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Highlights 

 Characterisation and Py-GC/MS were conducted to evaluate the bioenergy potential of I. Cylindrica. 

 Imperata Cylindrica has a calorific value of 18.39 MJ/kg, with low ash content of 2.97% and high volatile 

content of 72.01%. 

 Py-GC/MS analysis revealed abundant furanic compounds, guaiacyl lignin, p-hydroxyphenyl lignin, 

syringyl lignin, aromatic hydrocarbons, ketonic compounds, organic acids and miscellaneous 

hydrocarbons.  

 Imperata Cylindrica is a potential feedstock for value-added platform chemicals and energy production. 

 The highest bio-oil yield from the pyrolysis of Imperata Cylindrica was 37.16% at 500°C  

Abstract 

Bio-oil production from renewable sources has been seen as suitable alternative to supply future 

energy demand. Perennials grasses are currently being developed as a suitable second-generation 

biofuel feedstock. It has advantages such as rapid growth rate, easy to grow, minimal maintenance 

and utilise marginal land without competing with food supply. Taking into account of the various 

challenges attributed to the transformation of second-generation biomass for energy production, this 

work systematically looks at the ecological perspective and the availability for bioenergy production 

from Imperata Cylindrica in Brunei Darussalam. Biomass characterisation was carried out to 

determine the properties and energy content, meanwhile py-GC/MS study was conducted to identify 

building blocks of value-added chemical from I.Cylindrica. The physicochemical properties of 

feedstock was thoroughly evaluated using thermogravimetric analysis, proximate analysis, elemental 

analysis, compositional analysis, calorific value, and analytical pyrolysis interfaced with gas 

chromatograph (Py-GC/MS). Characterisation results indicate that Imperata Cylindrica has a 

calorific value of 18.39 MJ/kg, with low ash content and high percentage of volatile matter. Py-

GC/MS analysis revealed the presence of furfural, 2,3-dihydrobenzofuran, 4-vinylguaiacol, 

propenylguaiacol, guaiacol and 4-ethylphenol. The fixed-bed pyrolysis experiment of imperata 

cylindrica showed that the yield of bio-oil increases with the increase of temperature and it reached 

a peak of 37.16% at 500°C. These results show that Imperata Cylindrica is suitable as feedstock for 

bio-oil production via pyrolysis process.  

  

Keywords: Biomass; Pyrolysis; Py-GC/MS; Thermogravimetric analysis; Biofuel 
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1. Introduction 

Brunei Darussalam is a country located in Southeast Asia, on the north of Borneo Island between 4oN 

and 5.8oN latitude and 114.6°E and 115.4°E longitude with a land area of 5765 km2 (576500 ha).  

Energy sector in Brunei heavily rely on the production of oil and gas, having one of the highest carbon 

footprint contributors at 22.1 metric tons of CO2 per capita [1]. Despite relying on the production of 

oil and gas, Brunei Darussalam is blessed with rich natural vegetation and biodiversity, which is 

considering to diversifying its energy resources, and following the global trend in search of alternative 

energy sources such as biomass. Several studies has been started to explore potential renewable 

energy resources in Brunei Darussalam, such as rice husks [2], Acacia tree species [3], wood residues 

and municipal solid waste [4]. The broad diversity of biomass has resulted in the increased research 

and development of technologies to produce feasible energy and chemicals from biomass. Imperata 

cylindrica or cogongrass as perennial grasses is one of the potential biomass for bioenergy 

production. Garrity et. al  have estimated 4% of total land in Asia which are covered by Imperata 

cylindrica [5]. Currently, there is no study for Imperata cylindrica as potential biomass in Brunei 

Darussalam. Based on Garrity et. al estimation, a general reasonable calculation estimates of the area 

for Imperata cylindrica in Brunei Darussalam to be 23,060 ha. 

Imperata cylindrica is a species of grass in the family Poaceae, and known as one of the most 

important weed in the world. There are nine species of genus imperata worldwide and widely 

distributed to east and Southeast Asia, India, Micronesia, Melanesia, Australia, and eastern and 

southern Africa [6]. It can grow in height of 30 - 200 cm and a leaf width of about 2 cm. The leaf 

blades will begin to appear at ground level, possess finely serrate sharp margins and are hairy at the 

base. The young leaves appear light green while older leaves appear orange-brown to brown colour 

[7]. Reproduction system of Imperata cylindrica are can be formed from rhizome fragments as small 

as 0.1 gram by reproduced asexually and also can be formed through sexual by flowering and seed 
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production [8]. Imperata cylindrica is best adapted and thrives to full sun with an optimum 

temperature of 30 ºC [9]. It has the ability to grow on a wide range of soil types without special 

nutrient treatment and can be found in a wide range of habitats, grassland, cultivated annual crops, 

plantations, abandoned farm land, road and railway embankments, pine and hardwood forests, 

recreational areas and deforested areas [6]. The weather condition and habitat in Brunei Darussalam 

can be considered optimum, in which Imperata cylindrica as a C4 plant will have an advantage over 

a C3 plant. Imperata cylindrica belong to C4 perennial grass and assimilates CO2 via the C4 

photosynthetic pathway [10]. The C4 photosynthetic pathway will convert energy from sunlight to 

chemical energy and used to produce organic compounds that are the building blocks of biomass [11]. 

A high efficiency of CO2 fixation into biomass is one of important factor in the selection of energy 

crops. C4 photosynthesis is the most efficient form of photosynthesis due to their photorespiration-

suppressing modifications have ability to maximizing the CO2 fixation than C3 photosynthesis plant 

[12–15]. Comparison yields of photosynthetic pathway among perennial grasses are presented in 

table 1. 

Imperata cylindrica or cogongrass is one of the perennial grasses which is very widespread in tropical 

and subtropical regions in Asia spanning about 35 million ha [5]. Range of its applications are used 

for roofing traditional houses (51 %), medicinal plant (13 %), animal feed (22 %) and erosion control 

(8 %) [22,23]. For many decades, Imperata cylindrica has been an invasive weed to farmers, which 

has a potential to become a source of energy crop. Effective utilisation of perennial grasses as raw 

materials for bioenergy and biofuel have advantages such as efficient, fast growing, relatively easy 

to harvest and process, less maintenance and can be an important contribution to the reduction of 

anthropogenic CO2 emissions [17]. Investigation and research on Imperata cylindrica as bioenergy 

is comparatively recent and still needs development. Several literatures has investigated about 

characterization and its exploitation as potential biomass. Kamaroddin et. al. [24] investigated fuel 
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properties of Imperata Cylindrica, Promdee & Vitidsant [25] investigated bio-oil synthesis by 

pyrolysis of Imperata Cylindrica, and pyrolytic characteristics and kinetic studies were investigated 

by Li et. al. [26] and Oladokun et. al. [27]. 

Thermochemical and biochemical processes are the two main process technologies for conversion of 

biomass. In recent years, there has been an increasing focus on using thermochemical technologies 

which convert biomass to valuable fuels and chemicals. The major thermochemical of biomass 

conversion techniques are combustion, gasification and pyrolysis. Among the thermo-chemical 

processes, pyrolysis has received special attention, as it can convert biomass directly into solid, liquid 

(bio-oil) and gaseous products by thermal decomposition of biomass in the absence of oxygen 

[28,29]. Biomass pyrolysis is a very complex series of reaction, which depends on many different 

variables, such as feedstock, moisture content, residence time and temperature. In the effort to 

produce bio-oil with desirable properties, biomass characterisation analyses and pyrolysis GC/MS 

are suitable techniques to achieve this. Basic understanding of the pyrolysis characteristics of the 

main lignocellulosic biomass building blocks is the basis and essentially important for biomass 

thermochemical conversion to valuable products [30,31]. Biomass characterisation and analytical 

pyrolysis combined with gas chromatography-mass spectrometry (Py–GC/MS) is a tool to identify 

and evaluate volatile fragments that evolved. Py-GC/MS offers advantages such as the small 

quantities of sample required, high repeatability and rapidness [32,33]. 

For perennial grass, the amount of total cell wall fraction is about 80% of the plant dry weight and is 

composed of primarily of cellulose, hemicellulose and lignin. Grass plants are typically characterised 

by loosely bound fibres and has a lower proportion of lignin, unlike wood biomass which are 

characterised by slow growth and composed of strong bound fibres with hard external surface. Lignin 

is a cross-linked amorphous copolymer incorporate from random polymerization of three primary 

components p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units. Cellulose and hemicellulose 
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are polysaccharides that have more than 2 monosaccharides structures linked together covalently by 

glycosidic linkages. Cellulose is a polysaccharide consisted of linear polymer of D-glucose units 

linked to each other via β-1,4-glycosidic bonds. Hemicellulose is a heteropolysaccharide containing 

many different sugar monomers (primarily xylose, mannose, galactose, and arabinose) [34–36]. 

Proportions to determine these properties are based on varying amounts of cellulose, hemicellulose, 

lignin and extractives as main building blocks biomass. In addition, grasses contain non-cell wall 

carbohydrates, such as sucrose, fructose, glucose and starch [11,37,38]. Consequently, the difference 

in proportions of biomass building blocks will contribute to distribution of chemical compositions in 

liquid product from thermal degradation product of biomass and also significantly contribute to the 

amount of oxygenated compounds, complex organic, viscous, and acidic mixture [34,39].  

Promdee and Vitidsant has studied the pyrolysis oil identification of Imperata cylindrica from 

Thailand and around 25 components were detected in the bio-oil samples [40]. Table 2 show several 

literatures which have reported the identification of platform chemicals from pyrolysis of grasses 

(Switchgrass, Napier grass, Reed canary grass, Imperata Cylindrica).  

There are no thorough study available on the bioenergy production from Imperata cylindrica in 

Brunei Darussalam. This paper discusses the resource utilisation of Imperata cylindrica for potential 

biomass and bio-oil production in Brunei Darussalam via pyrolysis in terms of characterisation and 

identification of value-added chemicals. A review of prior potential description of I.cylindrica as bio-

energy crops in Brunei Darussalam and experimental investigation in term of characterisation, 

identification valuable products via Py-GC/MS and bio-oil synthesis via fixed bed pyrolysis are 

presented. This will encourage the usage of underutilised feedstock sources such as perennial grass 

for bioenergy utilisation.  

2. Experimental 

2.1. Biomass preparation and characterisation 
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The Imperata cylindrica sample used in experiment was obtained from a field in Muara, Brunei 

Darussalam. The samples were ground and sieved to small particles sizes with a range of 0.125 mm 

– 0.25 mm and then dried at 45°C for 24 hours. Ultimate analysis was performed using a CE 

Instruments Flash EA 1112 Series CHNS-O analyser (Thermo Quest Italy). Proximate analysis 

determines the moisture content, ash content, volatile matter and fixed carbon according to the 

standard test method ASTM D3173, ASTM D3174, ASTM D3175 respectively. Elemental 

compositions (C, H, N, O, and S) are obtained on a dry basis. Higher heating value (HHV) for all 

samples was determined using a bomb calorimeter according to the ASTM D2015 standard test 

method. To ensure the reproducibility and repeatability of the data, the experiments were repeated 

five times. The experiment HHV value was compared by correlations using data obtained from 

elemental analysis developed by Ozyuguran et.al below [47]: 

HHV = 0.2791N + 0.3984C + 0.4030H – 1.8644S – 0.03153O   Eq. (1) 

Compositional analysis of biomass samples was performed by conventional NREL methods. To 

obtain the amount of extractives, 100 mL distillate water is added for 1 g of free moisture in the 

sample and then heated at 105 °C for 2 h. The samples was filtered and washed with distillate water 

and dried at 105 °C for 12 hours. The weight difference before and after hydrolysis is calculated as 

the amount of extractives. 100 mL of 0.5 M H2SO4 solution was added to the sample residue and 

heated at temperature 105 °C for 2 h. The mixture was filtered and washed with distilled water until 

the pH is neutral and then the samples were dried at 105 °C for 12 hours. The difference between the 

sample weight before and after treatment with 0.5 M H2SO4 is calculated as the hemicellulose content. 

In addition, 10 mL of 72% H2SO4 was added and kept for 4 hours at room temperature. 100 mL 

distilled water was added and heated at temperature 105 °C for 2 hr. The mixture was filtered and 

washed with distillate water until the pH is neutral. The residue was dried at 105 °C for 12 hours. The 

weight difference of the residue between the before and after treatment with 72% H2SO4 corresponds 
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to the cellulose content. Consequently, the residue was heated at 600 °C for 2 hours. The lignin 

content corresponds to the difference between the weight of ash and the weight of residue. The 

percentage extractives, hemicellulose, cellulose and lignin is based on moisture and ash-free basis. 

2.2. Thermogravimetric analysis (TGA) 

Thermogravimetric analysis was carried out with an automated Perkin Elmer Pyris 1 TGA 

thermogravimetric analyser. Samples were heated at a heating rate of 25 °C/min from 40 °C to 900 

°C under nitrogen atmosphere with a flow rate of 20 mL/min. 

2.3. Py-GC/MS analysis 

The samples were dried, ground and sieved to particles size with a range of 0.125 mm – 0.25 mm 

prior to Py-GC/MS analysis. CDS 5200 micro pyrolyser close-coupled to a PerkinElmer Clarus 680 

gas chromatograph and Clarus 600S mass spectrometer with heating rate 20 °C/ms. Separation was 

carried out using a PerkinElmer Elite-1701 column (cross-bond, 14% cyanopropylphenyl and 85% 

dimethyl polysiloxane; 30 m, 0.25 mm inner diameter, and 0.25 mm film thickness). The GC oven 

was held at 45 °C for 5 min, then heated at 5 °C/min to 250 °C, and held at this temperature for 5 

min. 

Approximately 2 - 3 mg of samples were pyrolysed at three different temperature 400 °C, 500 °C, 

and 600 °C for 15 s, and then the gases products were purged by high purity helium (99.9995%) into 

gas chromatograph via a transfer line preheated at 270 ◦C. The flow rate of the carrier gas was 50 

ml/min with a split ratio of 50:1. The inlet temperature was 230 °C. The pyrograms was analysed 

using the Automated Mass spectra Deconvolution and Identification System by NIST (AMDIS). The 

volatile fragments were analysed by comparison with the results in literature and by fitting with mass 

spectra from NIST spectral libraries. Quantitative calculations were carried out by calculating 

percentage areas for each component pyrolysis product. The calculations results were used to 

compare and interpret the experiment results. 
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2.4 Pyrolysis yield studies 

The pyrolysis of Imperata Cylindrica was performed in a stainless steel fixed bed reactor (2.68 cm 

i.d. and 50 cm length) inserted in a horizontal tube furnace (Carbolite Gero 300 - 3000 Electrical 

Furnaces). The fixed bed reactor is heated by the furnace, which has a temperature controller unit. 

The reactor inlet side had been installed a thermocouple to monitor temperature inside reactor and a 

connector for N2 sweeping gas inlet. The nitrogen gas (99.9995% of purity N2) flow is controlled by 

a flow meter and the pyrolysis vapour from the reactor is swept through the condenser. The transition 

tube together with the reactor head is lagged to minimised condensation of pyrolysis vapours. The 

condenser utilises a water-ice mixture maintained between 10 to 15 °C.  

The reactor was filled with 25 g of sample for all experiments. Pyrolysis was conducted at three 

temperatures; 400, 500 and 600 ºC and the temperature of the reactor was raised at 25 ºC/min to the 

final temperatures of pyrolysis and the heating rate was kept consistent for all experiments. The 

pyrolysis process was run until no bio-oil was collected, taking about 40 – 60 min after the final 

temperature was reached. The final products of char left inside the reactor and the bio-oil from 

condenser were collected in Erlenmeyer flask. The product of gas from pyrolysis was calculated 

based on mass balance of biomass feed. Figure 1 shows the schematic diagram of the experimental 

set up used in this work.  

3. Results and discussion  

3.1. Proximate and ultimate analysis 

The results of proximate analysis, HHV and ultimate analysis of samples are listed in Table 3 which 

is compared with various samples in literatures [2,27,40,41,48]. I. Cylindrica has a volatile content 

of 72.01% which can be considered as a desirable feedstock for energy production via pyrolysis 

process and indicate high liquid yield production. The ash content is lower as compared to rice husk 

(14.83%) [2], elephant grass (8.26%) [48] and switchgrass (4.5 – 10.5 %) [17]. The elephant grass in 

reference showed high ash content but has similar volatile matter as I. Cylindrica. Several literatures 
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have reported that elephant grass has a higher content of phosphorus and potassium than other 

perennial grasses, and a higher mineral content in elephant grass increased ash content in spite of the 

similar volatile matter with I. Cylindrica [48–50]. High mineral contents means high ash content. In 

biomass conversion processes, this will have an adverse effect on the bio-oil productivity, and can 

cause fouling, erosion and slagging during pyrolysis. The ultimate analysis results showed a low N 

and S content, which is desirable due to lower toxic NOx and SOx emission during conversion 

processes.  

The H/C and O/C ratios of experimental results and solid fuels from various literatures [2,44,48,51–

61] are compared in the Van Krevelen diagram in Figure 2 below. It can be seen that biomasses have 

larger O/C and H/C ratios compared to coals. IC experimental result (H/C = 1.53; O/C = 0.83) are 

located in the region of biomass which has the lowest H/C and O/C ratios as compared to elephant 

grass, rice husk, cassava rhizome, cassava bagasse, and sugarcane bagasse. O/C and H/C ratios 

illustrate energy contents of biomass based on oxygen-carbon and hydrogen-carbon bonds contained 

in the materials. Lower O/C and H/C ratios indicated higher energy content of the biomass and located 

the biomass nearer towards coal, which is used as reference solid fuel [11]. 

The higher heating value (HHV) value obtained from experiment (18.39 MJ/kg) has similar value 

with HHV from correlation (18.47 MJ/kg). The HHV on dry basis shows that I.cylindrica has a higher 

calorific value when compared with other biomass such as cassava bagasse with 15.27 MJ/kg [61], 

sugarcane bagasse with 16.10 MJ/kg [61], elephant grass with 15.77 MJ/kg [48] and rice husk with 

17.34 MJ/kg. The heating value obtained experimentally is slightly higher as compared to literatures. 

Several literatures [27,62] reported HHV values of I.cylindrica with 17.03 MJ/kg and 16.50 MJ/kg 

with O/C and H/C ratio of around 2.3 and 1.3 respectively, which suggest that higher O/C and H/C 

ratios in biomass corresponds to a reduction in their heating values. Huang et. al. mentioned that the 

HHV value increases with the increase in C and H contents, but decreases with an increase of N 
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content [63]. Sheng and Azevedo have reported that the HHV decreases with an increase in ash 

content and a trend exists between the HHV and volatile content [64].  

The compositional analysis of I.cylindrica from table 1 shows that it has 12.49% extractives, 44.49% 

cellulose, 25.13% hemicelluloses and 17.89 % lignin. I.cylindrica shows a lower lignin % content as 

compared to rice husk [2] and elephant grass [48]. Difference in the compositional analysis between 

of I.cylindrica of experimental and I.cylindrica of literature will generate a variance of pyrolysis 

chemicals products. 

  

3.2. Thermal decomposition characteristics 

The results of TGA/DTG in temperature range of 40 °C to 900 °C at a heating rate of 25 °C/min is 

presented in figure 3. The TGA/DTG curve can be described into three stages: moisture removal, 

main devolatilisation and continuous small degradation. During the initial stage, the moisture content 

in the biomass is removed at the range 40 °C – 105 °C. In the second stage, the main degradation 

occurs and the maximum volatile evolved between 105 °C to 500 °C. The peak of degradation rate is 

21.82 %/min and the temperature corresponding to the peak of degradation rate is 352.59 °C. In the 

third stage, a smaller weight loss observed above 500 °C is corresponding to the devolatilisation of 

heavier chemical structures, which can also be observed during the previous thermal decomposition. 

The final temperature is 900 °C which gives the residual weight 21.11 %. 

Table 4 summarises the characteristic properties of I.cylindrica as a result from derivative the DTG 

in figure 4.  Tonset was calculated by linear extrapolation the slope of (
−𝒅𝒎

𝒅𝒕
) in correspondence with 

the first local maximum in (
−𝒅𝟐𝒎

𝒅𝒕𝟐 ) curve and down to the minimum level of the (
−𝒅𝒎

𝒅𝒕
) axis which 

describes the starting of hemicellulose decomposition (Tonset = 260.8 °C) [65]. The temperature 

appropriate to the maximum of hemicellulose degradation rate, (
−𝒅𝒎

𝒅𝒕
)

𝒔𝒉
 (13.082 %/min) is 

characterised by Tshoulder (300.29 °C). The peak temperature (Tpeak = 352.59 °C) was obtained by 
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(
−𝒅𝒎

𝒅𝒕
)

𝒑𝒆𝒂𝒌
 (21.821 %/min) corresponds to the maximum of cellulose decomposition rate which useful 

for evaluating the reactivity [66]. The end of cellulose degradation and the further decomposition 

dominated by lignin and tar or char, is identified by Toffset. Toffset (382.59 °C) was calculated by linear 

extrapolation of the slope (
−𝒅𝒎

𝒅𝒕
) corresponding with the first local minimum in (

−𝒅𝟐𝒎

𝒅𝒕𝟐 ) curve and 

down to the minimum level of the (
−𝒅𝒎

𝒅𝒕
) axis. Higher temperatures than the Toffset corresponds to a 

secondary devolatilisation which occurs with a smaller weight loss.  

3.3. Analytical py-GC/MS 

 

Fig. 5 shows the typical pyrograms from py-GC/MS of I.Cylindrica at temperature 400 °C, 500 °C 

and 600 °C, and the corresponding identified compounds are listed in Table 5. The percentage peak 

areas correspond to the relative yields of the products among all of the identified components. The 

products are identified to group ten major platform components namely furan compounds, guaiacyl 

lignin, p-hydroxyphenyl lignin, syringyl lignin, aromatic hydrocarbons, ketone compounds, organic 

acids, cycloalkenes, ester and miscellaneous hydrocarbon [34,35,49,67–72]. A summary of 

percentage of major platform group components is presented in table 6. Previous studies have 

reported that furanic compounds, aromatic hydrocarbons, esters, cycloalkenes, ketonic compounds, 

acids and miscellaneous hydrocarbon can be generated from pyrolysis of polysaccharides 

(hemicellulose and cellulose) [35,68–70,73–76]. Pyrolysis of lignin produces guaiacyl lignin, p-

hydroxyphenyl lignin, syringyl lignin, aromatic hydrocarbons and miscellaneous hydrocarbon 

[34,68,69,74,77,78]. Temperature is one of the important variables affecting the lignocellulosic 

biomass products distribution.  

 

The results shown in table 5 indicate that the main components of furanic compound were dominated 

by 2,3-dihydrobenzofuran, furfural and 2-furanmethanol, where 2,3-dihydrobenzofuran gave highest 
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yield in comparison to other furan compounds at all temperatures. The other furanic compounds 

detected were 3-Methylfuran, 5-Methylfurfural and 2,5-Dimethylfuran. The dehydration reaction of 

cellulose and hemicelluloses during pyrolysis will form furanic compounds [79] . In comparison with 

the pyrolysis products at 400 ºC and 500 ºC, the highest percentage peak furanic compound products 

were found at 600 ºC, which agrees with the study by Liaw et al. and Lu et. al. [80,81]. The chemical 

derivatives from furanic compounds are value-added chemicals which are widely used as organic 

solvents or reagents for the production food additives, fuel additives and other products [82,83].  

 

Aromatic hydrocarbon and cycloalkenes from py-GC/MS were detected at all temperatures. The 

chemicals detected from aromatic hydrocarbon products were toluene, ethylbenzene, p-xylene, 

styrene, propylbenzene, benzene-acetaldehyde and indanone. The results obtained were relatively 

close with previous work from pyrolysis of switchgrass by Imam and Capareda [41] . The yields of 

toluene and indanone are observed to give a maximum percentage peak area of 3.01 % and 3.00 %, 

respectively at an elevated temperature of 600 ºC. The cycloalkenes detected were cyclopentadiene, 

2-Methyl-2-cyclopenten-1-one, 2-Hydroxy-2-cyclopenten-1-one, 3-Methyl-2-cyclopenten-1-one, 

2,3-Dimethyl-2-cyclopenten-1-one and 2-Hydroxy-3-methyl-2-cyclopenten-1-one. Cyclopentadiene 

gave the optimum result amongst all of the other cycloalkenes compounds. Cyclopentadiene is a 

precursor to cyclopentene, which is used for the production of specialty polymers, synthesis of 

metallocene compounds, and synthesis of organic photoelectric materials [84]. 

 

Guaiacyl Lignin (Guaiacol, 4-Vinylguaiacol, Propenylguaiacol, Isovanillin, Guaiacylacetone, 2-

Methoxy-4-methylphenol, 4-Ethyl-2-methoxyphenol and 2-Methoxy-4-propenylphenol) were 

produced in significant amounts. A similar results of significant amounts has been shown by Promdee 

and Vitidsant [40]. In comparison with Promdee and Vitidsant work, the feedstock in this work has 

high polysacharide composition, resulting in various chemical compounds obtained.  Maximum peak 

ACCEPTED M
ANUSCRIP

T



of 4-Vinylguaiacol (22.14 %) was obtained at 400 ºC, and guaiacol, propenylguaiacol, 2-Methoxy-4-

methylphenol and 4-Ethyl-2-methoxyphenol gave results of 8.8 %, 3.97 %, 2.32% and 5.26% at 400 

ºC respectively. 

 

The main products of p-hydroxyphenyl lignin were 2-Methylphenol, p-Cresol, 2,4-Dimethylphenol 

and 4-Ethylphenol. 2-Methylphenol, p-cresol, and 4-ethylphenol were the predominant p-

hydroxyphenyl-type, which gave a higher peak area percentage. 2-Methylphenol and 4-Ethylphenol 

gave optimum peak area percentage of 3.73 % and 4.95 % respectively at 600 ºC. While, for p-cresol 

gave optimum peak area percentage of 3.00 % at 500 ºC. 

The main products from syringyl lignin consists of 1,2,4-Trimethoxybenzene, 2,6-Dimethoxyphenol 

and 2,6-Dimethoxy-4-allylphenol. The peak for the organic acids and ester was detected as n-

hexadecanoic acid, methyl hexadecanoate and acetic acid. n-Hexadecanoic acid and methyl 

hexadecanoate are value-added chemicals which widely used as organic solvents or reagents for the 

production food additives, fuel additives and other products soaps, cosmetics, and industrial 

mold release agents [85]. 

 

The identified peaks detected which belongs to ketonic compounds were 1-hydroxy-2-butanone, 2,3-

Pentanedione and 1-(3,4-Dimethoxyphenyl)ethanone and for miscellaneous hydrocarbon compounds 

were (2E)-3,7,11,15-Tetramethyl-2-hexadecen-1-ol, 5-tert-Butylpyrogallol and hexadecane. 

Hexadecane gave a significant peak area at 400 °C. Previous studies have found that the hexadecane 

content in the pyrolysis of switchgrass is 8.5 % at temperature range of 400 °C to 600 °C [41]  and 

sorghum between 7.9 % - 9.3 % at temperature range 550 °C to 650 °C [67].  

 

The highest % peak area of the group components are from guaiacol lignin with 45.27% at 400 °C 

and reduced to 36.96% at 600 °C. Although the compositional analysis of IC contains about 70% of 
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cellulose and hemicellulose as compared to lignin, the degradation products from lignin is 

significantly high. This may be due to the synergistic effects of the interactions between the three 

basic components of biomass. Zhang et al. concluded that cellulose promotes an increase in lignin-

derived phenolic products, and that when the cellulose content is higher and the hemicellulose content 

is lower, the production of guaiacols and syringols will be enhanced [86].  Furthermore, other 

researchers have mentioned that the secondary reactions from the degradation of cellulose produces 

phenolic compounds [87–89].  For the lignin-derived compounds, the trend shows that for an increase 

in the pyrolysis temperature, the guaiacyl lignin and syringyl lignin decreases, while the p-

hydroxyphenyl lignin and the aromatic hydrocarbon increases. Finally, it is worth noting that the peak 

areas of the gas chromatogram only reflect the signal strength detected by the FID detector. It cannot 

represent the absolute percentage of each detected compound without a quantification analysis. 

 

3.4 mass balance of bench scale pyrolysis experiment 

The product yield from the fixed bed pyrolysis of IC and comparison from literatures can be found 

in table 7 below. As the temperature increases, the char yield decreases and the gas and bio-oil yield 

increases. The bio-oil yield peaks at 500°C with 37.16%, and will reduce down slightly at higher 

temperature. This is due to the secondary cracking of bio-oil to gases at higher temperatures, as 

reported in other literatures [25,41,62,90]. Although the products has not been fully characterised yet, 

the trends can be understood from the degradation of the three basic components of biomass.  

 

The decomposition of cellulose forms activated cellulose and then undergoes two parallel pathways 

of depolymerisation process which produces anhydrosugars and derivatives, furans and 

cyclopentanones, and fragmentation process which produces linear carbonyls, linear alcohols and 
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linear esters. The bio-oil from lignin pyrolysis mainly consists of polycyclic aromatic hydrocarbons 

and phenolic compounds, xylan oil mainly consists of acids, furfurals [80].  

 

Bio-char yield from IC pyrolysis decreased from 34 % to 27 % as temperature is increased from 400 

to 600 ºC respectively, which showed a similar trend reported by Imam and Capareda [41]. The 

investigation had reported char yield from lignin pyrolysis is the highest, and that from cellulose and 

hemicellulose the lowest. The lignin structures are natural amorphous polymer consisting of three 

aromatic alcohols, namely p-hydroxyphenyl, guaiacyl, and syringyl [91–93]. Sharma et al. [94] has 

showed that the chars lost both hydroxyl and aliphatic groups with an increase in temperature, and 

the increase in aromatic character above 450 ºC resulting in an aromatic carbon content at high 

temperatures. Aromatic monomers showed good thermal stability, which led to a higher char yield 

from lignin compared to cellulose and hemicellulose. 

 

Generally, the gas product increase with an increase in temperature, reported as shown from 31.44 % 

to 35.96 % for 400 to 600 °C. This is due to an increased release of volatile matter and secondary 

decomposition of bio-oil which as temperature is increased [93,75]. 

  

4. Conclusion 

 

Various characterisation analyses, TGA and Py–GC/MS of Imperata cylindrica has been performed 

to investigate the characterisation and analysis of value-added chemicals from pyrolysis of Imperata 

cylindrica. The products generated from Py-GC/MS are abundant with furanic compounds, guaiacyl 

lignin, p-hydroxyphenyl lignin, syringyl lignin, aromatic hydrocarbons, ketonic compounds, organic 

acid compounds and miscellaneous hydrocarbons. The temperature at 500 °C has shown a good result 

in terms of the optimum amount of components detected and the percentage peak area. Furfural, 2,3-

dihydrobenzofuran, 4-Vinylguaiacol, propenylguaiacol, guaiacol and 4-ethylphenol has shown a 
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higher peak area percentage and has potential as value-added platform chemicals from Imperata 

cylindrica bio-oil. The fixed-bed pyrolysis of Imperata cylindrica showed that the yield of bio-oil 

peaks at 500°C with 37.16%. 
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Fig. 1. Schematic diagram of the fixed bed pyrolysis setup 
 

 

 

 

 

 

 

 

Fig. 2. Van Krevelen diagram for coal and various biomass (Anthracite [51,52], Indonesian 

Coal [53–55], Torrefied biomass [56,57], Rice husk [2], Miscanthus [58], 

Switchgrass [44], Wood [59], Cassava rhizome [60], Elephant grass [48], Sugarcane 

bagasse [61], Cassava bagasse [61], I.cylindrica) 
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 Fig. 3. TGA and DTG curve of I.cylindrica 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Characteristic of temperature zone by using derivative DTG 
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Fig. 5. Chromatogram of the pyrolysis GC/MS of Imperata cylindrica at  temperature (a) 400 °C,   

(b) 500 °C and (c) 600 °C 
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Table 1. Comparison yields of perennial grasses C3 and C4 photosynthetic pathway 
 

Species Photo-synthetic pathway Yields (tDMha-1yr-1) Reference 

Napiergrass C4 22.0 – 31.0  [16] 

Switchgrass C4 0.9 – 34.6  [17] 

Smooth bromegrass C3 3.3 – 6.7 [17] 

Miscanthus sp C4 5 – 44  [18] 

Reed canary grass C3 1.6 – 12.2 [17] 

Imperata Cylindrica C4 11.5 – 20 [19–21] 
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Table 2. Platform chemicals that could be obtained via pyrolysis of grasses species [40–46] 

 

Platform Chemicals Possible Derivatives 

Acetic acid Acetic anhydride, Ethyl acetate, Vinyl acetate, Terephtalic acid 

Furfural Furan, Tetrahydrofuran, Furfuryl alcohol, Maleic anhydride, 2-(5H)-

Furanone, Methyl furan, 2-Hydroxymethyl- 

5-vinyl furan, Maleic acid, Levulinic acid, Tetrahydrofurfuryl alcohol 

1,4-Butanediol Tetrahydrofuran, Adipic acid, -Butyrolactone,  

Levoglucosan 5-Hydroxymethylfufural,  Furfural, Acetic acid, 1,6-Anhydro-beta-D-

glucofuranosa, 1,4:3,6-dianhydro-α-D-glucopyranose 

5-Hydroxymethylfufural 2,5-Furan dicarboxylic acid, 5-Hydroxymethyl-furoic acid, 

Furandialdehyde, 2,5-Dihydroxymethylfuran, 2,5-

Dihydroxymethyltetrahydrofuran 

Benzene Styrene, Phenol, Cumene, Cyclohexane, Cyclohexanone 

Toluene Benzoic acid, Dinitrotoluene, Toluene diisocyanate, Diaminotoluene 

Xylene Terephthalic acid, Isophthalic acid 

Phenol  Cyclohexanone, Cyclohexanol, Bisphenol A, Nitrophenols 

Guaiacyl Propyl guaiacol, Eugenol, Iso-eugenol, Methoxyhydroxy phenyl 

glycol, Guaiacol, Creosol, Vanillin, Vanillic acid, Vanillyl alcohol, 

Coniferyl alcohol, Ferulic acid,  

Syringyl Syringeugenol, Syringol, Syringyl Creosol, Syringyl alcohol, 

Syringaldehyde,  
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Table 3. Proximate and ultimate analysis of experimental and literature characterisation data 

 

Parameter 

Biomass 

This 

Experiment 
 Literature 

 IC  IC [27]  IC [40]  EG  [48]  SG [41]  RH [2] 

Proximate Analysis* (wt. %) 

Moisture  6.80  7.50  9.30  10.63  8.40  8.43 

VM  72.01  76.58  64.30  72.54  84.20  68.25 

FC  18.21a  15.09  16.10  19.20  11.90  16.92 

Ash  2.97  0.83  10.30  8.26  3.90  14.83 

Elemental Analysis* (wt. %) 

C  44.38  43.19  41.90  39.63  42.00  39.48 

H  5.65  5.92  6.20  6.31  6.10  5.71 

N  0.82  0.59  1.60  1.70  0.40  0.67 

O  49.06a  50.17  39.80  52.16  47.40  21.10 

S  0.09  0.14  0.19  0.20  0.10  < 0.10 

O/C**  0.83  0.87  0.71  0.99  0.85  1.03 

H/C**  1.53  1.64  1.78  1.91  1.74  1.74 

Heating Value*  (MJ/kg) 

HHV  18.39  17.03  -  15.77  19.8  17.34 

HHVcorrelation  18.47  17.91  18.03  16.79  17.62  17.36 

Compositional Analysis* (wt. %) 

Hemicellulos

e 
 25.13  -  31.42  31.31  19.20  14.04 

Cellulose  44.49  -  27.96  30.37  32.00  41.52 

Lignin  17.89  -  39.45  26.02  18.80  33.67 

Extractives  12.49  -  -  14.86  18.50  10.77 

*based on dry basis, ** molar ratio 
a by difference 

VM = Volatile matter, FC = Fixed Carbon, 

SG = Switchgrass, IC = Imperata cylindrica, RH = Rice husk, EG = Elephant grass 
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Table 4. Characteristic properties of I.cylindrica from TGA/DTG 
 

Biomass Tonset  (°C) Tshoulder  (°C) (
−𝒅𝒎

𝒅𝒕
)

𝒔𝒉
 (

−𝒅𝒎

𝒅𝒕
)

𝒑𝒆𝒂𝒌
 Tpeak  (°C) Toffset  (°C) 

IC 260.80 300.29 13.082 21.821 352.59 382.59 
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Table 5 Components identified in the py-GC/MS of Imperata cylindrica at temperature 400 °C, 500 °C and 

600 °C 

 

Peak 

ID 
Component Formula MW 

Peak Area (%) Group 

Classification 400 ºC 500 ºC 600 ºC 

1 Cyclopentadiene C5H6 66 ND 1.60 2.67 Cycloalkenes 

2 3-Methylfuran C5H6O 82 0.81 1.33 1.61 Furan 

3 2,5-Dimethylfuran C6H8O 96 0.15 0.52 ND Furan 

4 Acetic acid C2H4O2 60 0.87 4.10 4.78 Organic Acid 

5 Toluene C7H8 92 0.31 1.68 3.01 Aromatics 

6 Ethylbenzene C8H10 106 0.41 0.72 1.23 Aromatics 

7 p-Xylene C8H10 106 0.06 0.32 0.95 Aromatics 

8 1-Hydroxy-2-butanone C4H8O2 88 ND 1.66 2.33 Ketones 

9 Styrene C8H8 104 0.10 0.50 0.91 Aromatics 

10 Furfural C5H4O2 96 2.00 3.72 4.08 Furans 

11 Propylbenzene C9H12 120 0.14 0.58 0.80 Aromatics 

12 
2-Methyl-2-cyclopenten-1-one 

C6H8O 96 0.22 0.65 0.81 Cycloalkenes 

13 2-Furanmethanol C5H6O2 98 1.43 1.18 0.22 Furans 

14 
2-Hydroxy-2-cyclopenten-1-

one   C5H6O2 98 1.11 0.53 0.87 Cycloalkenes 

15 5-Methylfurfural C6H6O2 110 0.49 0.65 0.90 Furans 

16 2,3-Pentanedione C
5
H

8
O

2
 100 ND 0.26 0.33 Ketones 

17 3-Methyl-2-cyclopenten-1-one C6H8O 96 ND 0.47 0.54 Cycloalkenes 

18 Benzeneacetaldehyde C8H8O 120 0.62 ND 0.04 Aromatics 

19 
2,3-Dimethyl-2-cyclopenten-1-

one   C
7
H

10
O 110 ND 0.68 0.67 Cycloalkenes 

20 
2-Hydroxy-3-methyl-2-

cyclopenten-1-one C6H8O2 112 0.49 1.58 0.32 Cycloalkenes 

21 Guaiacol C7H8O2 124 8.80 11.56 10.77 G-Lignin 

22 2-Methylphenol C7H8O 108 ND 1.97 3.73 H-Lignin 

23 p-Cresol C7H8O 108 1.01 3.00 0.31 H-Lignin 

24 2-Methoxy-4-methylphenol C8H10O2 138 2.32 3.00 2.68 G-Lignin 

25 2,4-Dimethylphenol C8H10O 122 0.31 1.01 1.52 H-Lignin 

26 4-Ethylphenol C8H10O 122 3.64 3.92 4.95 H-Lignin 

27 4-Ethyl-2-methoxyphenol C9H12O2 152 5.26 4.20 3.28 G-Lignin 

28 Indanone C9H8O 132 1.01 2.56 3.00 Aromatics 

29 4-Vinylguaiacol C9H12O2 150 22.14 17.82 13.93 G-Lignin 

30 2,3-Dihydrobenzofuran C8H8O 120 12.73 11.17 14.96 Furans 

31 2,6-Dimethoxyphenol C8H10O3 154 2.86 2.66 2.31 S-Lignin 

32 2-Methoxy-4-propenylphenol C10H12O2 164 0.70 1.62 2.14 G-Lignin 
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33 Hexadecane C16H34 226 13.79 0.76 0.56 Misc 

34 Propenylguaiacol C10H12O2 164 3.97 3.61 2.84 G-Lignin 

35 1,2,4-Trimethoxybenzene C9H12O3 168 0.67 0.76 0.67 S-Lignin 

36 Isovanillin C8H8O3 152 1.12 1.13 1.00 G-Lignin 

37 5-tert-Butylpyrogallol C10H14O3 182 1.05 0.63 0.51 Misc. 

38 
1-(3,4-

Dimethoxyphenyl)ethanone C10H12O3 180 0.88 0.80 0.62 Ketones 

39 Guaiacylacetone C10H12O3 180 0.95 0.76 0.30 G-Lignin 

40 
(2E)-3,7,11,15-Tetramethyl-2-

hexadecen-1-ol   C20H40 280 4.30 2.85 2.25 Misc. 

41 2,6-Dimethoxy-4-allylphenol C11H14O3 194 1.51 0.80 0.57 S-Lignin 

42 Methyl hexadecanoate C17H34O2 270 0.31 0.21 ND Ester 

43 n-Hexadecanoic acid C16H32O2 256 1.45 0.48 ND Organic Acid 

ND  = Not detected, G-Lignin = Guaiacyl Lignin, H-Lignin = p-Hydroxyphenyl lignin, S-Lignin = Syringyl lignin, 

Misc. = Miscellaneous hydrocarbon. 
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Table 6. Percentage of major group components distribution of py-GC/MS Imperata cylindrica at elevated 

temperature 
 

Group Component 
% Peak Area 

400 ºC 500 ºC 600 ºC 

Furanic compound 17.62 18.57 21.76 

Aromatic hydrocarbon 2.66 6.36 9.95 

Cycloalkenes 1.82 5.51 5.88 

Guaiacol lignin  45.27 43.70 36.96 

P-hydroxyphenyl lignin  4.96 9.90 10.51 

Syringyl lignin  5.04 4.22 3.55 

Organic acid 2.31 4.58 4.78 

Ketonic 0.88 2.72 3.28 

Ester 0.31 0.21 0.00 

Miscellaneous hydrocarbon  20.14 6.80 6.32 
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Table 7. Pyrolysis yield studies for Imperata cylindrica 

Sample 
Reacto

r Type 

Pyrolysis 

Temperatur

e (oC) 

Pyrolysis products yield (%) 
Referenc

e Liquid bio-

oil 
Solid char 

Non-condensable 

gases 

Imperata 

Cylindrica 

Fixed-

bed 

400 34.33 34.23 31.44 

This work 500 37.16 29.12 33.72 

600 36.92 27.12 35.96 

Imperata 

Cylindrica 

Fixed-

bed 

400 25.00 25.00 50.00 
[25] 

500 33.67 14.33 52.00 

Cogongrass 

and 

Manillagras

s 

Twin 

screw 

(350 

rpm) 

400 - 550 53.56 27.35 19.09 [90] 

Imperata 

Cylindrica 

Fixed-

bed 
450 – 600 

3.25 – 

20.88   
22.63 – 30.00  49.13 – 74.13  [62] 
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