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Abstract 10 

Owing to its high conductivity, graphene has been incorporated into polymeric nanofibers to create 11 

advanced materials for flexible electronics, sensors and tissue engineering. Typically, these graphene-12 

based nanofibers are prepared by electrospinning synthetic polymers, whereas electrospun graphene-13 

biopolymer nanofibers have been rarely reported due to the poor compatibility of graphene with 14 

biopolymers. Herein, we report a new method for the preparation of graphene-biopolymer nanofibers 15 

using the judicious combination of an ionic liquid and electrospinning. Cellulose acetate (CA) has been 16 

used as the biopolymer, graphene oxide (GO) nanoparticles as the source of graphene and 1-butyl-3-17 

methylimidazolium chloride ([BMIM]Cl) as the ionic liquid (IL) to create CA-[BMIM]Cl-GO 18 

nanofibers by electrospinning for the first time. Moreover, we developed a new route to convert CA-19 

[BMIM]Cl-GO nanofibers to reduced GO nanofibers using hydrazine vapor under ambient conditions 20 

to enhance the conductivity of the hybrid nanofibers. The graphene sheets were shown to be uniformly 21 
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incorporated in the hybrid nanofibers and only was needed to 0.43 wt% of GO increase the conductivity 1 

of the CA-[BMIM]Cl nanofibers by more than four orders of magnitude (from 2.71 x 10-7 S/cm to 2 

5.30 x 10-3 S/cm). This ultra-high enhancement opens up a new route for conductive enhancement of 3 

biopolymer nanofibers to be used in smart (bio) electronic devices. 4 

1. Introduction 5 

Enormous volumes of synthetic polymers accumulating in the natural environment has become 6 

a major threat to the planet due to their poor degradability and high CO2 footprint. In response 7 

to this growing concern, the past decade has seen a considerable interest in the replacement of 8 

synthetic polymers with biopolymers owing to their abundance in nature and excellent 9 

biocompatibility and biodegradability [1]. In parallel, biopolymeric nanofibrous fabrics can 10 

deliver superior performance in terms of functionality and degradability due to their high 11 

surface area-to-volume ratio. Electrospinning has been shown to be a versatile method for 12 

fabricating nanofibers from a wide range of polymers, allowing the facile incorporation of 13 

additives, such as drugs, nanoparticles or nanofillers to produce hybrid nanofibrous materials 14 

for a wide range of applications (e.g.as therapeutic, protective, electrical or sensing materials) 15 

[2-7]. Developing functionalized polymer materials such as conductive nanofibers from 16 

abundant and biodegradable biopolymers is more challenging and has attracted an increasing 17 

amount of attention for the benefit of energy utilization and the environment [1]. A number of 18 

synthetic polymers, such as poly(vinyl alcohol) (PVA), polyacrylonitrile (PAN), polyaniline 19 

(PANI) and poly(vinyl pyrrolidone) (PVP), have been successfully combined with graphene 20 

sheets and carbon nanotubes to produce conductive nanofibers [8, 9]. However, very few 21 

contributions have been made to the electrospinning of biopolymers with carbon nanotubes or 22 

graphene. Of these contributions, carbon nanotubes are more popular and have been 23 

successfully electrospun with biopolymers such as chitosan, cellulose triacetate and 24 

biodegradable polylactide [10-12]. Graphene (layered sp2-hybridized honeycomb lattice 25 
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carbon sheets) has gained particular interest owing to its multifunctional properties such as 1 

high specific surface area, electrical and thermal conductivity and superior mechanical strength 2 

[13]. Most pertinently, the excellent electrical properties of graphene renders it a promising 3 

nanomaterial for novel practical applications such as smart fabrics, nanosensors and flexible 4 

electrode materials [14, 15]. 5 

Producing graphene/biopolymer nanofibers by electrospinning has three distinct challenges: 1) 6 

disrupting the extensive hydrogen bonding within the biopolymer; 2) breaking the aggregation 7 

of the graphene sheets into nanoparticles to prepare a uniform mixture for electrospinning; and 8 

3) establishing appropriate interactions in the hybrid material to facilitate electron transport. A 9 

dispersing agent is required to break-up the graphene sheets due to its inherent insolubility, 10 

atomically smooth surfaces and strong aggregation tendency. Choosing an appropriate 11 

dispersing agent therefore becomes the key to formulating spinnable mixtures to fabricate 12 

hybrid biopolymer nanofibers. Ionic liquids (ILs) present an interesting class of reagents that 13 

can be used as dispersing agents because of their novel dissolution ability and have the potential 14 

to play more functional roles such as stabilizers, compatibilizers, modifiers and additives in the 15 

fabrication of polymer composites containing carbon nanotubes or graphene sheets [16]. ILs 16 

are organic salts which exist in the liquid state below 100°C, preferably at room temperature, 17 

and offer chemical and thermal stability, non-flammability and immeasurably low vapor 18 

pressure [17, 18]. 19 

Imidazolium chloride-based ILs show outstanding dissolving capacity of many biopolymers 20 

such as cellulose, cellulose acetate, chitin, wool and chitosan. The high chloride concentration 21 

of the IL breaks the extensive hydrogen-bonding network of these biopolymers to enable 22 

successful electrospinning [18-25]. In such ILs, graphene oxide sheets can be effectively 23 

exfoliated, stabilized and reduced by chemical and thermal treatment methods [26, 27]. Peng 24 
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and colleagues fabricated graphene-cellulose nanocomposite films successfully by casting, 1 

through the exploitation of imidazolium chloride-based ILs [28]. These cast films showed 2 

conductivities up to 3.2 x 10-2 S/cm, thus demonstrating an approach for ionic liquid-3 

biopolymer conductive nanocomposites with graphene. Further, the use of IL, 1-butyl-3-4 

methylimidazolium chloride ([BMIM]Cl, 20%), in the production of electrospun hybrid carbon 5 

nanotube nanofibers with styrene-acrylonitrile resin showed a significant increase in the 6 

conductivity from 1.08 x 10-6 S/cm to 5.9 x 10-6 S/cm for samples containing 3 wt% carbon 7 

nanotubes [29]. However, the fabrication of electrospun graphene-biopolymer conductive 8 

nanofibers remains a significant challenge. 9 

In the first report of its kind, we present an electrospinning study of cellulose acetate 10 

(biopolymer), graphene oxide (source of graphene) and [BMIM]Cl (ionic liquid) to create 11 

hybrid nanofibers. A chemical reduction method using hydrazine in an ultrasound humidifier 12 

has been developed to reduce graphene oxide to enhance the electrical conductivity of the 13 

biopolymer nanofibers. Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and 14 

Raman, Fourier Transform Infrared (FTIR) and X-ray Photoelectron (XPS) spectroscopies 15 

have been used extensively to probe the interactions within our novel hybrid nanofibers. 16 

2. Experimental 17 

2.1. Materials 18 

1-Methylimidazolium (99%), ethyl acetate (99%) and 1-chlorobutane (99%) were purchased 19 

from Merck. CA powder (Mn = 30,000 Da, acetyl content 39.8 %), acetone, dimethylacetamide 20 

(DMAc) and hydrazine solution (35 wt% in H2O), all from Sigma Aldrich, were used as 21 

received. Graphene oxide powder (15-20 sheets, 4-10% edge-oxidized) was purchased from 22 

Garmor Inc. U.S.A. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by the 23 

method described elsewhere [30]. 24 
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2.2. Preparation CA and [BMIM]Cl-GO blends 1 

First, a 17 wt% CA solution was prepared in 2:1 (w/w) acetone/DMAc at room temperature 2 

under constant stirring until a homogenous, transparent solution was obtained. [BMIM]Cl-GO 3 

solutions were prepared by adding a given amount of GO (0.11-0.43% by weight of CA) to 4 

[BMIM]Cl (12% by weight of CA) under constant stirring at 60 °C for 24 h. Finally, 5 

[BMIM]Cl-GO was added to the CA solution and stirred at room temperature for a further 2 h 6 

(experimental details given in the Supporting Information). This solution, denoted as CA–7 

[BMIM]Cl-GO throughout this work, was then ready for electrospinning. 8 

2.3. Electrospinning of CA–[BMIM]Cl-GO nanofibers 9 

Solutions for electrospinning were loaded into a 1 mL syringe with a stainless-steel needle 10 

(0.6 mm inner diameter). Electrospinning was performed at room temperature in a horizontal 11 

geometry with an applied voltage of 20-25 kV (Gamma High Voltage Research power supply, 12 

ES 40R-20W/DM/M1127 Ormond Beach FL). The flow rate of the solution was fixed at 13 

1.5 mL/h using a syringe pump (NE-1010 Programmable Single Syringe Pump, New Era Pump 14 

Systems, Inc). The distance between the needle tip and the collector was maintained at 8–15 

10 cm. CA–[BMIM]Cl-GO nanofibers were continuously deposited onto an electrically 16 

grounded rotatory collector covered with aluminum foil. The CA–[BMIM]Cl-GO hybrid 17 

nanofibers were then carefully removed from the aluminum foil and dried at room temperature 18 

for 24 hours. 19 

2.4. Preparation of CA-[BMIM]Cl-rGO nanofibers 20 

To reduce the oxygen content of the GO to create electrically conductive nanofibers, CA–21 

[BMIM]Cl-GO nanofibrous mats were reduced by a hydrazine solution mist [31, 32]. In short, 22 

the hydrazine solution was placed in an ultrasound humidifier (BONECO Ultrasonic U7146, 23 
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Switzerland). The fibrous mats were clamped in a universal extension retort clamp in the front 1 

of the humidifier at maximum humidity (see supplementary video in the supporting 2 

Information) for 15-30 minutes until the mats changed into the typical black graphitic color. 3 

Following reduction, the mats were allowed to dry at room temperature for 2 h to give 4 

CA-[BMIM]Cl-rGO nanofibers. 5 

2.5. Characterization 6 

The surface morphologies of the nanofibers were analyzed by scanning electron microscopy 7 

(SEM, Zeiss FEG-SEM Ultra-55) and intermolecular interactions within the nanofibrous mats 8 

were analyzed by FTIR (Interspec 200-X) spectroscopy. The thickness of the mats was 9 

measured by a Mitutoyo Muchecker M519-402 micrometer and the approximate porosity of 10 

the final electrospun nanofibrous mats was calculated by image analysis, as described in the 11 

Supporting Information. Chemical states and surface composition were characterized by X-ray 12 

photoelectron spectroscopy (XPS, Kratos AXIS Ultra DLD X-ray Photoelectron 13 

Spectrometer). Raman spectroscopy (Renishaw inVia Raman spectrometer) was used to probe 14 

the surface composition and X-ray diffraction (XRD) patterns were recorded by a Rigaku 15 

Ultima IV diffractometer with Cu Kα radiation (λ = 1.5406 Å, 40 kV at 40 mA) using a silicon 16 

strip detector D/teX Ultra with the scan range of 2θ = 5.0 - 30.0°, scan step 0.02°, scan speed 17 

5°/min. The electrical conductivities of the solutions were analyzed using a conductivity meter 18 

(SevenCompactS230 Mettler Toledo, Switzerland) at room temperature while the conductivity 19 

of the nanofiber mats was measured using a two-probe method with an AlphaLab, Inc. 20 

multimeter by placing the mats between two gold electrodes at a separation of 1 cm. The 21 

thermal stability of CA, CA-[BMIM]Cl, CA-[BMIM]Cl-GO and CA-[BMIM]Cl-rGO 22 

nanofibers was analyzed using Thermogravimetric Analysis (TGA, Setaram LabsysEvo 1600 23 

thermo analyzer) under argon between 25 °C to 700 °C at a heating rate of 10 °C/min.  24 
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3. Results and discussion  1 

3.1 The morphology and the conductivity of the hybrid nanofibers  2 

A schematic of the preparation method of CA-[BMIM]Cl-rGO nanofibers is presented in 3 

Figure 1a, where GO was first dispersed in [BMIM]Cl and then mechanically mixed in a 4 

solution of CA. Dispersing GO into [BMIM]Cl was carried out by magnetic stirring at 5 

approximately 60 °C to ensure that the ionic liquid had fully melted. As the melt has a viscosity 6 

larger than 150 mPa·s [33], mixing was performed for 24 hours to ensure dispersion of the GO 7 

nanoparticles in [BMIM]Cl, which is a critical step for successful electrospinning. The CA-8 

[BMIM]Cl-GO solution was electrospun prior to reduction by hydrazine mist using an 9 

ultrasound humidifier. Compared to other chemical reduction methods [31, 32], our ultrasound 10 

reduction method by hydrazine mist significantly reduces GO at a lower temperature (room 11 

temperature) than previously reported in the literature [31, 32, 34]. This provides a new method 12 

to easily control the reduction process for highly conductive graphene-based nanofibers. The 13 

conductivity of the CA-[BMIM]Cl solution (prior to the incorporation of GO) was measured 14 

at 6.23 mS/cm and remained almost constant (Figure 1b) as the amount of GO increased from 15 

0.11 to 0.43 wt%. This is due to the presence of oxygenated groups on the surface of GO which 16 

disrupts the sp2 hybridization in graphene. Produced nanofibers with controlled amounts of GO 17 

in the range of 0 - 0.43 wt% are shown in Table 1. Pure CA, CA-[BMIM]Cl, CA-[BMIM]Cl-18 

GO and CA-[BMIM]Cl-rGO nanofibers were then examined by SEM. Surface morphologies 19 

of CA, CA-[BMIM]Cl and CA-[BMIM]Cl-GO (see Figure 2a and b) were smooth and bead-20 

free, while CA-[BMIM]Cl-rGO nanofibers have rough regions where GO appears to have 21 

aggregated (as shown in Figure 2d). Higher concentrations of GO hindered the jet flow due to 22 

excess GO, which was not fully dispersed in the solution, clogging the needle and therefore 23 

electrospinning was unsuccessful. During chemical reduction, the CA-[BMIM]Cl-GO 24 
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nanofibers became more fused (Figure 2d) to form a CA-[BMIM]Cl-rGO nanofibrous mat. The 1 

conductivity of CA-[BMIM]Cl nanofibers was measured at 2.71 x 10-7 S/cm, which was 2 

significantly lower than the conductivity of pure [BMIM]Cl i.e. 4.60 x 10-4 S/cm [35]. 3 

Incorporation of GO resulted in an increase in the conductivity of the nanofibers, before and 4 

after the reduction. For non-reduced nanofibers, the presence of GO (0.11 wt%) increased the 5 

conductivity (to 4.33 x 10-5 S/cm) and reaching an approximate plateau at 1.41 x 10-4 S/cm at 6 

0.43 % GO. The conductivity of the nanofibers is presented in Table 1 and Figure 3.  7 

Comparing to GO/CA nanocomposites reported in the literature, [34] 0.43 wt% GO is a 8 

relatively low loading for such a significant conductivity enhancement. 9 
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1 

Figure 1 (a) Schematic of the preparation of CA-[BMIM]Cl-rGO nanofibers, (b) Influence of 2 

GO concentration on the conductivity of the CA-[BMIM]Cl solution and (c) a photographic 3 

image to demonstrate the flexibility and durability of the final hybrid nanofibrous material. 4 
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 1 

Figure 2 SEM images of (a) pure CA; (b) CA-[BMIM]Cl; (c) CA-[BMIM]Cl-GO and (d) CA-2 

[BMIM]Cl-rGO(GO conc. 0.43 wt%) nanofibers.  3 

 4 

Table 1 Conductivity of the hybrid CA-[BMIM]Cl-rGO nanofibers. 5 

 6 

Content, wt% Conductivity (S/cm) 

GO [BMIM]Cl CA  before reduction after reduction 

0.00 46.60 53.40 2.71x10-7 2.71x10-7 

0.11 46.50 53.39 4.33x10-5 1.82x10-4 

0.21 46.41 53.38 1.11x10-4 3.65x10-4 

0.32 46.31 53.37 1.29x10-4 5.10x10-3 

0.43 46.21 53.36 1.41x10-4 5.30x10-3 

(a) (b) 

 

(d) 

 

(c) 
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 1 

Figure 3 The effect of GO concentration in the hybrid CA-[BMIM]Cl-GO nanofibers on 2 

conductivity [(a) linear and (b) log scales] before and after reduction.  3 

Interestingly, reduction of the hybrid nanofibers using hydrazine boosted the conductivity 4 

significantly, surpassing the conductivity of pure [BMIM]Cl when GO loading reached 0.32 5 

wt% (4.60 x 10-4 S/cm). The highest conductivity attained was 5.30 x 10-3 S/cm with 0.43 wt% 6 

GO, which is ~20,000 times higher than that of the nanofibers without GO and over an order 7 

of magnitude higher than that of pure [BMIM]Cl.  8 

3.2. Structure of graphene oxide in the nanofibers 9 

X-ray diffraction (XRD) was used to examine the crystal structure of CA and GO following 10 

the electrospinning and reduction processes. The XRD patterns of the CA, CA-[BMIM]Cl, 11 

CA-[BMIM]Cl-GO and CA-[BMIM]Cl-rGO nanofibers are shown in Figure 4a. Pure CA 12 

nanofibers exhibited three broad diffraction peaks at 9.0°, 17.9° and 21.8° [36]. The peak at 13 

21.8° is attributed to short-range spacing between neighboring cellulosic repeat units within 14 

the individual macromolecules and the peak at 9.0° shows the longer range interactions 15 

between cellulose acetate chains [37]. More specifically, the distance between the adjacent 16 

cellulosic chains is normally characterized by a d-spacing of ~9 - 10 Å, and the neighboring 17 
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anhydroglucose units in the cellulose chains have a d-spacing of ~4 - 5.5 Å. The peak at 17.9° 1 

could arise from the diffraction of the (021) plane. After addition of [BMIM]Cl, the peak at 2 

9.0° became significantly weaker and shifted to 8.0°. This peak weakening and shifting to a 3 

lower angle reflects the decrease in CA concentration in the nanofibers from 100% to 53.4% 4 

and the cellulose packing disrupted by [BMIM]Cl. The presence of [BMIM]Cl breaks up the 5 

H-bonding between the cellulosic chains and enlarges their d-spacing from 9.8 Å to 11.0 Å. A 6 

small shift of the 21.8° peak is also observed, illustrating that the addition of [BMIM]Cl did 7 

not significantly alter the anhydroglucose units in the cellulose acetate chain. The peak at 17.9° 8 

almost completely disappeared from the nanofiber samples electrospun in the presence of 9 

[BMIM]Cl, showing less short range order in the amorphous cellulose acetate.  The addition 10 

of 0.11 wt% GO resulted in the appearance of a sharper peak at ~26.5°, which is the (002) peak 11 

of graphite. The (002) peak shows that the interlayer spacing of the graphite sheets was 12 

approximately 0.33 nm (3.3 Å).  13 

This suggests that the graphene sheets are not fully exfoliated and remained in a graphitic-like 14 

state [38]. The oxygen-containing functional groups on the GO are mainly on the external 15 

surface of the nanoparticles. This result is in line with the specification of GO nanoparticles 16 

purchased that have 15-20 sheets and 4-10% edge-oxidized. After chemical reduction, this peak 17 

remained in the CA-[BMIM]Cl-rGO nanofibers, as expected. 18 
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 1 

Figure 4 (a) XRD patterns; (b) Raman spectra and (c) FTIR spectra of CA nanofibers, hybrid 2 

CA-[BMIM]Cl, CA-[BMIM]Cl-GO and CA-[BMIM]Cl-rGO nanofibers (GO conc. 0.43 wt% 3 

for the latter two samples).  4 

To examine the influence of chemical reduction on the chemical structure of GO in more detail, 5 

the samples were studied by Raman spectroscopy, as shown in Figure 4b. The Raman spectra 6 

of CA-[BMIM]Cl-GO and CA-[BMIM]Cl-rGO both showed two bands at 1350 cm−1 and 1585 7 

cm−1. These can be assigned to the D and G bands of the carbon materials, respectively [39, 8 

40]. The G band represents sp2-hybridized C-C bonds in a 2D hexagonal lattice, while the D 9 

band corresponds to the defects and disorder on the two-dimensional amorphization of the 10 

carbon network [41, 42]. These two peaks reveal that the graphene sheets of the GO have a 11 
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significant proportion of carbon disordered away from a perfect 2D hexagonal lattice. More 1 

specifically, comparison of the CA-[BMIM]Cl-GO and CA-[BMIM]Cl-rGO spectra shows 2 

that the D and G bands of CA-[BMIM]Cl-rGO nanofibers are more pronounced after chemical 3 

reduction, where the spectrum shows less signals from surface functional groups. The relative 4 

intensity of the G and D bands does not change significantly, supporting the evidence provided 5 

by XRD that graphene sheets in the GO particles were not fully exfoliated showing sp2-6 

hybridized C-C bonds in a 2D hexagonal lattice and having sheet spacing close to the 0.33 nm 7 

of graphite. Importantly, the chemical reduction did not significantly alter the stacking of the 8 

graphene sheets, but modified the surface functional groups through deoxygenation [43-46]. 9 

3.3 Chemical bonds and their interactions within the hybrid nanofibers 10 

The structure and interactions of each component in the hybrid nanofibers were revealed by 11 

Raman, FTIR and XPS giving insights into the reason for the enhancement in conductivity. As 12 

aforementioned, the Raman spectra of CA, CA-[BMIM]Cl, CA-[BMIM]Cl-GO and CA-13 

[BMIM]Cl-rGO are shown in Figure 4b, whereas the FTIR and XPS spectra are presented in 14 

Figures 4c and 5, respectively. The Raman spectra of CA and CA-[BMIM]Cl showed the 15 

asymmetric stretching vibration of the C-O-C glycosidic bond at 1121 cm−1 and the pyranose 16 

ring at 1080 cm−1 with the presence of C-OH at 1265 cm−1. The bands at 1736, 1435, and 17 

1382 cm−1 are attributed to the carbonyl group (C=O) and symmetric and asymmetric 18 

vibrations of C-H, respectively, in the acetyl group [47-49]. More interestingly, the [BMIM]Cl 19 

cation is observed in the CA-[BMIM]Cl sample with bands at 601 and 627 cm−1. The intensities 20 

show the co-existence of gauche and trans conformations of the IL [50, 51]. It is worth noting 21 

that the inclusion of GO has resulted in the disappearance of most of the vibrational bands from 22 

the Raman spectra of the corresponding hybrid nanofibers.   23 



 
15 

 

 1 

Figure 5 XPS survey spectra of CA (black), CA-[BMIM]Cl (red), CA-[BMIM]Cl-GO (green), 2 

CA-[BMIM]Cl-rGO (GO conc. 0.43 wt%, blue). 3 

The FTIR spectra of pure CA, CA-[BMIM]Cl and CA-[BMIM]Cl-rGO nanofibers in Figure 4 

4c show that pure CA nanofibers exhibited characteristic bands at 1735 cm−1 and 1367 cm−1 5 

corresponding to C=O and C-H stretching from −OCOCH3, respectively. Bands at 1220 cm−1 6 

and 1030 cm−1 reveal the C–C and C–O stretching vibrations in the pyranoid ring and C–O–C 7 

(ether linkage) from the glycosidic units. In the CA-[BMIM]Cl spectrum, characteristic bands 8 

at 1746 cm-1 (C=C stretching), 1214 cm-1 (C=N stretching) and 1041 cm-1 (C–O stretching) 9 

indicate that the BMIM+ and Cl− ions of [BMIM]Cl formed hydrogen bonds with CA, as 10 

expected. The FTIR spectrum of CA-[BMIM]Cl-GO is similar to that of CA-[BMIM]Cl while 11 

the spectrum of [BMIM]Cl-rGO shows two new bands at 1659 cm-1and 3229 cm-1 suggesting 12 

strong interactions (hydrogen bonding) between the carboxylic (–COOH) groups of graphene 13 

and carbonyl (C=O) groups of CA. 14 

 15 
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1 

Figure 6 The C1s XPS spectra of (a) pristine CA nanofibers, (b) CA-[BMIM]Cl, (c) CA-2 

[BMIM]Cl-GO, and (d) CA-[BMIM]Cl-rGO (GO conc. 0.43 wt%). 3 

XPS was used to further examine the differences in chemical functionality in the hybrid 4 

nanofibers (Figure 5). The survey spectrum of pure CA nanofibers exhibits only two distinct 5 

peaks: C 1s at ∼285 eV and O 1s at ∼532 eV (Figure 5), while Cl 2p and N 1s peaks are present 6 

in all other spectra, confirming the presence of [BMIM]Cl. High resolution C 1s spectra were 7 

analyzed by monochromatic Al Kα X-ray source (h = 1486.6 eV).  Each spectrum has been 8 

deconvoluted into five distinct peaks, as shown in Figure 6a-d for the nanofibers of pure CA, 9 

CA-[BMIM]Cl, CA-[BMIM]Cl-GO and CA-[BMIM]Cl-rGO, respectively. The sharp peak 10 

centered at 284.6 eV corresponds to C-C bonding and the relatively broad peak around 11 

286.1 eV is attributed to three different functional groups: hydroxyl (C-O); carbonyl (C=O) 12 

and imine (C-N). More specifically, the peaks in this region at 285.5, 285.7, 286.6 and 287.8 eV 13 

are attributed to carbon atoms in C-N, C=N, C-O, C=O, respectively. In the CA-[BMIM]Cl-14 
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rGO nanofibers, the peak centered at 288.9 eV comes from the carboxyl group [C(O)O]. 1 

Comparing the C 1s XPS spectra (Figure 6a and b), it can be seen that the addition of 2 

[BMIM]Cl significantly lowers the relative peak intensity of the oxygen-containing functional 3 

groups from CA, and introduces a new peak attributed to C-N from [BMIM]Cl. The 4 

introduction of GO results in some small changes in the relative peak intensities (comparing 5 

Figure 6b and c). After the reduction of the CA-[BMIM]Cl-GO nanofibers, the C 1s spectrum 6 

of the CA-[BMIM]Cl-rGO (Figure 6d) shows a dramatic decrease of the carboxyl peak. These 7 

changes suggest that the hydrazine vapor step has indeed reduced the carboxyl groups in GO, 8 

but may have also partially reduced CA, while the peak intensity of the other oxygen-9 

containing functional groups slightly increased. It is noteworthy to state that it has been shown 10 

elsewhere that it is not yet possible to reduce GO completely by chemical reduction [44].  11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

Figure 7 Schematic illustration of the suggested interaction of graphene with CA and 19 

[BMIM]Cl. 20 

The proposed interactions of stacked graphene sheets with CA and [BMIM]Cl are 21 

schematically shown in Figure 7. Removal of carboxyl groups and formation of more hydroxyl 22 
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groups may promote the formation of hydrogen-bonds with dissociated BMIM+ and Cl− ions 1 

through unsubstituted hydroxyl functional groups in both GO and CA [52, 53]. The π-electrons 2 

in the imidazole ring of BMIM+ may interact with the rich π-electron clouds of the graphene 3 

rings resulting in some delocalization and enhanced electrical conductivity. 4 

3.4 Thermal analysis of the hybrid nanofibers 5 

TGA has been carried out under argon to further examine the thermal stability and chemical 6 

bonding differences in CA, CA-[BMIM]Cl, CA-[BMIM]Cl-GO and CA-[BMIM]Cl-rGO 7 

nanofibers. These weight loss profiles (Figure 8) show that pure CA is more stable than the 8 

composites. Pure CA decomposes in the range of 330 - 375°C with a corresponding weight 9 

loss of approximately 82 wt%. In contrast, the addition of [BMIM]Cl lowers the decomposition 10 

temperature range to 240 - 290°C with a corresponding weight loss of 85%.  11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

Figure 8 TGA profiles of pure CA (black), CA-[BMIM]Cl nanofibers (red),CA-[BMIM]Cl-19 

GO nanofibers (green) and CA-[BMIM]Cl-rGO nanofibers (blue). 20 
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The addition of 0.43% GO did not cause significant change in the decomposition temperature 1 

but does decrease the weight loss to ~75%. Reduction using hydrazine does not cause any 2 

identifiable changes in thermal decomposition nor char formation. These findings confirm that 3 

the ionic liquid has fully separated CA molecular chains with no CA H-bonding following 4 

mechanical mixing. This separation lowers the thermal stability of the CA by approximately 5 

90°C. The addition of 0.43% GO does not affect the thermal stability of the CA, but introduced 6 

an effective mass transfer barrier and char formation nucleus, resulting in an increased amount 7 

of char formed. Such an enhancement could suggest that the graphene pallets were well aligned 8 

during extrusion and spinning. The morphology, crystal structure, chemical bonding and 9 

thermal analysis of the CA-[BMIM]Cl-GO nanofibers show that graphene stacks have been 10 

successfully incorporated into CA nanofibers by dispersing GO in a [BMIM]Cl ionic liquid. 11 

Polar functional groups, such as –C=O, -COOH and –OH on GO have not only assisted its 12 

dispersion in the ionic liquid, but also facilitate strong and uniform interactions with CA in the 13 

hybrid nanofibers. The well-dispersed and strongly bonded system allowed the graphene stacks 14 

to form a continuous conductive network, achieving a drastic enhancement in electrical 15 

conductivity after reduction using hydrazine, similar to the polystyrene-GO system reported by 16 

Wu et al. [54]. These insights demonstrate that this new graphene-based hybrid nanocomposite 17 

is a promising candidate for smart and flexible electronic and bio-electronic applications, 18 

particularly in those systems which require high electrical conductivity. 19 

4. Conclusions 20 

In summary, a new method of exploiting a [BMIM]Cl ionic liquid for the fabrication of 21 

graphene-based, bio-inspired (cellulose acetate) conductive CA-[BMIM]Cl-GO nanofibers 22 

through electrospinning has been introduced. Combining the advantages of both GO and 23 

[BMIM]Cl materials allowed a homogeneous dispersion of GO and better solubility of CA to 24 



 
20 

 

be achieved. The modest incorporation of 0.43% graphene oxide into the hybrid material 1 

greatly enhanced the conductivity of the nanofiber mats by more than four orders of magnitude 2 

to 5.30x10-3 S/cm. The uniform nanostructure of graphite oxide and BMIM in CA nanofibers 3 

forms the conductive paths, which has been enhanced by chemical reduction of hydrazine via 4 

an ultrasonic process. Such a facile strategy for the fabrication of bio-based, ultrathin, 5 

lightweight, flexible nanofibers could open a new avenue towards sustainable material 6 

development in the quest for high-performance next-generation smart electronic devices. 7 

Acknowledgements 8 

This work was supported by Estonian Academy of Science, Estonian Research Council 9 

(IUT19-4) and by the European Regional Development Fund project TK141 “Advanced 10 

materials and high-technology devices for energy recuperation systems.” The authors 11 

acknowledge the Estonian Ministry of Education under institutional research financing IUT 12 

19-28 and the European Union through the European Regional Development Fund. The authors 13 

are also grateful for the financial support from the Estonian PhD allowance and Estonian 14 

Ministry of Education and Research to support for this research at Tallinn University of 15 

Technology Tallinn Estonia. Finally, KJ and PDT thank Christian Burton at Aston University 16 

for assistance with physical characterization of the nanofibrous mats. 17 

References 18 

[1] Schiffman JD, Schauer CL. A Review: Electrospinning of Biopolymer Nanofibers and their 19 
Applications. Polymer Reviews. 2008;48(2):317-52. 20 
[2] Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. 21 
Journal of Applied Polymer Science. 2005;96(2):557-69. 22 
[3] Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: 23 
solving global issues. Materials Today. 2006;9(3):40-50. 24 
[4] Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P. Electrospinning of polymer nanofibers: Effects 25 
on oriented morphology, structures and tensile properties. Composites Science and Technology. 26 
2010;70(5):703-18. 27 
[5] Chronakis IS, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning: 28 
Electrical and morphological properties. Polymer. 2006;47(5):1597-603. 29 



 
21 

 

[6] Isakova A, Efremova O, Pullan N, Luer L, Topham PD. Design, synthesis and RAFT 1 
polymerisation of a quinoline-based monomer for use in metal-binding composite microfibers. RSC 2 
Advances. 2016;6(8):6598-606. 3 
[7] Wang L, Wang M, Topham PD, Huang Y. Fabrication of magnetic drug-loaded polymeric 4 
composite nanofibres and their drug release characteristics. RSC Advances. 2012;2(6):2433-8. 5 
[8] Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by 6 
electrospinning and their applications in nanocomposites. Composites Science and Technology. 7 
2003;63(15):2223-53. 8 
[9] Wahab IF, Razak SIA, Azmi NS, Dahli FN, Yusof AHM, Nayan NHM. Electrospun Graphene 9 
Oxide-Based Nanofibres. In: Silva AMT, Carabineiro SAC, eds. Advances in Carbon Nanostructures. 10 
Rijeka: InTech 2016, p. Ch. 05. 11 
[10] Mahdieh ZM, Mottaghitalab V, Piri N, Haghi AK. Conductive chitosan/multi walled carbon 12 
nanotubes electrospun nanofiber feasibility. Korean Journal of Chemical Engineering. 13 
2012;29(1):111-9. 14 
[11] Gouda M, Abu-Abdeen M. Highly conductive cellulosic nanofibers for efficient water 15 
desalination. Fibers and Polymers. 2017;18(11):2111-7. 16 
[12] Yang T, Wu D, Lu L, Zhou W, Zhang M. Electrospinning of polylactide and its composites with 17 
carbon nanotubes. Polymer Composites. 2011;32(8):1280-8. 18 
[13] Hu K, Kulkarni DD, Choi I, Tsukruk VV. Graphene-polymer nanocomposites for structural and 19 
functional applications. Progress in Polymer Science. 2014;39(11):1934-72. 20 
[14] Chee WK, Lim HN, Zainal Z, Huang NM, Harrison I, Andou Y. Flexible Graphene-Based 21 
Supercapacitors: A Review. The Journal of Physical Chemistry C. 2016;120(8):4153-72. 22 
[15] Meng F, Lu W, Li Q, Byun J-H, Oh Y, Chou T-W. Graphene-Based Fibers: A Review. Advanced 23 
Materials. 2015;27(35):5113-31. 24 
[16] Peng R, Wang Y, Tang W, Yang Y, Xie X. Progress in Imidazolium Ionic Liquids Assisted 25 
Fabrication of Carbon Nanotube and Graphene Polymer Composites. Polymers. 2013;5(2):847. 26 
[17] Marsh KN, Boxall JA, Lichtenthaler R. Room temperature ionic liquids and their mixtures—a 27 
review. Fluid Phase Equilibria. 2004;219(1):93-8. 28 
[18] Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of Cellose with Ionic Liquids. 29 
Journal of the American Chemical Society. 2002;124(18):4974-5. 30 
[19] Meli L, Miao J, Dordick JS, Linhardt RJ. Electrospinning from room temperature ionic liquids 31 
for biopolymer fiber formation. Green Chemistry. 2010;12(11):1883-92. 32 
[20] Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ. Preparation 33 
of Biopolymer Fibers by Electrospinning from Room Temperature Ionic Liquids. Biomacromolecules. 34 
2006;7(2):415-8. 35 
[21] Xie H, Zhang S, Li S. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of 36 
CO2. Green Chemistry. 2006;8(7):630-3. 37 
[22] Javed K, Krumme A, Krasnou I, Mikli V, Viirsalu M, Plamus T, et al. Impact of 1-butyl-3-38 
methylimidazolium chloride on the electrospinning of cellulose acetate nanofibers. Journal of 39 
Macromolecular Science, Part A. 2017:1-6. 40 
[23] Zavgorodnya O, Shamshina JL, Bonner JR, Rogers RD. Electrospinning Biopolymers from Ionic 41 
Liquids Requires Control of Different Solution Properties than Volatile Organic Solvents. ACS 42 
Sustainable Chemistry & Engineering. 2017;5(6):5512-9. 43 
[24] Zhang G, Sun M, Liu Y, Liu H, Qu J, Li J. Ionic Liquid Assisted Electrospun Cellulose Acetate 44 
Fibers for Aqueous Removal of Triclosan. Langmuir. 2015;31(5):1820-7. 45 
[25] Freire MG, Teles ARR, Ferreira RAS, Carlos LD, Lopes-da-Silva JA, Coutinho JAP. Electrospun 46 
nanosized cellulose fibers using ionic liquids at room temperature. Green Chemistry. 47 
2011;13(11):3173-80. 48 
[26] He C, Sun S, Peng H, Tsui CP, Shi D, Xie X, et al. Poly(ionic liquid)-assisted reduction of 49 
graphene oxide to achieve high-performance composite electrodes. Composites Part B: Engineering. 50 
2016;106:81-7. 51 



 
22 

 

[27] Lyu Q, Yan H, Li L, Chen Z, Yao H, Nie Y. Imidazolium Ionic Liquid Modified Graphene Oxide: 1 
As a Reinforcing Filler and Catalyst in Epoxy Resin. Polymers. 2017;9(9):447. 2 
[28] Peng H, Meng L, Niu L, Lu Q. Simultaneous Reduction and Surface Functionalization of 3 
Graphene Oxide by Natural Cellulose with the Assistance of the Ionic Liquid. The Journal of Physical 4 
Chemistry C. 2012;116(30):16294-9. 5 
[29] Gudkova V, Krumme A, Märtson T, Rikko M, Tarasova E, Savest N, et al. 1-butyl-3-6 
methylimidazolium chloride assisted electrospinning of SAN/MWCNTs conductive reinforced 7 
composite membranes. Journal of Electrostatics. 2015;78:11-6. 8 
[30] Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization 9 
and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the 10 
imidazolium cation. Green Chemistry. 2001;3(4):156-64. 11 
[31] Wang Z, Wu S, Zhang J, Chen P, Yang G, Zhou X, et al. Comparative studies on single-layer 12 
reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. 13 
Nanoscale Research Letters. 2012;7(1):161. 14 
[32] Youn SC, Geng J, Son BS, Yang SB, Kim DW, Cho HM, et al. Effect of the Exposure Time of 15 
Hydrazine Vapor on the Reduction of Graphene Oxide Films. Journal of Nanoscience and 16 
Nanotechnology. 2011;11(7):5959-64. 17 
[33] Fendt S, Padmanabhan S, Blanch HW, Prausnitz JM. Viscosities of Acetate or Chloride-Based 18 
Ionic Liquids and Some of Their Mixtures with Water or Other Common Solvents. Journal of Chemical 19 
& Engineering Data. 2011;56(1):31-4. 20 
[34] Tripathi SN, Rao GSS, Mathur AB, Jasra R. Polyolefin/graphene nanocomposites: a review. 21 
RSC Advances. 2017;7(38):23615-32. 22 
[35] Dharaskar SA, Varma MN, Shende DZ, Yoo CK, Wasewar KL. Synthesis, Characterization and 23 
Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization 24 
of Liquid Fuel. The Scientific World Journal. 2013;2013:9. 25 
[36] Zhao X, Zhang Q, Chen D, Lu P. Enhanced Mechanical Properties of Graphene-Based 26 
Poly(vinyl alcohol) Composites. Macromolecules. 2010;43(5):2357-63. 27 
[37] Bao C. Cellulose acetate / plasticizer systems : structure, morphology and dynamics. 28 
Université Claude Bernard Lyon 1, PhD thesis, 2015. 29 
[38] Yuan Q. Intumescent Mechanisms of Fire-retarding polyurethane systems and development 30 
of graphite/polymer nano-composites. 2004. 31 
[39] Claramunt S, Varea A, López-Díaz D, Velázquez MM, Cornet A, Cirera A. The Importance of 32 
Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. The Journal of Physical 33 
Chemistry C. 2015;119(18):10123-9. 34 
[40] Jorio A, Ferreira EHM, Moutinho MVO, Stavale F, Achete CA, Capaz RB. Measuring disorder 35 
in graphene with the G and D bands. physica status solidi (b). 2010;247(11‐12):2980-2. 36 
[41] Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS. Raman spectroscopy in graphene. 37 
Physics Reports. 2009;473(5-6):51-87. 38 
[42] Kudin KN, Ozbas B, Schniepp HC, Prud'homme RK, Aksay IA, Car R. Raman Spectra of 39 
Graphite Oxide and Functionalized Graphene Sheets. Nano Letters. 2008;8(1):36-41. 40 
[43] Park S, An J, Jung I, Piner RD, An SJ, Li X, et al. Colloidal suspensions of highly reduced 41 
graphene oxide in a wide variety of organic solvents. Nano Letters. 2009;9(4):1593-7. 42 
[44] Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of 43 
graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 44 
2007;45(7):1558-65. 45 
[45] Shilpa, Basavaraja BM, Majumder SB, Sharma A. Electrospun hollow glassy carbon-reduced 46 
graphene oxide nanofibers with encapsulated ZnO nanoparticles: a free standing anode for Li-ion 47 
batteries. Journal of Materials Chemistry A. 2015;3(10):5344-51. 48 
[46] Yao S, Li Y, Zhou Z, Yan H. Graphene oxide-assisted preparation of poly(vinyl alcohol)/carbon 49 
nanotube/reduced graphene oxide nanofibers with high carbon content by electrospinning 50 
technology. RSC Advances. 2015;5(111):91878-87. 51 



 
23 

 

[47] Duverger C, Nedelec JM, Benatsou M, Bouazaoui M, Capoen B, Ferrari M, et al. Waveguide 1 
Raman spectroscopy: a non-destructive tool for the characterization of amorphous thin films. 2 
Journal of Molecular Structure. 1999;480-481:169-78. 3 
[48] J. A. Sánchez-Márquez RF-R, I. Cano-Rodríguez, Z. Gamiño-Arroyo, E. Rubio-Rosas, J. M. 4 
Kenny, N. Rescignano. Membrane Made of Cellulose Acetate with Polyacrylic Acid Reinforced with 5 
Carbon Nanotubes and Its Applicability for Chromium Removal. International Journal of Polymer 6 
Science. 2015;2015:12. 7 
[49] Scherer JR, Bailey GF, Kint S, Young R, Malladi DP, Bolton B. Water in polymer membranes 8 
raman scattering from cellulose acetate films. The Journal of Physical Chemistry. 1985;89(2):312-9. 9 
[50] Satoshi H, Ryosuke O, Hiro-o H. Raman Spectra, Crystal Polymorphism, and Structure of a 10 
Prototype Ionic-liquid [bmim]Cl. Chemistry Letters. 2003;32(6):498-9. 11 
[51] Mizuno K, Imafuji S, Ochi T, Ohta T, Maeda S. Hydration of the CH Groups in Dimethyl 12 
Sulfoxide Probed by NMR and IR. The Journal of Physical Chemistry B. 2000;104(47):11001-5. 13 
[52] Isik M, Sardon H, Mecerreyes D. Ionic Liquids and Cellulose: Dissolution, Chemical 14 
Modification and Preparation of New Cellulosic Materials. International Journal of Molecular 15 
Sciences. 2014;15(7):11922-40. 16 
[53] Gross AS, Bell AT, Chu J-W. Thermodynamics of Cellulose Solvation in Water and the Ionic 17 
Liquid 1-Butyl-3-Methylimidazolim Chloride. The Journal of Physical Chemistry B. 18 
2011;115(46):13433-40. 19 
[54] Wu N, She X, Yang D, Wu X, Su F, Chen Y. Synthesis of network reduced graphene oxide in 20 
polystyrene matrix by a two-step reduction method for superior conductivity of the composite. 21 
Journal of Materials Chemistry. 2012;22(33):17254-61. 22 

 23 

 24 

 25 


