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Abstract

Contradiction is a cornerstone of human rationality, essential for everyday life and communication. We investigated
electroencephalographic (EEG) and functional magnetic resonance imaging (fMRI) in separate recording sessions during
contradictory judgments, using a logical structure based on categorical propositions of the Aristotelian Square of
Opposition (ASoO). The use of ASoO propositions, while controlling for potential linguistic or semantic confounds, enabled
us to observe the spatial temporal unfolding of this contradictory reasoning. The processing started with the inversion of
the logical operators corresponding to right middle frontal gyrus (rMFG-BA11) activation, followed by identification of
contradictory statement associated with in the right inferior frontal gyrus (rIFG-BA47) activation. Right medial frontal gyrus
(rMeFG, BA10) and anterior cingulate cortex (ACC, BA32) contributed to the later stages of process. We observed a
correlation between the delayed latency of rBA11 response and the reaction time delay during inductive vs. deductive
reasoning. This supports the notion that rBA11 is crucial for manipulating the logical operators. Slower processing time and
stronger brain responses for inductive logic suggested that examples are easier to process than general principles and are
more likely to simplify communication.
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Introduction

The ability to reason, crucial for effective social interactions and

for the solution of common practical problems, is among the most

advanced human intellectual abilities. Contradiction, as a sub-class

of reasoning process is one of the cornerstones of human rational

reasoning and is part of everyday life and communication. In

debates or conversations, we usually examine a statement and

evaluate the validity of its content before agreeing with or arguing

against what is being said. In western culture, the elements

normally used in a conversation derive from a framework based on

the Aristotelian Square of Opposition (ASoO). Formally, the

ASoO is based on categorical statements, either universal

statements related to the totality, expressed by the logical operator

(quantifier) All or particular statements related to a small subset of

it, expressed by logical operator Some. When contradicting a

generic statement, we tend to search for counter examples. For

instance, to refute the statement ‘All swans are white’, we might

argue that ‘The Australian swan is black’. In logic, the first

statement (i.e. ‘All…’) is contradicted by the formulation ‘Some

swans are black’ (i.e. ‘Some…’). Categorical propositions may be

used in various logical relationships; in particular a premise-

conclusion pair can be contradictory or non-contradictory [1]. In

the ASoO the contradiction between a first categorical proposition

(premise) with a second categorical proposition (conclusion) can be

achieved by inverting the logical operators All with Some and the

attribute, i.e. ‘white’ with ‘black’ in the example above. Two main

types of logical reasoning can be distinguished: inductive when we

derive a rule based on a series of observations, and deductive when

we formulate an example based on a rule. When the premise is a

particular example (‘Some’) and the conclusion is a universal rule

(‘All’), their relation is assessed using inductive reasoning. In

contrast deductive reasoning is needed to assess the reverse

relation: how a universal rule (‘All’) applies to a particular example

(‘Some’).

In the past decade, studies on conditional reasoning [2] and

syllogism [3–9] have contributed to shed light on the neural basis

of logical reasoning. Using such logical structures, these studies

have consistently reported activation of distributed cortical and

sub-cortical networks, including those associated with language

processing and semantic and visuo-spatial skills (see for review

[10–15]). Lateralized effects have also been reported, with the left

hemisphere playing a key role in linguistic processes and the right

hemisphere mainly supporting logical reasoning [11,12,16,17],

although other studies have found key linguistic and logical

processes to be in different sub-areas in the left hemisphere [5,7,8].

To our knowledge, the neural correlates associated with

different components of contradictory thinking, a simple but
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fundamental logical process, are still largely unexplored. To this

aim we assessed responses in the reasoning networks to logical

structures devoted to the identification of contradiction.

Based on a protocol used in our previous high-resolution EEG

study [18], we undertook a separate event-related fMRI experi-

ment and attempted to integrate EEG and fMRI data. The

purpose of the present study was to investigate the brain

recruitment and specific timing during the identification of

contradiction. We used a protocol based on ASoO premise-

conclusion pairs, since it allowed deconvolving the neuronal

responses reflecting contradiction identification and manipulation

of the two logical operators while controlling for linguistic and

semantic features of the sentences. To delineate processing related

to the contradictory judgment, we contrasted contradictory

(C, e.g. ‘All swan are white – Some swan are black’) to non-

contradictory (nC, e.g ‘All swan are white’ – ‘Some swan are

white’) premise-conclusion pairs. Furthermore, contrasting All-

Some (AS: deduction, ‘All swan are white – Some swan are black’)

with Some-All ( SA: induction, ‘Some swan are white – All swan

are black’) sentence pairs, we manipulated the order of universal/

particular logical operators in order to verify if inductive and

deductive reasoning are subtended by different neural structures.

We hypothesized that in this later case the order in which the two

sentences (AS vs. SA) are presented may affect the way in which

they are logically processed and that brain imaging could identify

the neural correlates of the logical inversion operation, which is

orthogonal to the content inversion operation.

Data of the experiment is available from the corresponding

author upon request.

Materials and Methods

Participants
EEG study. data for the EEG study was collected during a

previous study (reported in [18]) from eleven healthy native Italian

speakers (mean age: 30.5 years; range: 24–38 years; six women).

fMRI study. Thirteen healthy native Italian speakers (mean

age 31.1 range 25 – 42 years; 6 women) were recruited. Eight of

these participants had also participated the EEG study.

None of the participants had a formal background in logic and

none had prior history of neurological or psychiatric conditions.

All participants had normal or corrected-to-normal vision.

Participants gave their informed written consent after the nature

of the study was explained to them. The study was approved by

the Ethics Committee of Aston University, where the study was

conducted.

Stimuli and procedure
Stimuli were presented visually via a Dell PC using a paradigm

developed on the E-Prime programming software (Psychology

Software Tools, Inc.; http://www.pstnet.com). A 262 factorial

design was used with the following factors: Logical Operator

(INDUCTION: SOME-ALL, DEDUCTION: ALL-SOME) and Contradiction

(CONTRADICTORY, NON CONTRADICTORY). Sentences were in

Italian (the native language of the participants). The protocol

consisted of 140 sentence pairs, equally represented in the

following four forms: 35 All… Some… – Contradictory (AS-C),

35 Some… All… – Contradictory (SA-C), 35 All… Some… – Non-

contradictory (AS-nC) and 35 Some… All… – Non-contradictory

(SA-nC). The English translation of 4 typical sentences is provided

in Table 1. In the AS-C and AS-nC the premise is universal (A:

All) and the conclusion is particular (S: Some), whilst the conclusion

is contradictory for the first set (AS-C) and non-contradictory for

the other (AS-nC). Similar definitions apply for the SA-C and SA-

nC. The sentences were identical as far as the logical operator

manipulation; the only difference was the order in which the

logical operators were presented, eliciting inductive or deductive

reasoning. The C and nC sentences had identical grammatical

structure and were matched as much as possible for length and

complexity.

Prior to the experiment, participants received a training session

on a separate set of stimuli to help them to familiarize with the task

and the recording environment. Participants (Ps) were asked to

evaluate whether the conclusion was contradictory or not with

respect to the premise, independent of the correctness of the

sentence content. The trial sequence started with 0.5s fixation to

alert the Ps of the beginning of the trial, the premise sentence was

then presented for 2.5s followed by a 0.5s fixation and the

conclusion sentence for 2.5s (Figure 1). The trial ended with the

presentation of a question mark for 1.5s, during which participants

were asked to perform a button press (right hand = contradictory,

left hand = non-contradictory). Participants were instructed to

refrain from responding if unable to make a clear choice. Three

randomly selected inter trial intervals (5.5 or 7.5 or 10.5s) were

used for the fMRI experiment, to facilitate the estimation of the

Hemodynamic Response Function (HRF) in the MRI experiment

[19]. A fixed 1s inter trial interval was used for the EEG

procedure. Sentence pairs were presented in a random order.

Analysis of behavioral data
Repeated measures analyses of variance (ANOVAs) were

separately applied to the percentage of errors and the reaction

times of correct responses (dependent variables) with Logical

Operator (INDUCTION [SA], DEDUCTION [AS]) and Contradiction

(CONTRADICTORY [C], NON-CONTRADICTORY [nC]) as within-

subject factors using SPSS15 (SPSS Inc, Chicago IL, USA).

Threshold for significance was set at p,0.05.

Table 1. Stimuli Example.

UNIVERSAL – PARTICULAR PARTICULAR – UNIVERSAL

CONTRADICTORY All swans are white - Some swans are black Some swans are white - All swans are black

[AS-C] [SA-C]

NON-CONTRADICTORY All swans are white - Some swans are white Some swans are black - All swans are black

[AS-nC] [SA-nC]

An example of the four experimental conditions. The same number of premise-conclusion pairs was presented for each condition. Acronyms are indicated in square
brackets.
doi:10.1371/journal.pone.0092835.t001
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EEG data acquisition
Scalp EEG signals were recorded continuously during the

protocol using an EGI data acquisition system (Electrical

Geodesics, Eugene, OR, USA; http://www.egi.com) with the

third generation of EGI dense array net, the HydroCel Geodesic

Sensor Net VR (128-channel HCGSN [20]). Gain and zero

calibration were performed before the start of each EEG

recording; channel impedances were kept below 50 kV for all

net sensors [21]. Amplified EEG signals were sampled at 500 Hz

(anti-aliasing filter at 200 Hz) and stored for off-line processing. All

channels were referenced to the vertex (Cz) electrode. Source

analysis of this dataset was presented in [18].

EEG data analysis
A semiautomatic Independent Component Analysis (ICA)

procedure was applied to characterize artifactual non-cerebral

activities, i.e. eye movements, muscular artifacts and environmen-

tal noise, and remove them without rejecting the contaminated

epochs [22–24]. EEG analysis was then performed after back-

projecting all the non-artifactual ICs in the original signal space.

To identify specific neural regions involved in different phases of

the task, the ‘‘cleaned’’ data were then averaged, triggered on the

presentation of the first sentence. A 7-second time window that

comprised the whole trial (premise 2.5 s + blank screen 0.5 s +
conclusion 2.5 s + response 1.5 s) was chosen, and reasoning-

associated Global Field Power (GFP, [25]) was computed. We

assessed brain activation patterns performing the same contrasts

for EEG and fMRI. The ‘C vs. nC’ and ‘SA vs. AS’ difference

Event Related Potential (ERP) was subject to source analysis using

sLORETA algorithm [26] as implemented in CURRY 6

(Neuroscan, Hamburg, Germany, http://www.neuroscan.com/).

sLORETA was computed using a regular grid with a spacing of

4 mm throughout the brain region and a four shell spherical head

model. The results were projected onto the template brain of the

Montreal Neurological Institute (MNI). Anatomical sources of the

ERPs were identified blindly to the results of the fMRI data.

The current analysis extended the analysis presented in the

previous study on the same data set [18] now integrating the

dynamics of specific involved structures.

Statistical analysis of EEG data
To identify which and when cerebral events were crucial for a

specific processing step, corresponding ANOVA designs were

performed on maximal channel ERPs including Logical Operator

(INDUCTION [SA], DEDUCTION [AS]), Contradiction (CONTRADICTORY

[C], NON-CONTRADICTORY [nC]) 2-levels within-subjects factors

and the n-level Activation latency (LAT1,LAT2,…, LATn) within-subjects

factor. The selection of latencies LAT1, LAT2 … LATn corresponding

to ‘relevant events’ was performed implementing a data-driven

procedure. We selected the two channels of maximal amplitude

(positive and negative polarity at earliest latency) of the grand

average ERP across the four conditions (SA, AS, C and nC).

Noteworthy, the same two channels (F9 and F10) displayed the

maximal amplitudes all along the task and also in the four

conditions separately (AS, SA, C, nC). ‘Relevant’ latencies LAT1,

LAT2 … LATn were those which the t-test analysis calculated

millisecond by millisecond indicated as differing for at least one

of two maximal channels ERPs in in either conditions’ com-

parison (INDUCTION vs. DEDUCTION or CONTRADICTORY vs. NON-

CONTRADICTORY).

Threshold for significance was set at p,0.05 and trends were

reported for p,0.10. Effects were reported as results only when

below significance. Post-hoc comparisons for each latency point

were reported for the channel with strongest effect.

fMRI data acquisition
All data were acquired with a 3 Tesla Siemens Trio MRI

scanner (Siemens Medical Systems). Functional images were

acquired with an 8-channel birdcage phased-array head coil using

a gradient echo sequence with the following parameters, TR = 3.0 s,

TE = 30 ms, flip angle = 90u Matrix 64664, FOV 192 cm,

363 mm in-plane voxel resolution and 3 mm slice thickness. A total

of 44 slices per full brain volume and between 765 to 800 volumes

per participant was acquired in a single session.

fMRI data analysis
The fMRI data were analyzed using SPM8 (Wellcome

Department of Imaging Neuroscience, London; www.fil.ion.ucl.

ac.uk/spm). Pre-processing of the data included slice time

correction, spatial realignment to correct for movement artifacts

and motion by distortions interactions and normalized to the MNI

standard space. The data were re-sampled given a 26262 voxel

size and smoothed using 6 FWHM Gaussian Kernel to account for

residual inter-subject differences and to accommodate assumptions

of random field theory used for family wise error corrections [27].

We first estimated the effect size for each participant on each of

the four conditions (recall 262 design) using the general linear

model [28]. Each condition was modeled by a separate regressor;

the onsets of each trial corresponded to the time when a correct

response was given. In addition, response time and length of the

sentences were included as covariates to control for potential

stimulus and response confounds. Error and non-response trials

were modeled as separate regressors. All the regressors were

convolved with two bases functions: the canonical HRF [29] and

Figure 1. Experiment setup. The beginning of the trial was signalled by a ‘‘+’’ appearing in the centre of screen for 0.5 s, followed by the
presentation of the premise categorical proposition for 2.5 s. Thereafter the sentence disappeared for 0.5 s (Waiting period), followed by the
presentation of the conclusion categorical proposition for 2.5 s. Then, a question mark appeared for 1.5 s, requiring the subject to press the yes/no
button in the case the contradiction was estimated correct/not correct independently of the sentence content. His/her response was accepted only
within this period. Finally, a feedback advised the subject whether any button had been pressed or not, but no indication about the correctness of
the contradiction identification. The ‘New Trial’ appearing on the screen (5.5 or 7.5 or 10.5 s randomly chosen) advised the subject that a next trial
was starting.
doi:10.1371/journal.pone.0092835.g001
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its derivatives that capture fluctuations in response onset [30]. To

correct for signal changes due to head movement, the 6

realignment parameters were included in the design matrix. An

additional set of harmonic regressors was used to account for any

temporal low-pass frequency variance within the data that is

typical to fMRI signal with a cut-off of 1/128 Hz.

Consistent effects across participants (random-effects, second-

level analysis [31]) were then tested using the general linear model

framework. The data for the described model were the estimated

effect size of the 4 experimental conditions for each subject (AS-C,

AS-nC, SA-C, SA-nC). Plots of the averaged estimated HRF

response size represent the responses (the first Eigen-variant) of a

3 mm3 sphere centered on the maxima group response. We used a

mixed cluster and peak threshold [32]. We report clusters with a

peak at P,0.001 uncorrected and at least 75 contiguous voxels

showing Z . 2.58, unless specified otherwise. To cross validate the

reliability of our observations we tested for overlap between the

EEG sources and the regions of increased BOLD signal in the

fMRI experiment. This was done by using a 5 mm sphere around

the peak of the sources observed from the independent EEG study

and analysis (see above section) for small volume correction to the

fMRI regions.

Results

Behavioral performance during the fMRI and the EEG
experiments

Results of behavioral performance are summarized in Table 2.

Participants performed PARTICULAR - UNIVERSAL (SA: INDUCTION)

and UNIVERSAL - PARTICULAR (AS: DEDUCTION) trials with

comparable accuracy (. 95%), both for the contradictory and

non-contradictory conditions (p . 0.150). Such low error rate

suggests that logical inference based on the Aristotelian categorical

proposition structure is a natural process that is easily performed

by all participants, even without ever having had any formal

training in logic.

Reaction Times showed a strong Logical Operator effect [F(1, 12)

= 14.555, p,0.005], with longer reaction times seen for inductive

reasoning, when a UNIVERSAL rule had to be inferred based on an

example. No main effect for Contradiction or an interaction between

Logical Operator*Contradiction were observed [p.0.5 for both].

Observed longer RT for SA than AS (Logical Operator effect

p,0.005) but no RT difference between C and nC (Contradiction

effect p.0.5) in both the EEG [18] and the fMRI experiments. To

further test whether our participants developed the heuristic

strategy in the course of the experiment (i.e. produced the

identification based on the inversion of the attribute instead of

considering the whole sentences), we divided the experiment into

four parts and performed an ANOVA adding Time (1u, 2u, 3u, 4u
period) as within-subjects factor to Logical Operator (AS, SA) and

Contradiction (C, nC). The results revealed that participants

improved their overall performance along the course of the

experiment (Time effect F(3,36) = 15, p,0.001) and were faster to

compute AS than SA logical operation (F(3,36) = 9.83, p = 0.011)

with no effect of Contradiction. Importantly, Time did not interact

with either of the manipulations (p . 0.200 for both Time*

Contradiction and Time*Logical Operator), indicating that participants

did not change their strategy during the course of the experiment.

Brain activation - EEG data
Dynamics of Logical Operator and Contradiction

processing. When comparing the two channels of maximal

amplitude (positive polarity at the first peak F9, negative polarity

at F10), ERP peaks showed significant differences (p,.05, Figure 2

top row) at 400, 1200, 3300, 3500, 3800, 4400 ms in the

INDUCTION vs. DEDUCTION contrast, and at 3300, 4200, 4800 ms in

the CONTRADICTORY vs. NON-CONTRADICTORY contrast. Based on

this finding, these 8 latencies were included in the ANOVA design.

The full ANOVA design including the 3 within-subjects factors,

showed a significant Logical Operator*Contradiction*Activation latency

interaction factor [F(7,28) = 3.080, p = .016] revealing a different

behavior at different latencies when manipulating the logical

operator or recognizing the contradiction. Consequently, for each

latency reduced models were analyzed, and latencies were

considered of interest whenever at least one factor (Logical Operator

or Contradiction) was significant. As detailed in Table 3 a trend for

Logical Operator*Contradiction was found at 400 and 3300 ms. Logical

Operator factor reached statistical significance at 400, 1200, 3300,

3500, 3800 and 4400 ms and Contradiction factor was significant at

3300, 4200 ms and showed a trend at 4800 ms.

Structures crucial for identification of contradiction
As expected (since all premises are presented in the two

contrasting conditions) the analysis of ERP data contrasting C vs.

nC premise-conclusion pairs revealed no differences in GFP values

between 0 and 3000 ms during the whole premise processing

(Figure 2). The first GFP peak was seen 300 ms after the onset of

the conclusive sentence. The cerebral activation at that time point

localized to the left MFG (BA 11 - Figure 2, Table 4). The activity

at the next GFP peak, occurring around 1.2 s after the beginning

of the trial, was localized in the right IFG and corresponded to

processing of the conclusion.

Table 2. Behavioral data.

EEG fMRI

UNIVERSAL – PARTICULAR PARTICULAR – UNIVERSAL UNIVERSAL – PARTICULAR PARTICULAR – UNIVERSAL

Correct responses (%)

CONTRADICTORY 97.561.9 98.063.2 97.362.4 96.265.9

NON-CONTRADICTORY 98.561.7 97.962.2 95.161.9 97.362.4

Reaction Times (ms)

CONTRADICTORY 4906105 5506117 5126107 561696

NON-CONTRADICTORY 5016101 5136107 5056135 5396161

In each of the four experimental conditions, for EEG and fMRI data, mean across participants (6 standard deviation, SD) of the percentage of correct responses and of
the reaction times, i.e. the time between the question mark appearance and the subject response (see Fig.1).
doi:10.1371/journal.pone.0092835.t002
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Logical operator processing structures
ERPs obtained by contrasting the activity in response to SA vs.

AS premise-conclusion pairs showed a first GFP around 0.4 s after

premise presentation, with the largest activation in the left middle

frontal gyrus (MFG-BA11) (Figure 2, Table 4). This area was also

active during the subsequent GFP peak around 1.2 s following the

onset of the premise. The first peak after the onset of the

conclusion, occurred around 300 ms, at a similar latency as the

earliest peak after premise presentation and was localized in the

same region (left MFG-BA11, Table 4), plausibly reflecting the

similar processing step. The processing of the conclusion was

characterized by shorter latency and weaker amplitude than that

of the premise (Figure 2). We note that this early (0.3 s post

conclusion onset) GFP peak observed in the left BA11 was sensitive

to both the contradiction and the logical operator manipulations.

The next activity peak during processing of the conclusion was

generated in the right MFG (BA 11, Table 4) around 800 ms after

the onset of the second sentence presentation. The activity spread

to the right hemisphere MeFG (BA 10) and ACC (BA 32) where it

peaked 600 ms later, at 1.4 s (Figure 2, Table 4).

A dynamic interactive process emerged from the onset of the

conclusion is the process of contradictory reasoning. An early

response at 0.3 s in the left MFG (BA 11) potentially involved in

comprehension process signals the recognition that the two

sentences have different words. We infer that this early peak in

the left MFG is not yet part of the contradictory reasoning process

but reflects comprehension processes since these effects are evident

also for the premise sentence when ‘All’ and ‘Some’ are contrasted.

The inversion of the logical operators that followed this stage

leading to inductive/deductive reasoning and involved the right

MFG (BA 11) at 0.8 s. This was then followed by activation of the

right IFG at 1.2 s during the comparison of semantic content of

Figure 2. Neural structures to identify contradiction and manipulate logical operators –EEG data. Top row – Grand average Event
Related Potential (ERP) of the two channels of maximal amplitude (positive and negative polarities at the first peak) compared between contradictory
(C) and non-contradictory (nC) (on the left, orange and green lines respectively) and All-Some (AS) and Some-All (SA) (on the right, red and blue lines
respectively) conditions. In accordance with figure 1, time t = 0 s refers to premise presentation (full vertical line, orange box) and the conclusion is
displayed 3 s later (full vertical line, green box). Horizontal yellow (grey) segments indicate time periods when the difference between conditions
where significant at paired 2-tails t-test p,0.05 (p,0.1). Middle row - Grand average differences of the two channel powers between contradictory
(C) and non-contradictory (nC) (on the left, blue lines) and All-Some (AS) and Some-All (SA) (on the right, magenta lines) conditions. Bottom row -
Localization results at latencies of GFP peaks (vertical dashed lines in the GFP traces) of corresponding contrasts are expressed in MNI template brain.
GFP was found for the C vs. nC contrast only in the conclusion (green box), while cerebral recruitment in correspondence to premise (orange box)
and conclusion processing (green box) were evidenced for SA vs. AS contrast.
doi:10.1371/journal.pone.0092835.g002

Table 3. Statistics of neural structures activation dynamics.

Latency
(ms) Effect F(1,10) p

400 (Logical Operator * Contradiction) 3.583 .091

Logical Operator 12.571 .005

1200 Logical Operator 20.840 .001

3300 (Logical Operator * Contradiction) 3.322 .113

Logical Operator 10.158 .015

Contradiction 7.545 .020

3500 Logical Operator 9.696 .012

3800 Logical Operator 14.792 .003

4200 Contradiction 5.160 .036

4400 Logical Operator 4.784 .046

4800 Contradiction 3.472 .094

Results of reduced model ANOVA designs for each latencies.
doi:10.1371/journal.pone.0092835.t003
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the conclusion with respect to the premise. Finally, re-evaluation

of the logical operators was associated with the right MeFG

activation at 1.4 s. It is interesting to note that within the reasoning

time-window, inversion of the logical operators (0.8 s at right

BA11) preceded the semantic comparison of the sentence content

(1.4 s, at the right BA47).

The EEG-derived activation data showed that the right

hemisphere contributed more than the left during the whole

reasoning time window (0.8 – 1.4 s from the presentation of the

conclusion) for both the identification of the contradiction (C vs.

nC, Figure 2 left, Table 4) and the logical operator manipulation

(SA vs. AS, Figure 2 right, Table 4). A left-hemisphere

involvement was present earlier 0.3 s in all contrasts (Figure 2 left).

Brain activations - fMRI data
Overall task relevant activation. In line with previous

fMRI studies, we first tested for the main effect of reasoning,

independent of the specific condition. i.e. cerebral responses across

all the four conditions when compared to the fixation baseline.

Note that this general contrast includes regions involved in

processing of visual stimuli, reading, comprehension, decision,

preparation of motor response, regions that are involved in non-

specific but task relevant cognitive demands as well as regions

directly performing the reasoning task. Given the non-specificity of

this contrast, we report only results that survived whole brain

family-wise error correction (FWE) at the cluster level p,0.05.

Overall, regions within the bilateral prefrontal, parietal and left

temporal cortices showed increased activations during task versus

baseline (Table 5; Figure 3). Interestingly, while performing the

task the early sensory structures (visual cortex and thalamus)

showed a decrease in activity relative to baseline (Table 5). This

suggests that while judging the logical reasoning, participants were

engaged in internal mental processing while attempting to ‘block’

external distractions [33].

Structures crucial for identification of contradiction
The right inferior frontal gyrus (IFG, BA 47), and caudate

nuclei showed increase activation during contradictory compared

to non-contradictory trials (p,0.001, Figure 4a and Table 6).

Within these regions there was no effect of the logical operator

manipulation, suggesting that BA 47 responded in a similar way

irrespectively to the manipulation of All or Some. Even though the

size of these clusters was below our pre-specified threshold, the

involvement of the right BA 47 and the caudate in decision-

making, response selection and contradictory scenarios is consis-

tent with previous literature (see discussion for further details). As

expected, the fMRI responses of the right BA 47 overlapped with

the contradictory EEG-source peak at 1.2 s. This overlap was

again formally confirmed with small volume correction (SVC)

using a 5 mm sphere centered at the EEG-source peak to the

fMRI data. Using SVC, the response in right IFG was larger for

contradictory statements than no-contradictory ones (FWE-

corrected p = 0.008). The opposite contrast (nC. C) caused no

activation above threshold.

Logical operator processing structures
In line with the behavioral findings, we observed a greater

BOLD signal change for inductive reasoning propositions ending

with a UNIVERSAL (SA) than for deductive reasoning - those ending

with a PARTICULAR statement (AS) in the right superior frontal

gyrus (SFG – BA 8), medial frontal gyrus (MeFG – BA 10) and the

right inferior parietal lobule (IPL – BA 40, angular gyrus) (Figure

4b, Table 5). Within the above foci there was no reliable effects for

the contradictory manipulation (p . 0.1), suggesting that

responses to contradictory and non-contradictory sentences

recruited these structures in a similar way. We note that the

EEG activation peak (at 1.4s) in the right MeFG for the inversion

of the logical operator overlapped with the fMRI activation at that

region. This overlap was confirmed by applying SVC using a

5 mm sphere centered at the EEG peak to the fMRI data, the

response in right MeFG was found to be FWE-corrected

(p = 0.010). There was no above threshold activation for increased

response to SA vs. AS.

Relationship between behavior and brain activations
As detailed above, no effects of experimental conditions were

observed on error rates. Reaction times were longer when

contradiction identification was performed after a universal

(condition SA) rather than a particular conclusion (condition

AS). This finding lead us to investigate brain activation properties

Table 4. Neural structures to identify contradiction and manipulate logical operators – EEG data.

BA X Y Z Latency

(mm) (mm) (mm) (s)

CONTRADICTORY vs. NON-CONTRADICTORY Prem Conc

Frontal Lobe Middle Frontal Gyrus (L) 11 –33 41 –14 3.3 0.3

Inferior Frontal Gyrus (R) 47 32 30 –17 4.2 1.2

INDUCTION: PARTICULAR – UNIVERSAL (SA) vs. DEDUCTION: UNIVERSAL – PARTICULAR (AS) Prem Conc

Frontal Lobe Middle Frontal Gyrus (L) 11 –30 43 –15 0.4

11 –31 47 –15 1.2

11 –33 41 –14 3.3 0.3

Middle Frontal Gyrus (R) 11 44 40 –14 3.8 0.8

Medial Frontal Gyrus/ACC (R) 10/32 8 50 0 4.4 1.4

Localization results in MNI coordinate and latencies of GFP peaks of contrasted EEG data. Latencies are expressed relative to both the premise presentation (t = 0, first
latency column, Prem) and the conclusion presentation (t = 0 at 3s after premise presentation, second latency column, Conc); this also means that latencies ,3s of the
first latency column refer to premise processing and latencies . 3s relate to conclusion processing. Latencies in bold indicate reasoning steps occurring in the same
processing phase after premise and conclusion presentation. Dynamics of lateralization of brain recruitments is underlined by dedicated boxes for left (L) and right (R)
activated areas. In italics are indicated cerebral processing of the premise.
doi:10.1371/journal.pone.0092835.t004
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Table 5. Overall task relevant activations – fMRI data.

Increased Activity - Location BA X Y Z z-value

(mm) (mm) (mm)

Frontal Lobe Medial Frontal Gyrus (L) 10 –6 54 8 4.77

Superior Frontal Gyrus (L) 6/8 –26 32 54 4.67

Medial Frontal Gyrus (R) 10 2 54 –2 4.95

Superior Frontal Gyrus (R) 6/8 36 32 54 3.86

Parietal Lobe Precuneus (L) 31 –10 –54 30 3.71

Angular Gyrus (L) 39/40 –48 –76 36 4.52

Angular Gyrus (R) 39/40 48 –74 36 4.46

Temporal Lobe Middle Temporal Gyrus (R) 21 52 –64 24 4.28

Limbic Lobe Anterior Cingulate (L) 24/ 32 –2 36 0 4.51

Posterior Cingulate (R) 31 10 –52 22 3.63

Decreased Activity - Location BA X Y Z z-value

(mm) (mm) (mm)

Occipital Lobe Cuneus (L) 18 –8 –104 6 5.63

Cuneus (R) 18 16 –102 8 5.55

Sub-lobar Thalamus (L) 14 –8 8 6.28

Thalamus (R) 14 –4 6 6.23

fMRI results in MNI coordinates. See text.
doi:10.1371/journal.pone.0092835.t005

Figure 3. Overall task relevant activations – fMRI data. On the left, the SPM-T (P,0.05 FWE-corrected) of the global task effect (stimuli vs.
fixation) is overlaid on a template rendered brain. On the right, the SPM-T is overlaid on MNI template T1 axial slices. The plots represented the effects
size in regions of interest (y-axis fMRI effect size in arbitrary units). a) Right superior frontal gyrus, BA 8 [MNI: –26 32 54]; b) medial frontal cortex, BA10,
(MNI: –6 54 8), c) left inferior parietal lobule, angular gyrus, BA 39 [MNI: –48 –76 36]. Indices: C, contradictory; nC, non-contradictory; AS, All-Some;
SA, Some-All.
doi:10.1371/journal.pone.0092835.g003
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explaining the reaction difference in the two conditions (Reaction

Time delay, RTd = RT(SA)-RT(AS)). In particular, we focused

on the activity of brain regions emerging from the same SA vs. AS

contrast. After checking variables distribution for gaussianity with

Shapiro-Wilk statistics, a linear regression analysis was performed

to identify possible cerebral activation features predicting the RTd.

EEG and fMRI studies indicated that specific areas were

involved for manipulating the logical operator. We investigated if

activation latency or current strength of right BA11 or BA10/32

(see Table 4) or BOLD intensity in BA10/32, BA8 and BA40

(Table 6) were able to explain the longer reaction time which

occurred in SA vs. AS conditions (see Table 2). Investigating

preliminarily the Pearson’s correlations with the reaction time

delay (RTd), no association appeared with either EEG current

strengths or fMRI BOLD. Instead right BA11 and BA10/32

activation latencies correlated with RTd. We used regression

analysis to establish which of these displayed higher association.

The regression analysis with RTd as dependent variable and right

BA11 and BA10/32 activation latencies as independent variables

(Stepwise method) indicated that only right BA11 activation

latency (rBA11al) entered the model, as expressed by

RTd = –307.6 + 0.090 rBA11al (Figure 5).

The 80% of RTd variance was explained by this model

[F(1,9) = 35,660, p,.001].

Discussion

Going beyond our previous study using the Aristotelian Square

of Oppositions [18], here we delineated the spatial temporal

envelope of two processes that are keys to reasoning thinking:

logical operators of deductive and inductive inferences and the

detection of contradictions. We found that inductive (SA: Some-

All ) reasoning was more difficult than deductive (AS: All-Some)

reasoning and it was associated with increase responses of the right

superior and medial prefrontal cortex (BA 8, 10, 32) and the

inferior parietal (BA 40), in the fMRI. The EEG revealed more

refined spatial-temporal properties of the reasoning processed.

Here 0.8 s after the onset of the conclusion sentence the right

MFG (BA 11) showed a different activity depending on the type of

reasoning made. Interestingly the timing of right MFG (BA 11)

peak predicted participants’ reaction time delay in inductive vs.

deductive reasoning. The responses of the MeFG (BA 10) that

were seen in the fMRI were observed later at 1.4 s. Participants

found it equally easy to detect contradictory as well as non-

contradictory sentences, however both the fMRI and EEG

revealed that responses of the right MFG (BA 47) arising at 1.2

s after the onset of the conclusion sentence showed stronger

responses to the contradictory than to non-contradictory sentenc-

es. Our data highlighted that specific spatial-temporal network

properties subtend deduction/induction and identification of

contradiction. We next discuss in more details each of the

observed effects and potential reasons of some apparent inconsis-

tencies between the fMRI and EEG data.

The limitation of our study is the relatively small simple size,

since the statistics are prone to false negative as well as false

positive results in this case. However, the reliability of the results

emerges from convergent evidence provided by the two multi-

modal brain measurements (EEG and fMRI), the correlation of

the behavioral reaction delays with the brain activation latencies,

of the region crucial to perform the step differing between the two

conditions, and the consistency of the findings with previous

literature.

Dynamics of reasoning network to identify an
Aristotelian contradiction

The analysis of the EEG data enabled to describe the temporal

sequence of the activation of structures within the prefrontal cortex

necessary to solve an Aristotelian contradiction. In our previous

EEG study [18] we focused on identifying the frontal network that

was involved in all the four conditions. This revealed a bilateral

temporo-polar cortices (BA 21, 38), bilateral Inferior Frontal

Gyrus (IFG - BA 47) cortex, the Medial Frontal Gyrus (MeFG -

BA 10, 11) and the Anterior Cingulate Cortex (ACC - BA 32) [18].

In this study we focused on identifying how the spatial layout of

the network changes dynamically as a function of the reasoning

conditions.

After the onset of the conclusion the left MFG was activated first

(0.3 s) and at the almost same latency as following the onset of the

premise (0.4 s). The involvement of the left MFG present in the

premise and not just in the conclusion suggests a P300-like

activation, reflecting semantic comprehension processing. This

area is in fact part of the P300 generator structure [34].

Only after the onset of the conclusive sentence, a second

response emerged about half a second after the initial P300 within

the right frontal lobe structures that were associated with the

logical operator manipulation (right MFG, 0.8 s after conclusion

presentation, Figure 2). Four hundred ms later (1.2 s after

conclusion presentation), contradiction identification involved the

right hemispheric IFG whereas 200 ms later (1.4 s) ACC is

activated.

While EEG-derived activation revealed the dynamics of the

reasoning process, these structures were observed independently

Table 6. Neural structures to identify contradiction and manipulate logical operators – fMRI data.

Contradictory (C) . Non-contradictory (nC) BA X Y Z z-value

(mm) (mm) (mm)

Frontal Lobe Inferior Frontal Gyrus (R)1 47 26 30 –18 3.31

Sub-Cortical Caudate (R)1 22 6 14 3.1

Induction: Particular – Universal (SA) . Deduction: Universal – Particular (AS) BA X Y Z z-value

(mm) (mm) (mm)

Frontal Lobe Medial Frontal Gyrus/ACC (R) 10/32 10 54 6 3.13

Superior Frontal Gyrus (R) 8 14 42 54 3.83

Parietal Lobe Inferior Parietal Lobule (R) 40 54 –62 44 3.25

fMRI results in MNI coordinates. See text. 1cluster size . 28 mm3.
doi:10.1371/journal.pone.0092835.t006
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by both fMRI and EEG data, indicating a processing network with

crucial contributions of distinct frontal lobe structures and a right

prevalence in reasoning to identify an Aristotelian contradiction.

Sub-system to manipulate the logical operators in
contradiction identification

Our EEG and fMRI results provide evidence that specific

neural structures are crucial for the manipulation of the logical

operators while identifying the contradiction. The right inferior

frontal cortex (rIFG - BA 47) is crucial for inferring contradiction

based on the premise-conclusion semantic content. However, the

logical operator processing (INDUCTION and DEDUCTION) mainly

relies on the right medial frontal cortices (MeFG - BA 10/32,

MFG - BA 11), regions accounting for depth of strategic reasoning

[35]. EEG, fMRI and behavioral results all demonstrated that

deductive reasoning when concluding with a particular statement

is simpler and easier logical process than inductive reasoning when

concluding with a universal statement. We hypothesize that the

advantage of DEDUCTION with respect to INDUCTION - faster

reaction time - depends on the fact that the former requires the

analysis of a single example, whereas sentences terminating with

All require exploring multiple examples or the absence of a

counterexample.

A recent study based on a paradigm that required counterex-

amples to be used to refute invalid inferences showed activation in

right prefrontal cortex [10].

Figure 4. Neural structures to identify contradiction and manipulate logical operators – fMRI data. a) Contradiction Identification On
the right, the SPM-T (orange, P,0.001; red P,0.005) of the contradictory effect (contradictory . non-contradictory) overlaid on MNI template T1. The
plots represent the effects size in regions of interest (y-axis fMRI effect size in arbitrary units). Indices: C, contradictory; nC, non-contradictory; AS, All-
Some; SA, Some-All. b) Manipulation of Logical Operators On the right, the SPM-T (orange, P,0.001; red P,0.005) of the logical operator effect (Some-
All (SA) more than All-Some (AS)) overlaid on MNI template T1. The plots represent the effects size in regions of interest (y-axis fMRI effect size in
arbitrary units).
doi:10.1371/journal.pone.0092835.g004
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A role of the right BA 47 and the caudate in prediction errors

and surprise events was described in a study using words that had

causal or non-causal relation to each other [36]. These authors

report increased activation - amongst other regions - of the right

BA 47 and caudate nuclei for the ‘surprise’ trials in which words

were not causally related, compared to when they were. In light of

these findings, we propose that increased responses to contradic-

tory vs. non-contradictory trials may reflect an ‘intellectual

surprise’ elicited by the conceptual violation originated by the

contradiction.

The absence of reaction time differences between contradictory

and non-contradictory pairs revealed similar cerebral processing

load of the two premise-conclusion stimuli. Interestingly, longer

reaction times were instead required when concluding with a

universal statement. This delay was mainly due to longer

activation time of the specific structure associated with manipu-

lation of the logical operator during a universal statement. This

brain-behavior relationship has the double implication of strength-

ening the reliability of the brain structures’ identification and of

enabling a better comprehension of a relevant reasoning process.

In fact, it emphasizes the efficacy of the present protocol, where by

equaling all semantic and language-specific features of premise-

conclusion pairs we were able to isolate the neuronal structures

devoted to specific steps of the reasoning process.

Our results support the notion that specific examples more that

general statements facilitate communication and teaching [37].

We showed that induction reasoning, 1) took longer to make, 2)

were associated with increased fMRI/EEG responses in prefrontal

regions, and were associated with delayed peak in the right BA11

activation. We can hypothesize that communicating by examples

(Some…) as opposed to general principles (All…) facilitate listeners’

general intelligence in both fluid [38,39] and crystallized [40]

counterparts. Being BA11 – presently observed as the crucial

structure for INDUCTION/DEDUCTION processing, whose latency

delay associates with INDUCTION vs. DEDUCTION delay– part of the

full multiple-demand (MD [41]) system, we can conceive that

exemplificative messages facilitate a systemic activation of the full

cognitive network.

Right parieto-frontal dominance in naturalistic
Aristotelian contradiction identification

INDUCTION/DEDUCTION and contradiction-related contrasts re-

vealed consistent right-hemisphere prevalence of frontal lobe

involvement in both EEG and fMRI data.

The same regions in right prefrontal cortex and inferior parietal

lobe (right MeFG/ACC, rBA 10/32) emerging from the

INDUCTION/DEDUCTION contrast have been shown to be more

active for reasoning than for calculation and correlate with

reasoning load, whereas regions in left prefrontal cortex and

superior parietal lobe were more active for calculation than for

reasoning [11]. Compared to other studies that reported a

preferential contribution of the left hemisphere for reasoning

processes [5,7,8], we observed a clear right hemispheric

dominance in identifying contradiction in naturalistic ASoO

frame. We can only speculate on potential reasons for the

apparent discrepancy, one of which may relate to the type of

stimuli used. In this study, in contrast to formal symbolic

reasoning, All and Some statements were applied to objects of

everyday life (e.g. trees, books). These might have encouraged

participants to use object imagery to solve the task. Processing of

objects in working memory is typically associated with the right

hemisphere activity [42-44]. An alternative explanation might in

the belief conflict, inherent to the chosen task for this study. It has

been observed that when a logical argument results in a belief

conflict, reasoning is supported by right prefrontal cortex

activation [3]. In our experiment, participants were exposed to

some level of belief incongruence either when processing the

premise or the conclusion, even though they were instructed to

ignore the truthfulness of the statement. The construction of

logically contradictory statements implies that one of them is to

some extent in conflict with experience-based belief. For example

a statement that ‘All books are thick’ is in conflict with our prior

knowledge that ‘Some books are thin’. The stronger activation

while processing a universal rather than a particular conclusion

seems to support this hypothesis of a belief conflict, as general

statements are invariably more likely to induce a belief conflict

than particular ones (as in the example above or for another

example ‘All exams are simple’ vs. ‘Some exams are simple’).

Furthermore, particular and universal quantifiers largely require

magnitude estimate and population size imagery which has been

ascribed to the right prefrontal [45,46] and intra-parietal cortices

[47] providing common coding of number symbols and numeric

coding, independent of dots, digits, and number words represen-

tations.

Overall task relevant activations
The fMRI results of this study confirmed the well-established

notion that reasoning is a highly complex cognitive process that

relies on distributed cortical networks. These include the left

precuneus and inferior parietal (bilateral angular) cortex, both

associated with reading and processing of visual-verbal stimuli

[48]; the bilateral prefrontal cortices (superior and medial frontal

gyri), associated with executive functions, working memory and

decision making processes [49–51]; premotor cortices (BA 6)

bilaterally, associated with motor response and anterior cingulate

cortices (BA 24,32), associated with learning and conflict resolution

processes [52,53].

In conclusion, the protocol chosen for the current EEG and

fMRI reasoning study has some interesting properties in facilitat-

ing the identification of distinct cognitive processes involved in

Figure 5. Relationship between behavior and brain activation.
Scatterplot of individual data submitted to the linear regression
analysis, with Reaction Time delay [RT(SA)-RT(AS)] as dependent
variable and right BA11 activation latency as independent variable.
doi:10.1371/journal.pone.0092835.g005
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deciding whether two statements are contradictory. The perfect

symmetry of the premise-conclusion logical structure used in this

study has the advantage of being sensitive to isolate the process

underlying the manipulation of the logical operators (All/Some)

minimizing the linguistic and semantic confounds. Using this we

have, for the first time, been able to identify the network involved

in determining contradiction in logic. Investigating brain-behavior

relationships we found that processing general statements is

associated with longer processing time. Significant brain-behavior

relationships strengthened the reliability of brain involvements in

the contradictory judgment as assessed by the present study and

honed the understanding of why specific cases are superior for

human communication than general declarations.
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