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12 Abstract

13 In conjunction with the European Union (EU) targets, the United Kingdom (UK) Government 

14 has introduced a range of mechanisms to foster the development and deployment of low carbon 

15 energy technologies and markets. This study focuses on the three main financial incentive 

16 schemes to promote renewable energy sector in the UK for electricity, heat and fuel production 

17 from renewables, namely feed-in tariff (FiT), Renewable Heat Incentive (RHI) and Renewables 

18 Obligation Certificate (RoC), considering the fact that optimal policy design depends on 

19 effective analyses of the impacts of incentives on the performance of renewable energy systems. 

20 The effects of potential changes in these incentive schemes on the economic and environmental 

21 performance of bioenergy sector are investigated using an analytical methodology. The 

22 methodology integrates fuzzy decision making and multi objective mathematical modelling in 

23 the same framework to capture uncertainties in the system parameters as well as economic and 

24 environmental sustainability aspects.  Computational experiments are performed on bioenergy 

25 production using the entire West Midlands Region in the UK as case study region. The results 

26 reveal that the changes in incentive policies have a significant impact on the profitability of the 

27 supply chain, whereas environmental performance of the supply chain in terms of total GHG 

28 emissions is the least affected performance indicator by the changes in the incentive policies.
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31 1. Introduction

32 Although bioenergy constitutes an important part of the European Commission’s policy 

33 plans for energy such as the Biomass Action Plan (European Commission, 2005) and the 

34 Energy Policy for Europe (European Commission, 2007), there are still some difficulties 

35 hindering the wide spread adoption of these technologies, especially in developed countries, 

36 which include institutional deficiencies, the absence of necessary legal frameworks, economies 

37 of scale, pricing distortions, and limited information on resource base (Elkarmi and Shikhah, 

38 2013). To override such hurdles, government’s policy support is highly needed and considered 

39 as the key to moving commercial renewable energy projects development forward. As bio-

40 based fuel and energy generation is becoming increasingly important, there is a foreseeable 

41 scenario of competition between the emerging renewable energy sector and the traditional 

42 fossil-based energy production throughout the world. In decentralized energy markets, firms 

43 are mainly focused on maximizing their profits while competing with other firms. Investments 

44 in cheap and often polluting technologies tend to serve these goals well. This is in conflict with 

45 the goals set by governments as they aim at reducing pollution and want therefore to create 

46 financial incentives to make investments in cleaner technologies more attractive (Gürkan and 

47 Langestraat, 2014). Financial incentives help in supporting the development of commercial 

48 markets and in reducing the financial life-cycle costs of renewable energy technologies 

49 (Elkarmi and Shikhah, 2013).

50 As such, and as part of the wider EU Climate and Energy package, the UK has agreed a 

51 binding legal commitment to deliver 15% of energy from renewable sources by 2020 (Leete et 

52 al., 2013). In response to international concern surrounding the impacts of climate change, the 
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53 UK government has committed to ambitious carbon emission reduction targets of 34% by 2020, 

54 and at least 80% by 2050 (HM Government, 2009). To achieve these targets, it is estimated that 

55 30% of UK electricity will need to be generated from renewable sources by 2020 (HM 

56 Government, 2011). In the UK electricity market, since 2002, generators have been obliged to 

57 produce part of their electricity with renewable energy resources in accordance with the 

58 Renewable Obligation Order (Gürkan and Langestraat, 2014).

59 The literature has acknowledged that reduction of uncertainties and risks related to economic 

60 factors, such as fluctuating market prices, supply and demand, by incentive schemes is central 

61 to successful renewable energy implementations (Klessmann et al., 2013). Hence it is important 

62 to analyse the effects of different incentive schemes on the performance of renewable energy 

63 production systems and supply chains. Researches have contributed to the literature by studying 

64 on the role of incentives to promote investments in renewable energy sector in different parts 

65 of the world. Among them, Leete et al. (2013) emphasized that deployment of marine renewable 

66 energy in the UK is desirable in order to address climate change, meet mandatory EU renewable 

67 energy targets and provide significant economic development opportunities. By focussing on 

68 investor attitudes and behaviours towards wave and tidal technologies, their research seeks to 

69 identify common barriers and incentives to investment through a series of interviews. Elkarmi 

70 and Shikhah (2013) studied the effect of introducing financial incentives, such as tax reduction, 

71 introduction of a grace period, provision of capital or reduced discount rate, reduced 

72 depreciation life of assets, and the usage of accelerated depreciation methods, to promote green 

73 electricity generation in Jordan. Mola-Yudego and Pelkonen (2008) analysed the effect of 

74 policy incentives in the development of short rotation willow plantations for bioenergy 

75 considering 56 municipalities in Sweden, by an aggregate adoption model based on sigmoidal 

76 curves. Chinese et al. (2014) introduced a biogas supply chain optimization model to analyse 

77 the effects of the previous and current support schemes on the optimal plant size, feedstock mix 
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78 and profitability. Ibanez-Lopez et al. (2017) used dynamic simulation to assess the overall 

79 technical, economic and environmental impact of renewable energy incentives and capacity 

80 payment policies. Spain's power industry is simulated to assess the impact of electric power 

81 policies. Gürkan and Langestraat (2014) analysed three renewable obligation policies 

82 representing UK electricity market with random availabilities and random electricity demand 

83 by mathematical modelling. They also provided revenue adequate pricing schemes for the three 

84 obligation policies. Connor et al. (2015) discussed the adoption and development of renewable 

85 heating policy in the UK focusing on the historical and ongoing policies applied to the support 

86 of renewable energy sources of heat in the UK. Devine et al. (2017) presented a simulation-

87 based modelling framework to incorporate consideration of policymaker/consumer risk burden 

88 in FiT analyses. They conducted an Irish case study and concluded that commonly employed 

89 FiT are only optimal when policymaker risk aversion is extremely low. Ritter and Deckert 

90 (2017) presented a wind energy index to assess the wind energy potential of locations in 

91 Germany, to compare different turbine types, and to derive the required compensation in terms 

92 of locally different FiTs.

93 The review of the literature reveals that there are very few studies that analyse and assess 

94 the impacts of the main incentives on the performance of production systems and supply chains 

95 in bioenergy sector in the UK using an analytical tool. The core driver of this study is to evaluate 

96 the potential effects of the incentive policy changes on bioenergy projects in the UK. To this 

97 aim, a methodology based on fuzzy multi-objective mathematical programming is used to 

98 model the bioenergy supply chain with the purpose of analysing and comparing the impacts of 

99 changes in the main incentive schemes on the economic and environmental performance of 

100 bioenergy generation from multiple types of biomass sources. An analysis on three different 

101 incentive schemes, applied in UK to promote renewable energy investments, is conducted to 

102 investigate which of them have the largest effect on the supply chain performance indicators. 
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103 This study contributes to the related literature by addressing the three main incentive schemes 

104 that are applied to promote renewable energy in the UK and analysing the effects of these 

105 incentive schemes on the economic and environmental performance of the bioenergy 

106 production chain using a mathematical modelling based analytic methodology, for the first time 

107 in the literature. The computational experiments are performed using the UK region of West 

108 Midland as a case study. 

109 Although it is one of the most effective solution approaches to solve multiobjective 

110 optimization problems under an uncertain environment allowing prioritization of different 

111 objectives according to decision makers’ preferences, fuzzy multi objective programming is 

112 rarely used in bioenergy supply chain design studies. Integration of fuzzy set theory with multi-

113 objective linear programming provides further contributions besides reflecting uncertainties in 

114 the model parameters directly into the optimization processes. Firstly, the variation or 

115 vagueness of the decision maker’s aspiration level can be incorporated to the model and thus a 

116 more confident solution set can be generated. Also, the solution procedure of fuzzy multi 

117 objective programming is simplified when compared with deterministic multi-objective 

118 programming as the fuzzy multi objective programming does not have to search for the 

119 satisfactory solution in a set of non-inferior solutions by distance based criteria, as required by 

120 the conventional solution procedure of multi-objective programming (Chang & Wang,1997). 

121  The methodology in this study captures uncertainties in the system parameters as well as 

122 economic and environmental sustainability aspects by incorporating fuzzy decision making and 

123 multi-objective optimization in the same framework. This paper also proposes a modelling 

124 approach that covers multiple types of biomass, biomass to energy conversion technologies, 

125 biomass pre-processing facilities and bio-products. On that sense, the model is generalizable, 

126 the decision makers can utilize our model for different cases with only updating the data set. 

127 However, this paper uses the proposed optimization methodology to monitor the impacts of 



ACCEPTED MANUSCRIPT

6

128 changes in the main incentive schemes, applied in the UK to promote renewable energy 

129 investments, on economic and environmental performance of the production chain focusing on 

130 three different performance criteria (profitability, investment costs and GHG emissions). 

131 However, the proposed methodology, which enhances capital investment and logistics planning 

132 decisions for renewable energy systems, can be utilized both to support the development of new 

133 investments by identifying the optimal configuration of the supply chain and planning the 

134 logistics operations and to monitor the main economic and environmental performance 

135 indicators of the existing systems and take the necessary actions for improved performance. 

136 2.  Main financial incentive schemes to promote renewable energy in the UK 

137 Financial incentive schemes can help in encouraging investments in less developed 

138 technologies as to make them more competitive in the long run. Three incentive schemes for 

139 electricity, heat and fuel production from renewables have been applied to promote renewable 

140 energy sector in the UK, namely Feed-in Tariff (FiT), Renewable Heat Incentive (RHI) and 

141 Renewables Obligation Certificate (RoC) (DECC, 2015). 

142 Renewable energy investments are risky initiatives due to the uncertain nature of many 

143 renewable energy sources that causes variability in supply and in market prices. FiT, is 

144 introduced as a mechanism to promote investments in energy production using renewable 

145 sources by offering long-term contracts, considering the cost of energy generation by renewable 

146 sources based production technology, to renewable energy producers. The mechanism aims at 

147 promoting greater deployment of renewable technologies and supporting competitiveness with 

148 fossil fuel based energy systems by guaranteeing a minimum payment per unit of electricity 

149 generated to reduce investors’ vulnerability to uncertain market prices and demand. Although 

150 it has been asserted that it is theoretically less efficient than quantity-based schemes (Ringel, 

151 2006), FiT has become a preferred policy mechanism which have been adopted and 



ACCEPTED MANUSCRIPT

7

152 implemented by more than 75 countries, states, and provinces (Eyraud et al., 2011). 

153 The main sources of renewable heat generation in the UK in 2010 were direct biomass 

154 combustion (nearly 90% of the total renewable heat generated in the UK), active solar thermal 

155 systems (8%), and heat pumps (2%) (DECC, 2014). In April 2014 the UK’s Department of 

156 Energy and Climate Change (DECC) launched the domestic RHI (DECC, 2014), with the claim 

157 that it is “the world’s first long-term financial support programme for renewable heat, offering 

158 home-owners payments to offset the cost of installing low carbon systems” (Snape et al., 2015). 

159 The RHI tariffs are “set to compensate householders for the additional costs of installing 

160 renewable heat technologies compared to conventional heating technologies” (DECC, 2013b). 

161 The renewable heat incentive (RHI) is a financial incentive that aims at encouraging uptake of 

162 renewable heat technologies in the UK (Energy Saving Trust, 2012b). The UK government 

163 projected that the RHI will contribute to ensure that 12% of the heating will come from 

164 renewable sources by 2020 (DECC, 2011). This scheme covers a number of heat technologies 

165 namely biomass boiler, heatpump, solar thermal system and biomethane and biogas combustion 

166 (DECC, 2011).

167 Initially, the RHI only covers the non-domestic installation of renewable heat technologies 

168 (DECC, 2011). However, the government proposed to include financial payment for the 

169 deployment of these technologies for domestic usage (Phase 2 of the RHI) to promote more 

170 uptakes in the household sector following a consultation in September 2012 (DECC, 2012b). 

171 Similar to the FiT scheme, the RHI will guarantee a fixed payment per kWh of heat generated 

172 by a renewable heat technology for a particular contract duration. For the domestic installation, 

173 the government proposed a rate of £0.0173 per kWh paid for a contract period of 7 years 

174 (DECC, 2012b). The scheme has been commenced in spring 2014. The RHI rate is index-linked 

175 and the yearly rate will be determined in proportion to the change in the Retail Price Index 

176 (RPI) of the previous year (DECC, 2011), e.g. if the RPI is 3%, the RHI rate per kWh for that 
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177 year will be increased by 3%.The government projected that by 2020, the domestic sector will 

178 contribute approximately 3.3TWh annually with a projected number of installations totalling to 

179 roughly 380,000 (DECC, 2012b).

180 One way of creating incentives is by means of a renewable energy obligation. This is a 

181 target on the proportion of electricity that should come from renewable resources and is 

182 imposed on one group of operators in the market. In several US states and in European countries 

183 like Belgium, Poland, Romania, Sweden, Italy, and UK, a renewable obligation is in effect 

184 (Allan et al., 2011). The Renewables Obligation (RO) is the UK's central mechanism for the 

185 financial support of renewable electricity sources. It does not provide direct support for RES-

186 H but since it does support electrical production from biomass, Combined Heat and Power 

187 (CHP) systems are effectively subsidised, potentially accelerating deployment. Changes to the 

188 RO mean that biomass-fired CHP receives higher subsidies than systems without CHP for their 

189 electrical generation (Ofgem, 2013). Clearly, the application of this form of support for 

190 electrical generation using biomass also drives competition for biomass resource. The RO will 

191 be phased out over the period 2014-2017 in favour of Contracts for Difference, a mechanism 

192 aiming to operate with similarities to a FiT (DECC, 2011).

193 Table 1 provides summarized information on these schemes. For more detailed information 

194 on current values of incentives according to different renewable energy technologies, the 

195 references given in Table 1 can be utilized.

196 Table 1. Renewable energy support and incentive schemes in UK (Ang et al., 2016).

197

198 3. Methodology

199 3.1. Fuzzy Multi Objective Decision Making Procedure 

200 In this section, the fuzzy multi-objective decision making methodology, which is adapted to 

201 solve the multi-objective mathematical model, is explained. The solution methodology 
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202 combines fuzzy set theory and ε-constraint methods, more specifically ε-constraint method is 

203 extended by integrating fuzzy logic.

204 ε-constraint method is one of the most widely used and well-organized techniques to handle 

205 the multi-objective structure of complex problems (Haimes et al.,1971). The method is aimed 

206 to minimize only one objective function (commonly, it may be the most preferred or primary 

207 one) and to limit the others by some allowable values , and in this way,  , 1,...,i i m 

208 transforming the multi-objective optimization problem into a single-objective problem. For 

209 more detailed information on the ε-constraint method Mavrotas (2009) can be referred.

210 In this paper a modified version of the ε-constraint method (Yılmaz Balaman, 2016) is used 

211 to address uncertainty in the system parameters and different sustainability aspects in the same 

212 framework by combining the method with fuzzy set theory. The modified ε-constraint method 

213 for the proposed problem is described as the following steps.

214 Step 1. Develop the linear programming model of the problem

215 In this step, the mathematical formulation of the optimization model is proposed. The notations 

216 of the mathematical formulations are presented in Appendix A. A multi-objective model is 

217 proposed to reflect the multidimensional nature of the renewable energy supply chain 

218 optimization problem under concern. The model includes three objectives representing the 

219 economic and environmental performance of the supply chain. The formulation regarding to 

220 these objectives are presented in the following. 

221 The first objective function, namely maximization of supply chain profit, comprises revenue 

222 and cost elements. Each revenue and cost element is formulated in the following equations.  

223 Formulation of the total revenue represents the revenues from product, by-product and energy 

224 sales. To determine the revenue from biofuel and bioenergy sales and analyse the impact of 
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225 changes in different incentive schemes on the economic and environmental performance of the 

226 supply chain, the unit sale prices of biofuel and bioenergy are divided into two elements; base 

227 prices and the values of incentives based on the type of biofuel/bioenergy sold, type of 

228 production technology and type of incentive. The sum of these two elements gives unit sale 

229 prices. The formulations contain operational costs (comprising variable and fixed costs), 

230 transportation costs, biomass purchasing cost and auxiliary material cost, respectively. Variable 

231 operational costs are dependent on the quantity of material to be processed in energy 

232 production, pre-processing and CHP plants, whereas fixed operational costs are calculated 

233 based on the capacity of energy production, pre-processing and CHP plants. Variable 

234 transportation costs are distance dependent, while fixed transportation costs are calculated 

235 based on the quantity of material to be transported between locations. The first objective 

236 function can be calculated as follows;

Operational Cost + Transportation Cost 
Max Z  = Total Revenue - 1 + Biomass Purchasing Cost + Water Cost

  
  

  

Total Revenue=
1 1 1 1 1 1 1 1 1

1 1 1 1 1

K L T U V K L T F

tu ut vut tf ft
k l t u v k l t f

K L N T V
kl
tn nt vnt

k l n t v

kl klSP PB PI SBP P

SE PB PI

        

    

    
        
     

           

  

 

Operational Cost=

1 1 1 1 1 1 1 1 1 1

1 1 1 1

1 1 1

J E C I B K P T J B
jk

ec pt
j e c i b k p t j b

Q T K N
k

q tn
q t k n

J E C
j

ec ec ec pt p
j e c

ij
cb tbVO S VO S

VOCHP E

FO C2 B FO C1

         

   

  

      
                

 
          

 
    

 

   

 


1 1 1

1 1 1

K P T
k

t pt
k p t

QK N
k

q qn q
k q n

A

FOCHP CE CHP

  

  

  
  

  
         





(1)



ACCEPTED MANUSCRIPT

11

Transportation Cost=

1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1

B I J C
ij ij

b cb
b i j c

B J K T F K L T
jk jk kl kl

b tb f tf
b j k t f k l t

B I J C
ij jk

b cb b tb
b i j c

TV d S

TV d S TV d SBP

TF S TF S

   

       

   

   
    

   
                          

 
    

 

  

     

 
1 1 1 1

1 1 1 1

B J K T

b j k t

F K L T
kl

f tf
f k l t

TF SBP

   

   

  
  

  
        

 

 

Biomass Purchasing Cost=
1 1 1 1

I J C B
ij

b cb
i j c b

P S
   

 
 

 


Auxiliary Material Cost=
1

K
k

k
W PW



 
 

 


237 Eq. 2 shows the second objective function, namely minimization of total capital investment 

238 cost. Total capital investment cost is the sum of investment cost of biomass pre-processing 

239 facilities, investment cost of bioenergy plants and investment cost of CHP units, which are 

240 respectively shown in brackets. 

2
1 1 1 1 1 1 1 1

QJ E C K P T K
j k k

ec ec ec pt pt pt q qn q
j e c k p t k q

Min Z I C B I C A ICHP CE CHP
       

     
             

     
   (2)

241 Eq. 3 shows the third objective function, namely minimization of GHG emissions associated 

242 with energy production, pre-processing and transportation activities. Transportation related 

243 GHG emissions comprise two components; (1) emissions caused by transportation vehicle 

244 which depends on the type and capacity of vehicle and transportation distance, (2) emissions 

245 related to the material to be transported which is related  to the distance between locations and 

246 the quantity and type of material to be transported between locations.
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                                                                    (3)
3Min Z GHG GHG GHG  Energy Production Pre-Processing Transportation

GHGEnergy Production=
1 1 1

K T N
k

t tn
k t n

g E
  

  
  

  
 

GHGEnergy Production= 
1 1 1 1

I J C B
ij

c cb bc
i j c b

g S d
   

  
   

  
 

GHGTransportation=

1 1 1 1 1 1 1 1 1

1 1 1 1 1

2 /

2 /

C B B I J C J K T
ij ij ij ij jk jk

cb b cb tb
c b b i j c j k t

T F K L T
kl kl kl kl

tf f tf
t f k l t

g d S CT gt d S d S

g d SBP CT gt d SBP

        

    

       
                         

   
           

     

  
1

F

f 

 
  

  


247

248 Eqs. 4-20 represent the constraints of the model.

249 Supply: Eq. 4 restricts the biomass procurement amount from a supply region by the total 

250 available biomass in that region.

1 1
,

C J

c j

ij i
cb bS BS i b

 

   (4)

251 Material Flow: Eq. 5 ensures the flow balance of the biomass supplied from biomass source 

252 site to pre-treatment/storage facility and from facility to biomass to biofuel conversion plant 

253 considering the conversion rate of biomass in the pre-treatment process.

1 1 1 1
,

I C K T
jk

bc tb
i c k t

ij
cbS d S j b

   

    (5)

254 Capacity: Eqs. 6 and 7 limit the amount of biomass transported to the facilities and plants to 

255 the maximum capacity of the corresponding capacity levels of plants/facilities. Eq. 8 restricts 
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256 the amount of energy produced in energy plants to the maximum capacity of the corresponding 

257 capacity levels of these plants. 

258

1 1 1
,

J B P
jk k

pt pt
j b p

tbS A C k t
  

     (6)

1 1 1
,

I B E
ij j

ec ec
i b e

cbS B C j c
  

     (7)

1 1
,

QT
k k
tn q qn

t q
E CHP CE k n

 

     (8)

259 Production and Distribution: Eqs. 9 and 10 calculate the amount of biofuel produced in and 

260 distributed from the biomass conversion plants. In Eq. 9, the biofuel production amount is 

261 determined based on biomass to biofuel conversion rate for each type of biomass resource. In 

262 Eq. 10 the amount of product to be distributed without converting to energy is determined based 

263 on the percentage of product to be converted to energy (%). Eqs. 11 and 12 calculate the amount 

264 of digestate produced in and distributed from the biomass conversion plants. In Eq. 11, the by-

265 product production amount is determined based on biomass to by-product conversion rate for 

266 each type of biomass resource. Eq. 13 calculates the amount of energy produced in energy 

267 plants considering the percentage of product to be converted to energy, biofuel to energy 

268 conversion rate for each type of biofuel and Conversion efficiency of cogeneration unit. Eq. 14 

269 ensures that all produced energy is distributed.

1 1
, ,

J B
jk k

but ut
j b

tbS r PR k u t
 

     (9)

1 1
1 , ,

N L
k k kl
ut tun

n l
tuPR y SP k u t

 

 
      
 

  (10)
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1 1
, ,

J B
jk

bft kft
j b

tbS r BP k f t
 

     (11)

1
, ,

L
kl

kft ft
l

BP SBP k f t


    (12)

1 1
,

T U
k k k
ut tun un n tn

t u
PR y e cv E k n

 

      (13)

1
, ,

L
k kl
tn tn

l
E SE k t n



    (14)

270 Demand: Eq. 15 limits the digestate distribution amount by the corresponding demand in the 

271 demand nodes (to prevent the disposal of the excess digestate). Eq. 16 ensures that all the 

272 biofuel demand of the demand nodes is fulfilled. Eq. 17 ensures that energy demands of all 

273 demand nodes are fulfilled.

1 1
,

K T
kl l
ft f

k t
SBP D l f

 

   (15)

1 1
,

K T
kl l

u
k t

tuSP D l u
 

   (16)

1 1
,

K T
kl l
n n

k t
SE D l n

 

   (17)

274

275 Step 2. Convert problem P into problem P0

276 The linear programming problem developed in Step 1 is transformed into problem represented 

277 by below formulations according to the basic principles of the ε-constraint method. In P0, the 

278 objective function is corresponding to Z1 of P, and Z2 and Z3 of P is dealt with as a constraint 

279 of P0. Problem P0 can be represented as follows:
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 
 

 

1

2 2

3 3

,

,

Max Z x

st Z x

Z x
and other constraints








(18)

280 Step 3. Construct the payoff table and determine ε2 and ε3

281 To solve problem P0, we need to determine ε2 and ε3 (upper bound for the second and third 

282 objective functions) that is limited by the range of objective functions f2 and f3. To obtain the 

283 appropriate ranges of f2 and f3, developed multi objective model is solved as a single objective 

284 problem using each time only one objective and ignore the others to specify the efficient 

285 solutions (i.e. upper bound, expected value and lower bound) for f2 and f3. For this purpose, a 

286 fuzzy logic based procedure is utilized and the problem is divided into sub problems. Each time, 

287 one of the upper, lower and expected values of the fuzzy parameters are taken into consideration 

288 and sub problems are solved according to one of the objective functions. For this purpose, a 

289 scenario based approach developed by Yılmaz Balaman (2016) is utilized in this study. The 

290 problem is divided into nine sub problems (SP) based on a scenario approach. Scenarios 

291 represent the best, expected and worst situations for three objective functions, which are 

292 constructed by taking into consideration the upper, lower and expected values of the fuzzy 

293 parameters. After constructing the scenarios, the model is solved according to one of the profit 

294 maximization, investment cost minimization or GHG emissions minimization objectives under 

295 three scenarios and the corresponding value for each objective function at each solution is 

296 determined. Based on the findings, the payoff table, which is an asymmetric matrix where the 

297 matrix elements represent the optimum values of the corresponding objective function, is 

298 constructed. The lower, upper and expected values of each objective function are determined 

299 based on the payoff table.

300
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301 Step 4. Obtain a set of pareto optimal solutions and calculate the membership function values

302 Solve the problem P0 with different values of ε2 and ε3 (i.e. upper, expected and lower values 

303 from the payoff table), and finally, obtain a set of pareto optimal solutions. After a set of pareto 

304 optimal solutions are obtained, a decision maker may wish to select a preferred one from them 

305 and may also want to know its degree of optimality. The fuzzy logic based approach (Esmaili 

306 et al., 2011) can both provide a most preferred solution and also indicate its degree of 

307 optimality. This approach utilizes membership functions which are used to formulate fuzzy 

308 numbers depending on the problem specific characteristics. Lai & Hwang (1994) stated that, 

309 the grade of a membership function indicates a subjective degree of satisfaction within given 

310 tolerances. A membership function, usually denoted by “μ”, associates each point in a fuzzy set 

311 F with a real number in the closed interval [0, 1]. It indicates the grade of membership of an 

312 element in a fuzzy set F. Thus, the nearer the value of membership function to unity, the higher 

313 the grade of membership of an element in a fuzzy set F. A membership function can be viewed 

314 as an quantification of the ambiguity of set F.

315 In this paper, the fuzzy logic based approach (Esmaili et al., 2011) is applied to assist in 

316 choosing a preferred solution. In the m-objective optimization problem with k pareto optimal 

317 solutions, the membership function  indicates the degree of optimality for the ith objective k
i

318 function in the kth solution. It is defined as follows;

319 1. In the case of objective functions being minimized;

k
i

k
k ki
i i

i i
k

i

i

i
i i

i

1 ; f (x) l

u - f (x)μ = ; l < f (x) u
u - l

0 ; f (x)> u

 

 




(19)

320 2. In the case of objective functions being maximized;
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k
i i

k
k ki i
i i i i

i i
k

i i

1 ; f (x)> u
f (x)- lμ = ; l < f (x) u
u - l

0 ; f (x)< l



 



(20)

321 where li and ui denote the lower and upper limits of objective function fi of P, respectively, and 

322  represents the value of the ith objective function in the kth pareto optimal solution, such k
if (x)

323 that  [li , ui].k
if (x) 

324 Step 5. Find the most preferred solution

325 If a decision maker offers a preferred weight vector, which represents the relative importance 

326 of each objective according to the decision maker’s preferences, for the cost minimization and 

327 emission minimization objectives, for each solution k, the membership degree  is calculated kμ

328 based on its individual membership functions by adding weight factors as follows: 

1

1

m
k

i i
k i

m

i
i

w μ
μ =

w








(21)

329 The solution with the maximum value of  is selected as the most preferred solution.k
iμ

330 3.2.  Case Study 

331 To explore the impacts of the main incentive schemes on the economic and environmental 

332 performance of bioenergy supply chains, computational experiments are performed for the WM 

333 region in the UK using the proposed optimization methodology. To this aim, seven regions in 

334 the WM, namely Birmingham, Coventry, Solihull, Sandwell, Walsall, Wolverhampton and 

335 Dudley, are considered to design a comprehensive supply chain. Four types of biowaste (cattle 

336 manure, laying chicken manure, broiler chicken manure, waste wood) and one energy crop 
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337 (maize) are assumed to be the potential biomass inputs. The existing yields and geographic 

338 distribution data on biowaste from husbandry are adopted from UK Department for 

339 Environment, Food & Rural Affairs (DEFRA) - farming statistics (DEFRA, 2015). Data on 

340 maize yields and geographical distribution of the maize fields are gathered from DEFRA - 

341 annual statistics on the structure of the agricultural industry (2015).

342 We consider meeting the corresponding biomethane, electricity and heat demands in a 

343 particular area in each of the considered regions. The numbers of addresses in the area 

344 considered in each region are given in Table 2. Data on the demands came from DECC (2013) 

345 and DECC National Heat Map (2012). The map of the case study region is depicted in Figure 

346 1 with biomass source sites, demand nodes, and candidate locations for energy plants and 

347 facilities considered in this study. 

348 Figure 1. Case study region map. 

349

350 Anaerobic digestion (AD) and gasification (G) technologies are considered to convert biomass 

351 into biofuel. AD is utilized to produce biofuel (biomethane) from organic wastes and maize, a 

352 proportion of which is converted into electrical and thermal energy in CHP engines. Biofuel 

353 (syngas) produced from waste wood by G is assumed to be transformed into electrical and 

354 thermal energy entirely by CHP engines. Collection and pre-treatment facilities to store, treat 

355 and distribute biomass are considered as pre-processing facilities. The potential locations for 

356 energy plants and facilities are chosen based on UK renewable energy planning database. 

357 The electrical and thermal efficiency of the cogeneration units are taken as 33% and 43% 

358 (DECC, 2008). The conversion rate of wood to wood pellet is taken as 0.84 (Uslu et al.,2008). 

359 The generated electrical energy, thermal energy and biomethane are assumed to be fed into the 

360 national electricity distribution network, on-site heating system and natural gas pipeline 
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361 network. Three capacity levels are considered for the pre-processing facilities, biomass to 

362 biofuel conversion plants and CHP units. These capacity levels reported in Table 2.

363 Table 2. Capacity levels of the plants.

364

365 Economic parameters: Considering the incentives and the base prices, the ultimate prices for 

366 electricity, heat and biomethane are calculated for both AD and G. The data related to incentives 

367 are gathered from the sources depicted in Table 1 and the base prices are derived from Digest 

368 of UK Energy Statistics. Table 3 depicts the electricity, heat and biomethane prices calculated 

369 based on base prices and incentives.

370 Table 3. Energy prices in the UK.

371

372 DECC (2012) is utilized to obtain the data on plant investment and operational costs. The 

373 operational costs consist of fixed and variable costs, which are calculated based on the installed 

374 capacity and the amount biomass processed in the plants and facilities, respectively. The unit 

375 investment and operational costs according to capacity levels are reported in Table 4. Unit costs 

376 are computed considering monthly biomass capacity of the facilities and plants, and installed 

377 power of the CHP. 

378 Table 4. Unit investment costs per installed capacity depending on capacity levels.

379

380 We consider that biomass feedstock is transported from source sites to facilities and from 

381 facilities to plants, and that biofertilizer is transported between plants and energy crop fields. 

382 Data on unit costs of transporting biomass and biofertilizer are derived from the literature and 

383 updated for the local conditions regarding the data gathered from local logistics firms. 

384 Environmental parameters: Data on GHG emissions associated with wood pellet production in 

385 pretreatment facilities and bioenergy production in plants are depicted in Table 5. GHG 
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386 emissions from truck transportation is obtained as 0.692514 kg CO2-eq / km from DEFRA 

387 Carbon Conversion Factors Dataset (2015d). Data on the GHG emissions associated with 

388 transportation are derived from the literature. Table 6 lists the GHG emissions for transporting 

389 cattle manure, poultry manure, wood pellet, maize and biofertilizer by road transport.

390 Table 5. Data on GHG emissions associated with production.

391 Table 6. Data on the GHG emissions associated with transportation.

392

393 Fuzzy parameters: The following parameters, which may fluctuate due to changing conditions 

394 about governmental policies, competition between firms, biomass based production techniques 

395 and technologies as well as environmental conditions about weather, soil …etc., are captured 

396 as fuzzy parameters in this study; (1) Energy prices, (2) Biomass yields, (3) Investment and 

397 operational costs, (4) Transportation costs, (5) Cost of biomass and auxiliary material, (6) Level 

398 of GHG emissions. To fuzzify these parameters, the coefficients corresponding to each of the 

399 above mentioned parameters are defined within a range in the model. To this aim, the lower 

400 and upper bounds for these coefficients are assumed to be 90% and 110% of their expected 

401 values. Expected values are the current values of parameters in the application time (given in 

402 the tables in Case Study section). These coefficients are utilized in the scenario based approach 

403 in the third step of the solution methodology to establish nine sub problems each represent the 

404 best, expected and worst situations for three objective functions, which are constructed by 

405 taking into consideration the upper, lower and expected values of the fuzzy parameters. 

406

407 3.3.  Results and Discussion

408 This section presents and analyses the results of our computational experiments focusing on 

409 the effects of the main incentive schemes on the performance of the regional supply chain 

410 designed by the optimization model. As stated previously, this paper utilizes the proposed 

411 optimization methodology to analyze the impacts of changes in three main incentive schemes, 

412 applied in the UK to promote renewable energy investments, on economic and environmental 

413 performance of the production chain. Hence the details about the modelling choices related to 
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414 the configuration of the regional supply chain and logistics planning decisions made by the 

415 optimization methodology are not given in this paper since it is not the main focus of this paper. 

416 However, they can be provided upon special request.

417 Further analyses are performed on three incentive schemes to reveal the impacts of their 

418 changes on profitability of the supply chain, total investment cost and GHG emissions obtained 

419 by configuring the supply chain designed and optimized by the developed model. To this aim, 

420 a sensitivity analysis is performed by considering a ±10% change in the incentive values under 

421 three cases; optimistic, base and pessimistic case. In optimistic and pessimistic cases, the effects 

422 of 10% rise and 10% decrease in incentives on three performance measures are analyzed, 

423 respectively. As for the base case, the current values of the incentives are considered. Results 

424 of the analyses are presented in Table 7.

425 Table 7. Results of the incentive analysis.

426 Effects of incentive schemes on the profitability

427 Figure 2 a, b, and c illustrates the impact of the incentive schemes on the profitability of the 

428 supply chain. The results reveal that, the profitability of the supply chain is mostly affected by 

429 the change of RoC, which is followed by FiT, when the optimistic cases (10% increase in 

430 incentives) are considered. The increase of RoC and FiT values by 10% cause a rise in monthly 

431 profit by 17% and 15%, respectively, whereas the increase of RHI by 10% makes the least 

432 change on the profit increasing it by 10%. However, for pessimistic cases the impact pattern is 

433 different from the optimistic cases. In this case, the monthly profit is mostly affected by the 

434 change of RHI, and secondly RoC. The reductions in RHI and RoC values by 10% decrease the 

435 monthly profit by 13.5% and 10%, respectively. The decrease of FiT by 10% makes the least 

436 change on the profit reducing it by 7%. It can also be concluded that, improvements in the RoC 

437 scheme which lead increases in the RoC incentive values, will be for the benefit of investors 
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438 whose major consideration is the profitability of the biomass based energy systems and supply 

439 chains. On the other hand, in the case of a cut down on the incentives, e.g. in economic 

440 downturns, financial bottlenecks or economic crisis, the profitability of the biomass based 

441 energy supply chains will be mostly impacted by the reductions in RHI. 

442 Figure 2(a). The impact of the FiT on the profitability of the supply chain.

443 Figure 2(b). The impact of the RHI on the profitability of the supply chain.

444 Figure 2(c). The impact of the RoC on the profitability of the supply chain.

445

446 Effects of incentive schemes on total investment cost 

447 Figure 3 a, b, and c illustrates the impact of the incentive schemes on the total investment 

448 cost of the supply chain. The changes in the incentive schemes have a relatively smaller impact 

449 on the total investment cost of the supply chain in comparison with their impact on the profit. 

450 The total investment cost of the supply chain is not impacted by the increase in the incentive 

451 values, which means that the configuration of the supply chain optimized by our model does 

452 not change in case of an upward trend in the incentives. However, the investment cost is affected 

453 by the downward changes in the incentive schemes. RoC and FiT have the greatest effect on 

454 the investment cost, in which a decrease by 10% increases the investment cost by 1.7%. 

455 Whereas, the decrease in the RHI value by 10% increases the cost slightly, by 0.39%. It should 

456 be noted that, although these impact rates seem insignificant, they can create significant changes 

457 in the total investment cost of regional or multi-regional cases, in which the decision makers 

458 face with relatively large scale investment decision making problems. On the other hand, in 

459 local level design cases, e.g. designing a local supply chain for a single company for its own 

460 energy/biofuel production activities, the above mentioned impacts may not change the 

461 configuration decision. 
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462 Figure 3(a). The impact of the FiT on the total investment cost of the supply chain.

463 Figure 3(b). The impact of the RHI on the total investment cost of the supply chain.

464 Figure 3(c). The impact of the RoC on the total investment cost of the supply chain.

465

466 Effects of incentive schemes on the level of GHG emissions

467 Figure 4 a, b and c illustrates the impacts of the incentive schemes on the total GHG 

468 emissions of the supply chain. The level of GHG emissions by the transportation, energy 

469 production and biomass preprocessing activities in the supply chain designed by the developed 

470 model mostly impacted by the changes in the RoC scheme. A decrease in the RoC incentive by 

471 10% makes the amount of GHG emissions increase by 12.3%. However its increase by the same 

472 percentage does not affect the level of emissions as much as the case of decrease, the increase 

473 in RoC value by 10% decreases GHG emissions by 0.64%. The increases in FiT and RHI values 

474 has a negligible effect on the GHG emissions, their increase by 10% negligibly affects the 

475 amount of environmental emissions. The decrease in RHI value has an insignificant effect on 

476 the GHG emissions as well, it increases the emissions by 0.42%, whereas the decrease in FiT 

477 has a remarkable effect in comparison with that of RHI, 10% increase in FiT causes an increase 

478 with 11% in GHG emissions level. The results suggest that if the minimization of GHG 

479 emissions is a major consideration in the design phase, the incentive values do not have a critical 

480 importance for the decision maker. However, the lower incentive values cause a slight increase 

481 of GHG emissions associated with transportation, energy production and biomass treatment 

482 activities in the supply chain configured by the developed model. As it can be observed from 

483 the results, the model estimates that increases in the values of RoC and FiT incentives have 

484 negligible effect on the GHG emissions, whereas decreases in these incentives result in 

485 significant increase in GHG emissions. The main reason of this may be the model has a 

486 tendency to construct less energy plants and storage/pre-treatment facilities when the incentives 
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487 are low, which results in reduced production and transportation activities and hence less GHG 

488 emissions related with these activities. The decrease rate of the number of energy plants and 

489 storage/pre-treatment facilities that is determined by the model is higher when the incentives 

490 are low, in comparison with the increase rate of the number of energy plants and storage/pre-

491 treatment facilities when the incentives are high. 

492 Figure 4(a). The impact of the FiT on the total investment cost of the supply chain.

493 Figure 4(b). The impact of the RHI on the total investment cost of the supply chain.

494 Figure 4(c). The impact of the RoC on the total investment cost of the supply chain.

495

496 4. Conclusions and Policy Implications

497 This study aims at analysing and evaluating the potential effects of the incentive policy changes 

498 on bioenergy projects in the UK. To this aim, a methodology based on fuzzy multi-objective 

499 mathematical programming is used to compare the main incentive schemes and to highlight the 

500 impacts of changes in these incentives on the economic and environmental performance of 

501 bioenergy production from multiple types of biomass sources. The methodology incorporates 

502 fuzzy decision making and multi-objective optimization, and captures uncertainties in the 

503 systems parameters as well as economic and environmental sustainability aspects. Three 

504 different incentive schemes (FiT, RHI and RoC), which are applied in the UK to promote 

505 renewable energy investments, are focused on to investigate which of them have the largest 

506 effect on the supply chain performance indicators.

507 It can be concluded that among three performance indicators (two economic and one 

508 environmental), profitability of the supply chain is the one that is mostly affected by the changes 

509 in the incentive policies. However, the incentive schemes that have the biggest effect on the 

510 profitability changes according to the upward and downward trends in the economic policies 



ACCEPTED MANUSCRIPT

25

511 which create optimistic and pessimistic cases in our analyses. The change in the RoC incentive 

512 value has the biggest effect on the total profit obtained from the supply chain if there is an 

513 upward trend in the economic policies on renewable energy systems. It should be concluded 

514 that, if profitability of the bioenergy systems is desired to be increased to encourage new 

515 investments in renewable energy sector, RoC incentives should be the first to be increased 

516 among these three schemes. For the cases of downward trend in economic policies (pessimistic 

517 case, i.e. reductions in incentives) in renewable energy, RHI is the scheme that has the biggest 

518 effect on the profitability of the chain. Hence, RHI values should be the last to be reduced in 

519 downward economic conjuncture (i.e. economic downturns, financial bottlenecks or economic 

520 crisis) to prevent losses in profitability of the existing investments.

521 In the case of an upward trend in economic policies that stimulate increase in incentive 

522 values, investment cost is the least impacted factor among three supply chain performance 

523 indicators. In this case, any increase in incentive values does not impact configuration of the 

524 supply chain (locations, numbers and capacities of bioenergy plants and pre-processing 

525 facilities), and hence investment costs. However, in downward economic conjuncture which 

526 may cause reductions in incentive values, the investment costs are mostly affected by the 

527 reductions RoC and FiT values. It should be concluded that, in this case RoC and FiT values 

528 should not be reduced significantly to not discourage new investments in renewable energy 

529 systems because of possible rises in the investment costs.

530 The results reveal that, environmental performance of the supply chain in terms of total 

531 GHG emissions is the least affected performance indicator by the changes in the incentive 

532 policies. If environmental performance of renewable energy systems is the most important 

533 consideration in policy making, incentive values in the scope of RoC scheme, should not be 

534 reduced significantly in cases of a downward trend in economic policies. According to the 

535 results, configuration of the supply chain optimized by the developed methodology results in 
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536 higher GHG emissions in case of lower RoC and FiT values in downwards economic 

537 conjuncture. However, the decrease in RHI value has an insignificant effect on the GHG 

538 emissions. In the case of an upward trend in economic policies, increases in all three incentive 

539 schemes have an insignificant impact on the level of GHG emissions.

540 By providing an understanding on the impacts of different incentive schemes on the 

541 performance criteria, this paper helps policy makers in determining which incentive schemes 

542 should be focused on (i.e. reduced, increased or remained constant) in downward and upward 

543 trends in economic policies that stimulate rises and decreases in incentive values, to support 

544 different economic and environmental supply chain performance criteria. The paper also 

545 supports decision makers in renewable energy investments on deciding how the performance 

546 of the system will be affected by the changes in different incentive schemes under different 

547 conditions in economic environment.  

548 Although our case study handles a regional case in the UK to guide overall targets on 

549 incentive schemes related to bioenergy production, it is also possible to apply the same 

550 methodology for other cases in different countries to analyse the impacts of changes in incentive 

551 schemes on the supply chain performance criteria. Also, exchange rate assumptions would 

552 clearly affect the results. Future research may apply the proposed methodology to different 

553 cases with additional, case-specific constraints and parameters. The methodology can be easily 

554 adapted to other cases and scenarios to observe the impacts of incentive schemes applied in 

555 different countries on the performance of the supply chain using the same general framework. 
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l Demand nodes
b Biomass types
u Product types 
f Byproduct types
n Energy type 
v Incentive type
p Biomass capacity levels for energy  plants
e Biomass capacity levels for facilities
q Electrical energy production capacity levels of CHP units
t Energy conversion technology
c Facility type
Decision Variables
1. Binary variables

k
ptA 1 if an energy plant of capacity p and technology t is located at k, 0 otherwise

ec
jB 1 if a facility of capacity e and type c is located at j, 0 otherwise

k
qCHP 1 if a CHP of capacity q is located in an energy plant at k, 0 otherwise

2. Positive variables

,
ij jk
cb tbS S Amount of biomass b shipped from; biomass source site i to facility j with type 

c, facility j to energy plant k with technology t (ton)
kl

tuSP Amount of product u produced in energy plant k with technology t to meet 
demand of node l (m3)

kl
tfSBP Amount of byproduct f distributed from energy plant k with technology t to 

demand node l (ton)

tn
klSE Amount of energy n  produced in plant k with technology t to meet demand of 

node l (kWh)  
k
tuPR Amount of product u  produced at energy plant k with technology t (m3)
k

tfBP Amount of byproduct f  produced at energy plant k with technology t (ton)

tn
kE Amount of energy n  produced at plant k  (kWh)
kW Amount of auxiliary material consumed at energy plant k (ton)

Parameters
1.Biomass supply and product demand

, ,
l

u f n
l lD D D Amount of demand; of product u, byproduct f and energy n at demand node l  (m3)

i
bBS Amount of available biomass b at biomass source site i  (ton)

2. Capacities

, ecptC C Biomass capacity of; energy plant of capacity level p with technology t, facility of capacity level 
e with type c

qnCE Installed capacity of CHP of capacity level q for energy n (kWe/ kWth)
3. Costs and prices

, ,pt ec qI I ICHP Unit investment cost of; energy plant of capacity level p with technology t, facility 
of capacity level e with type c (€/ton), CHP of capacity level q (€/kWh) 

, ,pt ec qVO VO VOCHP Unit variable operational cost of; energy plant of capacity level p with technology 
t, facility of capacity level e with type c (€/ton), CHP of capacity level q (€/kWh)

, ,pt ec qFO FO FOCHP
Unit fixed operational cost of; energy plant of capacity level p with technology t, 
facility of capacity level e with type c (€/ton-month), CHP of capacity level q 
(€/kW-month)

,bP PW Unit cost of biomass b, auxiliary material    (€/ton)

ftP Unit price of product u  (€/m3) and byproduct f  (€/ton), 
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utPB Unit base price of product u  produced by technology t (€/m3)

vutPI Value of incentive type v for product u produced by technology t (€/m3)

ntPB Unit base price of energy n  produced by technology t (€/kWh)

vntPI Value of incentive type v for energy n  produced by technology t (€/kWh)

/b fTV Unit fixed transportation cost of shipping biomass b, byproduct f  (€/ton)

/b fTF Unit variable transportation cost of shipping biomass b, byproduct f  (€/ton-km)
4. Distances

, ,
i jj k kld d d Distances from; biomass source site i to facility j,  facility j to plant k ,  plant k  to 

demand node l (km)
5. Conversion rates

,but bftr r Conversion rate of biomass b; to product u by plant technology t (m3/ton), to byproduct f  by plant 
technology t (%)

bcd Conversion rate of raw biomass b into treated biomass in facility with type c (%)

une Conversion rate of product u to energy n (kWh/m3)

ncv Conversion efficiency of cogeneration unit for energy n  (%)
k
tuny Percentage of product u to be converted to energy n in plant k with technology t (%)

6. Carbon Emissions

tg GHG emissions associated with energy production by plant with technology t (kg CO2 eq/kWh)

cg GHG emissions associated with treatment by facility with technology c (kg CO2 eq/ton)

/b fgt GHG emissions associated with biomass b, byproduct f transportation (kg CO2 eq/ ton-km)

g GHG emissions associated with transportation mode (kg CO2 eq/ km)
7. Other parameters
DF Discounting factor
CT Capacity of transportation vehicle (ton)

656
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 Figure 1. Case study region map 
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Figure 2(a). The impact of the FiT on the profitability of the supply chain

Figure 2(b). The impact of the RHI on the profitability of the supply chain

Figure 2(c). The impact of the RoC on the profitability of the supply chain
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Figure 3(a). The impact of the FiT on the total investment cost of the supply chain

Figure 3(b). The impact of the RHI on the total investment cost of the supply chain

Figure 3(c). The impact of the RoC on the total investment cost of the supply chain
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Figure 4(a). The impact of the FiT on the total investment cost of the supply chain

Figure 4(b). The impact of the RHI on the total investment cost of the supply chain

Figure 4(c). The impact of the RoC on the total investment cost of the supply chain
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Highlights:

1. The study focuses on the main incentive schemes to promote renewable energy in the 

UK. 

2. Feed-in tariff, Renewable Heat Incentive and Renewables Obligation Certificate 

schemes are focused on.

3. The effects of changes in renewable energy incentives on bioenergy sector are 

analyzed and discussed.

4. A methodology based on fuzzy multi objective mathematical modelling is used. 

5. Computational experiments are performed using the entire West Midlands Region in 

the UK as case study region.
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Table 1. Renewable energy support and incentive schemes in UK (Ang et al., 2016)

Year 
started 

Name of 
policy

Brief description

2002 Renewables 
Obligation 
(RO)

The RO incentivises large-scale renewable electricity generation by 
requiring electricity suppliers to source a specified proportion of the 
electricity they provide from renewable sources. In exchange for 
purchasing renewable electricity, suppliers receive Renewables 
Obligation Certificates (RoCs). Suppliers who do not purchase enough 
RoCs to meet their obligation must pay a ‘buy-out price’ set by the 
government. The RO will close to new generators in 2017. Electricity 
generation accredited under the RO will continue to receive its full 
lifetime of support of 20 years until the programme closes in 2037. 
(DECC, 2015a)

Reference for incentive values: 
http://www.epowerauctions.co.uk/erocrecord.htm

2010 Feed-in 
Tariffs 
(FITs)

FITs incentivises small-scale low carbon electricity generation by 
requiring energy suppliers to make payments to households and 
businesses with certified installations.
Payments include a generation tariff for each unit of electricity generated 
and an export tariff for each unit of electricity exported to the grid. 
Eligible installations include technologies that generate up to 5 MW of 
electricity using solar photovoltaic, wind or water turbines, anaerobic 
digestion or micro-combined heat and power (DECC, 2015b).

Reference for incentive values:
https://www.ofgem.gov.uk/system/files/docs/2016/04/01_april_2016_t
ariff_table.pdf

2011 Renewable 
Heat 
Incentive 
(RHI)

The RHI provides a tariff to businesses, the public sector and non-profit 
organisations for the installation of renewable heat technologies. 
Eligible technologies include solid biomass, ground-source or water-
source heat pumps, deep geothermal, solar thermal collectors, 
biomethane injection and biogas combustion (DECC, 2015c).

Reference for incentive values:
https://www.ofgem.gov.uk/environmental-programmes/non-domestic-
renewable-heat-incentive-rhi/tariffs-apply-non-domestic-rhi-great-
britain

http://www.epowerauctions.co.uk/erocrecord.htm
https://www.ofgem.gov.uk/system/files/docs/2016/04/01_april_2016_tariff_table.pdf
https://www.ofgem.gov.uk/system/files/docs/2016/04/01_april_2016_tariff_table.pdf
https://www.ofgem.gov.uk/environmental-programmes/non-domestic-renewable-heat-incentive-rhi/tariffs-apply-non-domestic-rhi-great-britain
https://www.ofgem.gov.uk/environmental-programmes/non-domestic-renewable-heat-incentive-rhi/tariffs-apply-non-domestic-rhi-great-britain
https://www.ofgem.gov.uk/environmental-programmes/non-domestic-renewable-heat-incentive-rhi/tariffs-apply-non-domestic-rhi-great-britain
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Table 2. Capacity levels of the plants

Capacity 
Level

Total biomass 
capacity of G 

plants 
(t/month)

(ukwin.org.uk)

Total biomass 
capacity of AD 

plants 
(t/month)

(wrap.org.uk)

Installed 
capacity

of 
cogeneration 
unit (kWe) 

(DECC, 2008)

Total biomass 
capacity of PT 

facilities 
(t/month) 

(ukwin.org.uk)

Total 
biomass 

capacity of 
CO 

facilities 
(t/month)

1 (Minimum 
Capacity)

1500 6000 2000 1500 6000

2 (Medium 
Capacity)

3000 12,000 3500 3000 12,000

3 (Maximum 
Capacity)

4500 18,000 5000 4500 18,000
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Table 3. Energy prices in the UK

         Anaerobic Digestion Gasification
Electricity Heat Biomethane Electricity Heat Biomethane

Base Price (€/kWh) 0.057 0.04 0.0316 0.057 0.04 No production
FiT (€/kWh)
Generation 0.0998 - - - -
Export 0.0628 - - - -
RHI (€/kWh) - 0.026 0.0677 - 0.026
RoC (€/kWh) - - - 0.0957 -
Total (€/kWh) 0.2196 0.066 0.0993 0.1527 0.066
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Table 4. Unit investment costs per installed capacity depending on capacity levels 

Capacity 
Level

Unit investment 
cost of G plants 

(€/ton) 
(DECC, 2012)

Unit investment 
cost of AD plants 
(€/ton) (DECC, 

2012)

Unit investment 
cost of CHP 

(€/kWe) 
(DECC, 2012)

Unit investment cost 
of PT facilities(€/ton) 

(Rentizelas et al., 
2014)

1 9417 1652 487 842
2 8239 1446 419 739
3 7847 1377 352 709

Capacity 
Level

Unit fixed and 
variable 

operational costs 
of G plants (€/ton) 

(DECC, 2012)

Unit fixed and 
variable 

operational costs 
of AD plants 

(€/ton) (DECC, 
2012)

Unit fixed 
(€/kWe)  and 

variable (€/kWh)  
operational costs 

of CHP 
(DECC, 2012)

1 55.33 -17.65 10.36 - 6.04 7 - 0.0072
2 48.4 - 15.5 9.067 - 5.29 6.54 - 0.0064
3 46.1 - 14.73 8.635 - 5.03 6 - 0.006
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Table 5. Data on GHG emissions associated with production

Source of GHG emissions GHG emissions (kg CO2 Eq/ kWh) Reference

Conversion
Biogas to energy 3.67x10-4 (kg CO2 Eq/ kWh) DEFRA Carbon Conversion 

Factors Dataset (2015)
Syngas to energy 0.18445 (kg CO2 Eq/ kWh) DEFRA Carbon Conversion 

Factors Dataset (2015)
Pretreatment

Pelletizing 1.47x10-4 (kg CO2 Eq/ ton) Cucek et al. (2010)
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Table 6. Data on the GHG emissions associated with transportation

Cattle 
Manure 
(liquid)

Broiler 
Hen 

Manure 
(Solid)

Layer Hen 
Manure 
(Liquid)

Waste 
Wood 

(Logging 
residues)

Wood 
pellet

Maize 
(Loose)

Fertilizer 
(liquid)

GHG 
emissions
(kg CO2 
eq/ ton-

km)

5.3x10-8

Cucek et 
al. (2010)

5.3x10-8

Cucek et al. 
(2010)

5.3x10-8

Cucek et 
al. (2010)

5.3x10-8

Cucek et al. 
(2010)

2.4x10-7

Cucek 
et al. 

(2010)

1.1x10-6

Cucek et 
al. 

(2010)

5.3x10-8

Cucek et 
al. (2010)
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Table 7. Results of the incentive analysis

FiT (€/kWh) RHI (€/kWh) RoC (€/kWh) Profit 
(€/Month) Investment Cost (€) GHG Emissions

(kg CO2 eq/Month)
Optimistic case

Generation - 0.10978
Export - 0.06908
Total – 0.17889

0.026 (heat)
0.0677 (biomethane) 0.0957 392,208 90,331,000 2,773,979

Base case
Generation - 0.0998

Export - 0.0628
Total – 0.1626

0.026 (heat)
0.0677 (biomethane) 0.0957 341,197 90,331,000 2,773,974

Pessimistic case
Generation - 0.08982

Export - 0.05652
Total – 0.14634

0.026 (heat)
0.0677 (biomethane) 0.0957 317,301 91,888,550 3,075,879

Generation - 0.0998
Export - 0.0628

Optimistic case
0.0286 (heat)

0.07447 (biomethane)
0.0957 375,452 90,331,000 2,773,979

Generation - 0.0998
Export - 0.0628

Base case
0.026 (heat)

0.0677 (biomethane)
0.0957 341,197 90,331,000 2,773,974

Generation - 0.0998
Export - 0.0628

Pessimistic case
0.0234 (heat)

0.06093 (biomethane)
0.0957 294,943 90,684,500 2,785,656

Generation - 0.0998
Export - 0.0628

0.026 (heat)
0.0677 (biomethane)

Optimistic case
0.10527 399,221 90,331,000 2,756,173

Generation - 0.0998
Export - 0.0628

0.026 (heat)
0.0677 (biomethane)

Base case
0.0957

341,197 90,331,000 2,773,974

Generation - 0.0998
Export - 0.0628

0.026 (heat)
0.0677 (biomethane)

Pessimistic case
0.08613 307,083 91,888,550 3,115,758


