, PHML is deemed 

as one of the most efficient methods to achieve high repetition rate, where the frequency 

of the laser can be multiplied when the pump power exceeds a certain value.[15] 

Nevertheless, there is no report on the generation of PHML pulses operating at L-band 

from an Er-doped fiber laser using CNTs. 

In general, there are two dominant types of CNTs SA namely CNTs film and 

evanescent-field interaction CNTs. Compared to evanescent-field interaction CNTs 

type, CNTs film possesses inherent advantages of easier fabrication procedure, higher 

flexibility and compactness, which can be integrated to the cavity just by inserted 

between two fiber connectors.[16] Recently, we have demonstrated that CNTs film can 

serve as practical SA to realize high repetition rate in C band via HML.[17] In this paper, 

we demonstrate a PHML fiber laser performing in the L-band region based on CNTs-

PVA film. Under advisable pump power and polarization state, 503.37 MHz pulses with 

44.7 dB SMSR centered at 1595.54 nm are obtained, which corresponds to 54th 

harmonic order. It should be emphasized that the level of SMSR unveils the excellent 

stability of our laser. When pump power increases up to 212.8 mW, 550 MHz pulses 

with 38.5 dB SMSR are further achieved. To the best of knowledge, such high repetition 

rate pulses centered at L-band are firstly realized from a PHML Er-doped fiber laser 

using CNTs.  

 

2. Characterization of CNTs-PVA film and experimental set up 

Single wall carbon nanotube fabricated by high-pressure CO (HiPCO) method was used 

in the experiment. The detailed fabrication procedure of CNTs-PVA film is summarized 

in Ref. [18]. The resultant CNTs-PVA film are characterized by the absorption spectrum 
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as illustrated in Fig. 1(a). The broad absorption band ranges from 1000 nm to 1900 nm 

and the absorption strength is close to 0.16 at 1600 nm, which provides the possibility 

to achieve L-band operation. The measured Raman spectrum with an excitation 

wavelength of 532 nm is shown in Fig. 1(b), from which we can see that the CNTs-PVA 

film is single walled due to the presence of the radial breathing mode (RBM) and G 

mode (1588 cm-1). Clearly, the weak D mode manifests few defects of the sample. 

Moreover, the RBM is equal to 250 cm-1and the calculated mean tube diameter is ~0.88 

nm. The measured nonlinear transmission is depicted in Fig. 1(c) giving modulation 

depth of 6.2 %, which provides a solid evidence that the CNTs-PVA film can be 

considered as an effective SA to implement mode locking. 

   

 

Fig.1. (color online) The characteristics of CNTs-PVA film: (a) the linear absorption spectrum, (b) 

the measured Ramon spectrum, and (c) the nonlinear transmission 

The experimental configuration of the proposed PHML fiber laser based on CNTs-

PVA film is illustrated schematically in Fig. 2. The pump light from a benchtop laser 

(OV LINK, Wuhan, China) at 980 nm is launched into the ring cavity through a 

wavelength-division multiplexer (WDM) made of OFS 980 fiber. A section of 8.18 m 

Erbium-doped fiber (EDF Er30-4/125 from Liekki) with the peak absorption of 30 

dB/m and a dispersion of +14.45 ps2/km at 1590 nm is adopted as gain medium to 

enable L-band lasing. The length of EDF is much shorter than that used in Ref. [19] 

taking advantages of the high concentration of the EDF. Also, it is noteworthy that the 

mode field diameter at 1550 nm is 6.5 ± 0.5 µm, which is capable to introduce high 

nonlinearity into the cavity. A polarization-independent isolator (PI-ISO) is utilized to 

transmit the light in a clockwise direction. 10 % beam is coupled out via an output 

coupler (OC) for detection. The optimization of polarization state in cavity is realized 

by a PC. A piece of 2×2 mm CNTs-PVA film embedded between two standard fiber 
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ferrules directly is employed as a SA in conjunction with 90 % port of OC. The rest of 

cavity is organized by 2.6 m OFS 980 and 11.42 m single mode fiber (SMF). The group 

velocity dispersion (GVD) coefficients are +4.5 ps2/km and -22.8 ps2/km, respectively. 

The total length is 22.35 m and the overall dispersion is -0.13 ps2 which results in a 

soliton operation.  
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Fig.2. (color online) Experimental scheme of the PHML fiber laser based on CNTs-PVA film 

The pulse signals can be visualized on an 8 GHz oscilloscope (OSC, KEYSIGHT 

DSO90804A) together with a 12.5 GHz photo-detector (PD, Newport 818- BB-51F). 

The radio frequency spectrum is recorded by a radio frequency (RF) spectrum analyzer 

(SIGLENT, SSA 3032X). The pulse spectrum is characterized by an optical spectrum 

analyzer (OSA, Yokogawa AQ6370C). Also, an autocorrelator (FEMTOCHROME, 

FR-103WS) is utilized to measure the pulse duration. 

 

3. Experimental results and discussion  
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Fig.3. (color online) The performances of the pulses under 202 mW: (a) pulse train at the 54th 

harmonic (inset: pulse train with the span of 0.2 µs), (b) optical spectrum centered at 1595.54 nm, 

(c) RF spectra with 3.2 GHz span and 10kHz resolution bandwidth(RBW) (inset: RF spectrum within 

the range of 1 MHz), and (d) the measured autocorrelation trace. 

The mode-locked behavior occurs when pump laser delivers up to 80 mW. 

However, the stable single pulse operation is hard to realize no matter how to adjust the 

polarization state under the weak pump power. We conjecture that the phenomenon 

comes from the highly nonlinear effect introduced from the longer EDF which features 

high doping concentration and relatively smaller mode field diameter as mentioned 

before. When pump power reaches 92 mW, the 11st HML is implemented eventually 

with the proper setting of PC. Further increasing of pump power will lead to higher 

harmonic order. When the pump power is set to 202 mW, the laser operates at the 

harmonics of 54th with 5.35 mW output power, corresponding to 503.37 MHz repetition 

rate as shown in Fig 3. We can see from Fig. 3(a) that the pulses are spaced equally by 

1.99 ns interval with similar amplitude. The optical spectrum centers at 1595.54 nm, 

with 6.28 nm 3dB bandwidth as presented in Fig. 3(b). In general, the emitting 

wavelength of pulses is regulated by the length of active fiber and the loss of the 

cavity.[20] Therefore, it is considered that the longer length of the highly doped EDF 

compared with some conventional C-band lasers[17][21-22] contributes to in-band 

absorption which leads to L-band emission.[23] In addition, the existence of Kelly band 

makes a clear indication of soliton generation. The recorded RF spectra are depicted in 

Fig. 3(c) with the span of 3.2 GHz and RBW of 1 kHz. It is apparent that the frequency 

of the first pronounce peak is 503.37 MHz which can be taken as a further evidence of 

503.37 MHz repetition rate. Remarkably, the SMSR is 44.7 dB while the SNR is 58.8 

dB shown in the inset of Fig. 3(c), which exhibits improvement over previous PHML 

operation at C-band[21-22], manifesting stable operation. The corresponding pulse 

duration is 960 fs since the pulses possess secant hyperbolic profile illustrated in Fig. 

3(d). Therefore, the time bandwidth product (TBP) is 0.71, which is higher than 0.315 

due to the presence of slight pulse chirp.  
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Fig.4. (color online) (a) the observed pulse train of 550 MHz pulses (insert: the left one is optical 

spectrum, the right one is the pulse train spanning 0.2 µs), (b) measured RF spectra at 550 MHz 

(inset: RF spectrum centered in 550 MHz), and (c) harmonic order versus the given pump power. 

Additionally, the repetition rate can scale up to 550 MHz at 59th harmonic under 

213 mW pump power. From Fig. 4(a), we can see that the pulse train is still ordered 

aligned and exhibits equal spacing while the spectrum is almost all the same as that in 

Fig. 3(b). Nevertheless, the pulse train shows relatively small value of 38.5 dB SMSR, 

which still manifests good stability. As described so far, 11st to 59th harmonic order is 

found with a consequence of pump power increase. The relationship between the two 

factors is plotted in Fig. 4(c) showing almost linear slope. Furthermore, it is noted that 

the value of SMSR keeps higher than 44dB, when the harmonic order ranges from 11 

to 54, which is much higher than Ref. [17], showing superb stability. And the pulses are 

capable of stable operation for several hours once HML occurs. Also, it is worth to 

emphasize that our laser always works in L-band region regardless of the harmonic 

order. Nevertheless, the Q-switched operation appears as the pump power further 

increases. As a consequence, the pulse energy becomes high enough immediately to 

damage the CNTs-PVA film-based SA. Enlightened by the experimental results 

reported in Ref. [24-25], it is expected to further expand the frequency by optimizing 

the cavity dispersion and nonlinearity. 

 

4. Conclusion  

In conclusion, a PHML fiber laser operating at L-band based on CNTs-PVA film is 

experimentally demonstrated. The 54th harmonic pulses at a repetition rate of 503.74 

MHz centered at 1595.54 nm with 44.7 dB SMSR are obtained under appropriate 

polarization status and suitable pump power. And the highest recorded repetition rate 

in our laser is 550 MHz with compromised stability when pump power increases to 213 

mW. To the best of our knowledge, it is the first report about the achievement of HML 

operation at L-band in an Er-doped fiber laser using CNTs. The noteworthy stability of 

the laser is demonstrated by the high level of SMSR. The laser we proposed here 

features favorable performances for some applications such as L-band optical 

communication systems, spectroscopy, etc. 
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