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Abstract: To further understand effects of titanium dioxide (TiO2) nanoparticles on thermal, optical, 

microstructural, interfacial and mechanical properties of shape memory polyurethane (SMPU), 

TiO2/SMPU nanocomposites with different TiO2 contents were synthesized. Then various properties of 

TiO2/SMPU nanocomposites were characterized. Results indicate that the melting temperature of soft 

segments in SMPU can be used as the shape memory transition temperature of TiO2/SMPU 

nanocomposites. TiO2 nanoparticles are almost filled in SMPU pores to form compact skeleton structures 

in TiO2/SMPU when the TiO2 content is 3% by weight. Further, the used TiO2 is rutile phase, and lowers 

the SMPU crystallinity. The suitable TiO2 content can increase the absorptivity to UV light and enhance 

the reflectivity to visible light of TiO2/SMPU nanocomposites, lowering its photo-aging properties and 

prolonging its service life. Also, TiO2/SMPU shows a higher scattering intensity and a faster decreasing 

trend than SMPU due to the larger electron density difference between TiO2 and SMPU. The microphase 

separation and ordered structures in SMPU are decreased due to added TiO2 nanoparticles. There are 

electron density fluctuations at the interfaces between hard and soft phases in SMPU, and between SMPU 

and TiO2 nanoparticles. Finally, the prpared TiO2/SMPU nanocomposites have better shape memory 

effects and tensile properties when TiO2 content of 3% is proposed to synthesize TiO2/SMPU 

nanocomposites for practical engineering applications.  

Keywords: A. Particle-reinforced composites; B. Environmental degradation; B. Interface; B. 

Mechanical properties; B. Thermal properties 
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1. Introduction 

TiO2 is widely used in environmental applications, cosmetics, paper, coatings, foods, toothpastes and 

paint because of its green, clean, low cost and sustainable innovation [1]. During the past several decades, 

TiO2 has been extensively studied due to its interesting electric, magnetic, catalytic, and electrochemical 

properties [2]. TiO2 has three distinct polymorphs, including rutile, anatase and brookite. Anatase TiO2 is 

adapted to photocatalytic applications, and rutile TiO2 exhibits a high refractive index and hiding power, 

as well as good chemical stability and UV light screening effects [3]. 

Additionally, TiO2 is a wide band-gap semiconductor with a high refractive index, which lends it to 

be used as a whitening agent. TiO2 is also an effective opacifier when used as powder [4]. The scattering 

power of individual TiO2 particles for visible light is maximized when the particles have a diameter of 

approximately 300 nm [4]. Man et al. [5] investigated effects of TiO2 on optical and mechanical 

properties of poly (lactic acid) to understand the UV shielding role of TiO2 additives on the stability of 

polymer based nanocomposites. Finally, TiO2 is often used as the reinforcement phase of polymer matrix 

to improve its mechanical properties.  

Recently, as a smart material, shape-memory polymers (SMPs) can change their shape in response to 

external stimuli such as heat, light, electric or magnetic field [6]. SMPs have many advantages over shape 

memory alloys in easy processing, low density, high shape recovery, high recoverable strain, and low 

manufacturing cost [7]. In particular, the thermally actuated SMPs have received more and more attention 

in recent years due to their potential applications. SMPs usually include the cross-links to determine the 

permanent shape, and the switching segments with transition temperature (Tt) to fix the temporary shape 

[8]. According to the nature of switching segments, SMPs are further subdivided into two categories, 

including SMPs with amorphous switching segments where Tt is the glass transition temperature (Tg), and 
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SMPs with crystalline switching segments, where Tt is the melting temperature (Tm) [8].  

Among these SMPs, SMPUs have attracted more and more attention during the past decades because 

of their excellent properties such as high tensile strength, high flexibility, high abrasion resistance, good 

adhesion ability, and so on [9]. SMPUs have become one of the most rapidly developing members of PU 

industry, and have been applied in many aspects such as coatings, textiles, adhesives, sealant, films, etc 

[10]. However, SMPU still has such limitations as lower stiffness and weaker shape recovery force when 

compared with shape memory alloys and ceramics [9]. Further, like other polymer materials, SMPU is 

vulnerable to aging and ultimately fails to meet the performance requirements and subsequently limits its 

practical application when exposed to heat, oxygen or ultraviolet (UV) light during its service life. All 

these result from the age hardening and sacrifice of desirable physical properties of SMPU.  

Considerable efforts were made to exploit the potential of nanocomposites and nanoscale materials 

in both academic and industrial community. One of important approaches consists in the reinforcement of 

SMPU using fibers and inorganic nanoparticles, such as TiO2, Al2O3, silica, clay, etc [11]. Among these 

nanoparticles, TiO2 have recently received an increasing attention due to its many valuable properties 

cited above. Zhou et al. [12] reported a novel thermal-sensitive polyurethane/TiO2 nanohybrid membrane 

prepared via in situ process, and discussed its thermal sensitive characteristics. Chen et al. [13] prepared 

the thermo-sensitive polyurethane solution containing different TiO2 concentrations, and found that gas 

permeability coefficients of membranes to increase with the increase in TiO2 concentration. 

More recently, Zhang et al. [14] studied the influence of anisotropic TiO2 nanoparticles on the 

structure formation in a semicrystalline isotactic polypropylene. TiO2 nanoparticles increased the elastic 

modulus of isotactic polypropylene and improve environmental stability by attenuating UV light that 

degrades the polymer. Marzouk et al. [15] discussed the effect of TiO2 on the optical, structural and 
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crystallization behavior of barium borate glasses. Ramos et al. [16] studied the mechanical and 

physicochemical characteristics of chitin hydrogels reinforced with TiO2 nanoparticles, and found TiO2 

endowed chitin gels mechanical stability. 

It is noted that some properties of pure SMPU do not quite meet the requirements of engineering 

materials. However, few studies involved in influences of TiO2 nanoparticles on the thermal, optical, 

microstructural, interfacial, shape memory and mechanical properties of SMPU. Further, the interactions 

and interfacial structures between TiO2 nanoparticles and SMPU matrix were seldom reported. How to 

utilize the merits of TiO2 to comprehensively improve various properties of SMPU is seldom investigated. 

The objective of this study is to understand effects of TiO2 nanoparticles on thermal stability, 

crystallization behaviors, photo-aging property, microstructure, interfacial structure, shape memory 

effects and mechanical performance of SMPU, and then a suitable TiO2 content is proposed to prepare 

TiO2/SMPU nanocomposites, meeting the requirements of practical engineering materials.  

In this study, TiO2/SMPU nanocomposites with different TiO2 contents were first synthesized by 

in-situ polymerization method. A differential scanning calorimeter (DSC) was used to discuss effects of 

different TiO2 contents on the thermal properties of SMPU, and to determine the Tt for programming the 

nanocomposites. Then field emission scanning electron microscopy (FESEM) were utilized to observe the 

microscopic morphology changes of TiO2/SMPU, respectively. Also, optical properties of TiO2/SMPU 

nanocomposites were characterized using ultraviolet-visible light diffuse reflectance spectra (UV-vis 

DRS) to discuss effects of TiO2 contents on the photo-aging property of SMPU. After that, crystallization 

behavior changes of SMPU and interfacial structures between TiO2 and SMPU were characterized using 

wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS) after the addition of TiO2, 

respectively. Finally, influences of TiO2 contents on shape memory effects and mechanical properties of 
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SMPU were investigated to validate whether the prepared TiO2/SMPU can meet the requirements of 

practical engineering application. Then the suitable content of TiO2 was proposed to synthesize 

TiO2/SMPU nanocomposites for practical engineering applications. 

2. Experimental 

2.1 Synthesis of samples 

The nanocomposites were synthesized by dispersing TiO2 nanoparticles in SMPU matrix using the 

in-situ polymerization. Firstly, the calculated amount of Poly-1, 4-butylene adipate glycol (PBAG, Suzhou 

Xuchuan Chemical Co. Ltd., China, Mn=2000) was put into the flask which was equipped with a 

thermometer, a mechanical stirrer, nitrogen inlet and outlet tubes. The temperature was slowly elevated to 

120 
oC, and this temperature was maintained for 1.5 h for vacuum dehydration where the vacuum degree 

was more than 0.095 MPa. 

Secondly, the calculated amount of 2, 4-tolylene diisocyanate (TDI, Shanghai TCI Chemical Co. 

Ltd., China) was added when the temperature was slowly dropped to 80 oC. The reaction took place for 2 

h under the protection of nitrogen. Thus the SMPU pre-polymer was obtained. Thirdly, TiO2 nanoparticles 

with the particle size of 30 nm (Xuancheng Jingrui New Material, Co. Ltd., China,) was added and 

blended quickly with the mechanical stirring for about 10 minutes at 80 oC to be dispersed uniformly in 

the pre-polymer. Fourthly, when the temperature was further slowly dropped to 70 oC, the calculated 

amount of 1, 4-Butanediol (BDO, Sinopharm Chemical Reagent Co. Ltd., China) was added dropwise 

into the mixture with the quick stirring for 30 min for chain extension. 

Finally, after the reaction was completed, the nanocomposites were injected into a 

polytetrafluoroethylene mold where the homogeneous mixture was cooled to room temperature and cured. 

Thus the TiO2/SMPU samples were obtained after demoulding. Then these nanocomposite samples were 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

subjected to different experiments for characterizing their various properties. The prepared samples were 

marked as SMPU, 1% TiO2/SMPU, 3%TiO2/SMPU, 5%TiO2/SMPU, which represented the ratios of TiO2 

to SMPU pre-polymer were 0%, 1%, 3%, 5% by weight, respectively. 

2.2 Characterization method 

A DSC (204F1 type, Netzsch, Germany) was used to analyze effects of TiO2 contents on Tt of the 

SMPU under nitrogen atmosphere. Approximately 10 mg sample was heated from -20 oC to 100 oC at a 

heating rate of 10 oC/min. Subsequently, the temperature was dropped to -20 oC with a cooling rate of 20 

oC/min. Once again, the sample was heated to 100 °C at a heating rate of 10 oC/min.  

FESEM (JSM-7600F type, JEOL, Japan) was used to observe microscopic morphology 

characteristics of SMPU and TiO2/SMPU nanocomposites, respectively. Samples were first fixed on an 

aluminum sample stub and sputtered with gold under vacuum conditions. Then the sample chamber was 

opened to place samples. Finally, the morphologies of samples were observed using FESEM. 

A UV-vis spectrophotometer (Lambda 950 type, PE, USA) was utilized to record the diffuse 

reflectance spectra of SMPU and TiO2/SMPU samples. A BaSO4 standard was used as a reference sample 

for baseline correction. The scan range was 200–800 nm at a data interval of 1nm. 

WAXD (Ultima IV type, Rigaku, Japan) was used to investigate effects of TiO2 contents on the 

crystallization behaviors of SMPU. The XRD analyzer was with Cu-Kα radiation (λ= 0.15418 nm). The 

accelerating voltage and applied current were 40 kV and 30 mA, respectively. The WAXD patterns were 

recorded in the 2θ range from 10 ° to 80 ° in the step scanning mode at a rate of 2°/min. 

The effects of TiO2 addition on molecular chain states of hard and soft segments in SMPU and 

interfacial structures between TiO2 nanoparticles and SMPU matrix were characterized using a SAXS 

instrument (Nanostar type, Bruker AXS, Germany) with Cu-K  radiation and Ni chip filtering, 
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respectively. The accelerating voltage and applied current were 35 kV and 30 mA, respectively. The step 

scanning mode was used with a step length of 0. 02° at a scanning rate of 1° min−1. 

The influence of TiO2 contents on the shape memory effects of SMPU was evaluated at (Tt+10) oC 

using the shape fixity ratio (Rf) and shape recovery ratio (Rr) which were described elsewhere [17]. 

Dog bone specimens with the middle distance of 40 mm were stretched by an electronic universal 

testing machine (ETM504C, Wance test equipment, China) to study the influence of TiO2 content on the 

tensile properties of the SMPU. The tensile properties, such as tensile strength and elongation at break, 

were tested at room temperature with a loading rate of 10 mm/min. Three effective specimens were tested 

for each group. 

3. Results and discussion 

3.1 Thermal properties 

DSC tests were conducted to discuss effects of different TiO2 contents on the thermal properties of 

TiO2/SMPU nanocomposites. The test results are shown in Fig. 1. 

 
Fig. 1 DSC thermograms of TiO2/SMPU nanocomposites with different TiO2 contents 

From Fig. 1, the obvious step-shape changing curves are not seen on DSC thermograms, so it is 

difficult to determine the Tg of TiO2/SMPU nanocomposites. However, TiO2/SMPU samples show 
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endothermic peaks in the temperature range from 40 oC to 65 oC, which suggests the Tm of crystallites in 

soft phase of SMPU. This is because the Tm of hard phase in SMPU is usually higher than this 

temperature range [18]. It is believed that the endothermic peaks are the melting peaks of soft phase or the 

overlaps of hysteretic peaks of Tg [19]. Since the shape memory is generated by the entropy elastic 

behavior of rubbery soft phase, Tm of soft phase is generally regarded as Tt of SMPU to actuate its shape 

memory actions [20]. Therefore, DSC thermograms determine the Tts of crystalline soft segments as the 

shape memory switching temperature of TiO2/SMPU to discuss their shape memory properties [20].  

Additionally, it is noted that the DSC curve peak shows a slight shift to the low temperature with the 

increase in TiO2 contents, indicating that the Tts of TiO2/SMPU nanocomposites are gradually lowered. 

This is attributed to the fact that the added TiO2 nanoparticles disturb the symmetry and orderness of 

SMPU molecular chains, and hinders the crystallization of soft phases which causes the decrease in 

crystallinity of SMPU [21]. Thus the Tts of TiO2/SMPU are lowered as the TiO2 content is increased. 

However, it is found that TiO2 content shows slight influences on the Tt of TiO2/SMPU nanocomposites.  

3.2 Morphology changes 

FESEM was used to discuss the changes in microscopic morphology of TiO2/SMPU nanocomposites 

as the TiO2 content is increased. SEM images of TiO2/SMPU nanocomposites with different TiO2 

contents are present in Fig. 2. 
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Fig. 2 SEM images of TiO2/SMPU nanocomposites with different TiO2 contents 

It is seen from Fig.2 (a) that pure SMPU is composed of a lot of porous structures. The applied loads 

can be delivered by the pore walls in TiO2/SMPU nanocomposites. However, the pores in SMPU are 

gradually filled up by TiO2 nanoparticles with the increase in TiO2 content. As shown in Fig. 2 (b), the 

pores are partly filled up when the TiO2 content is 1%. From Fig. 2 (c), it is observed that all pores are 

almost filled up and few agglomerations are found when TiO2 content is 3%. TiO2 nanoparticles are 

wrapped by SMPU matrix to form a compact skeleton structure in TiO2/SMPU nanocomposites. However, 

when TiO2 content is up to 5%, the microscopic morphology is not smooth and TiO2 particles are 

agglomerated in SMPU as shown in Fig. 2 (d). This is because TiO2 nanoparticles have large specific 

surface area, and there are many active sites on the surface which leads to the surface energy in an 

unstable state. It is easy to agglomerate and reach a stable balanced state which may affect other test 

results of crystallization behaviors, shape memory effects, mechanical properties, etc [21].  

3.3 Crystallization behaviors 

To investigate the influence of TiO2 contents on crystallization behaviors and phase structurs of 
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TiO2/SMPU nanocomposites, WAXD tests are conducted on the TiO2, SMPU and TiO2/SMPU samples, 

respectively. The test results are illustrated in Fig. 3. 

 

Fig. 3 WAXD patterns of TiO2, SMPU and TiO2/SMPU composites with different TiO2 contents 

As shown in Fig. 3, pure SMPU shows a broad diffused diffraction peak at around 2θ=19°, 

indicating that SMPU is typical of amorphous polymeric materials, and there are amorphous phases or 

microcrystals in SMPU. This may be due to the fact that the crystals formed by the polymer are usually 

microcrystalline structures, and their crystallite sizes are small [22]. Another reason is attributed to the the 

aggregation of chain segments because of microphase separation in SMPU [23]. Also, when the different 

contents of TiO2 are added into SMPU, five main characteristic diffraction peaks of TiO2 are still seen at 

27.4°, 36.0°, 41.2°, 54.3° and 69.0°, respectively. Compared with TiO2 standard card (JCPDS No: 

21-1276), it is found that TiO2 used in this study is rutile phase.  

From Fig. 3, it is noted that the intensity of characteristic diffraction peak of TiO2/SMPU at 2θ=19° 

is decreased gradually and the peak become weaker and broader with the increase in TiO2 content. This is 

because TiO2 nanoparticles affect the motion of molecular chains in SMPU and then the orderness of 

chain segments is decreased and it is difficult to form a stable aggregation state [24]. Therefore, this leads 

to the decrease in crystallinity of TiO2/SMPU, and the intensities of diffraction peaks become weaker. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

Furthermore, the diffraction peaks also appear at 27.4°, 36.0°, 41.2°, 54.3° and 69.0° in the WAXD 

patterns of TiO2/SMPU nanocomposites, and the intensities of diffraction peaks are increased gradually 

with the increase in TiO2 content. It suggests that the characteristic diffraction peaks of TiO2 exist in 

TiO2/SMPU nanocomposites. This indicates that TiO2 nanoparticles are successfully filled in SMPU 

matrix and they still retain the original crystal structures in the compositses [25]. 

3.4 Optical properties 

In order to study effects of TiO2 nanoparticles on optical properties of SMPU, the UV–Vis DRS tests 

are carried out on pure SMPU and TiO2/SMPU nanocomposites. UV-Vis absorption spectra of 

TiO2/SMPU nanocomposites with different TiO2 contents are shown in Fig. 4. 

 
Fig. 4 (a) UV-Vis reflection spectra of TiO2/SMPU nanocomposites with different TiO2 contents and 

(b) enlarged subplot in UV light region 

As shown in Fig. 4 (a), pure SMPU has a larger reflectance in the UV light region than TiO2/SMPU 

nanocomposites. After the TiO2 nanoparticles are incorporated in SMPU matrix, the reflectance of 

TiO2/SMPU nanocomposites is decreased in the UV light region, particularly in the wavelength range 

from 310 nm to 400 nm. This is because that the rutile TiO2 used in this study belongs to the n-type 

semiconductor with a wide band gap, which is composed of low energy band (valence band) with full of 

electrons and high energy band (conduction band) without electrons [5]. Under the stimulation of UV 

light, the electrons of valence band absorb energy to jump to conduction band. This makes TiO2 to absorb 
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more UV light so that the UV reflectance of TiO2/SMPU nanocomposites is decreased. This effectively 

lowers the degradation and photo-aging of SMPU due to the absorption of UV light.  

Fig. 4 (b) further presents that the UV reflectance of 1%TiO2/SMPU sample is similar to that of pure 

SMPU, and the UV reflectance of 3%TiO2/SMPU sample is smaller than those of 1%TiO2/SMPU and 

5%TiO2/SMPU samples. This is because the TiO2 content of 1% is too small to have obvious effects on 

the reflectance of TiO2/SMPU nanocomposites. Another reason is some TiO2 nanoparticles in          

5%TiO2/SMPU sample is agglomerated as shown in Fig. 2 (d), which affects the UV reflectance of 

TiO2/SMPU. Additionally, from Fig. 4 (a), it is noted that the UV-Vis reflection spectra of TiO2/SMPU 

nanocomposites present a red shift. This may be due to the fact that the UV light absorption range of TiO2 

is wider, thus expanding the absorption range of TiO2/SMPU nanocomposites [26].  

In the visible light region, pure SMPU reflectance to visible light is about 85%, while the reflectance 

of TiO2/SMPU nanocomposites is increased. Particularly, the reflectance of 3%TiO2/SMPU sample 

reaches the maximum value of 95%. The possible reason is that the reflectivity of TiO2 crystal face is 

stronger. The reflectivity of 5%TiO2/SMPU sample is lower, which is attributed to the partial 

agglomeration of TiO2 nanoparticles.  

It is concluded that the suitable TiO2 content can improve the UV light absorptance and visible light 

reflectance of TiO2/SMPU nanocomposites. When the TiO2 content is 3%, the absorptivity to UV light 

and the reflectivity to visible light of TiO2/SMPU reach the maximum values. The absorbed UV light is 

transformed into heat to emit from TiO2/SMPU nanocomposites, which can lower the damages to the 

SMPU molecular chains due to UV light absorption. The reflectivity of TiO2 to visible light can also 

lowered the photo-aging properties of TiO2/SMPU nanocomposites, thus prolonging its service life. 
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3.5 Microstructural and interfacial characterization 

The SAXS technique is used to obtain microstructural and interfacial information of pure SMPU and 

representative 3%TiO2/SMPU. 2D-SAXS patterns of the above two samples are shown in Fig. 5. 

 
Fig. 5 2D-SAXS patterns of pure SMPU and representative TiO2/SMPU nanocomposites 

As shown in Fig. 5 (a), 2D-SAXS patterns of SMPU show isotropic scattering haloes since the 

scattering densities of hard and soft segments are different. It indicates the presence of periodic isotropic 

structures due to the microphase separation in SMPU [27]. This is because hard and soft segments are 

randomly curled in the SMPU. From Fig. 5 (b), 2D-SAXS patterns of TiO2/SMPU are quite similar to that 

of SMPU, but the scattering intensity of TiO2/SMPU is obviously increased. The reason for this is that the 

composite material is isotropic and the spherical scatters of TiO2 nanoparticles exist [28].  

The corresponding SAXS profiles such as scattering curves and azimuthal intensities of pure SMPU 

and representative 3%TiO2/SMPU nanocomposites are illustrated in Fig. 6. 

 
Fig.6 SAXS profiles of (a) scattering curves and (b) azimuthal intensities of pure SMPU and 
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representative 3%TiO2/SMPU nanocomposites 

It is seen from Fig.6 that the scatting intensity of TiO2/SMPU is higher than that of SMPU. This is 

because that the number of scatters is increased after the addition of TiO2 in SMPU, and the X-ray is 

scattered by spherical TiO2 nanoparticles with crystal structures, leading to the increase in scattering 

intensity of TiO2/SMPU [29]. This indicates that the increase in scattering intensity is mainly attributed to 

the addition of TiO2 nanoparticles. 

Additionally, the scatting intensity of SMPU shows a decreasing trend with the increase in scattering 

vector (q), suggesting there is an electron density difference between soft and hard segments in SMPU. 

This is because of the microphase separation between soft and hard segments which is derived from their 

mutual repulsion and respective aggregation in SMPU. Similarly, the scatting intensity of TiO2/SMPU 

shows a more obvious decreasing trend with the increase in scattering vector (q). It indicates that there is 

a larger electron density difference between TiO2 nanoparticles and SMPU matrix. This is attributted to 

the larger difference in material properties between inorganic TiO2 and organic SMPU matrix. 

As shown in Fig. 6 (b), SMPU and TiO2/SMPU samples show similar scattering peaks. However, the 

scattering peaks of SMPU are stronger than those of TiO2/SMPU, particularly, and there is a broader and 

stronger scattering peak at around θ=0o. This suggests that the microphase separation of soft and hard 

segments in SMPU is affected by addition of TiO2 nanoparticles, and the ordered structures in SMPU are 

decreased, forming more disordered structures in SMPU. The reasons for this are the interface interaction 

between TiO2 and SMPU and steric-hinerance effects affect the aggregation of hard phase in SMPU [30]. 

Furthermore, more intermediate phase is formed between TiO2 nanoparticles and SMPU matrix, 

leading to the decrease in miscrophase separation of SMPU. This is because TiO2 nanoparticles have a 

huge specific surface area and high surface energy although its content is small. SMPU 

molecular chains are adsorbed on the TiO2 nanoparticle surface to lower their surface energy. TiO2 
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nanoparticles are coated and anchored by organic molecular chains of SMPU. The mutual diffusion, 

permeation and entanglement occur between SMPU molecular chains and TiO2 nanoparticles, 

generating the intermediate phase interface structures [30].  

To further understand the interfacial structures in the above two samples, the microstructure 

characteristics are investigated by classical SAXS theory according to SAXS scattering curves [28]. It is 

known that Porod approximation is suitable to discuss the interface information of different phases [31]. 

Porod curves from SAXS test results of SMPU and representative 3%TiO2/SMPU are given in Fig. 7. 

 

Fig. 7 Porod curves of pure SMPU and representative 3%TiO2/SMPU nanocomposites 

Fig. 7 shows the typical plot of ln[q3I(q)] versus q2 from SAXS test results of SMPU and 

representative 3%TiO2/SMPU samples. It is seen that the plot of 3%TiO2/SMPU sample is different from 

that of SMPU, indicating the addition of TiO2 leads to the changes in electronic energy states. It is noted 

that the SAXS intensity plots of both SMPU and TiO2/SMPU nanocomposites do not conform to the 

Porod theorem [28], and show the typical positive deviations at the high angles. Further, the positive 

deviations of the above two samples gradually tend to similarity. This indicates that there are electron 

density fluctuations at the interfaces between hard and soft phases in SMPU, and between SMPU matrix 

and TiO2 nanoparticles in TiO2/SMPU nanocomposites. The electron density fluctuations show no 

obvious difference at the high angles. 
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For TiO2/SMPU nanocomposites, it is believed that the interface interaction between organic SMPU 

molecular chains and inorganic TiO2 nanoparticles is responsible to the positive deviation. On the one 

hand, there may be Debye shielding layer causes positive and negative charges on TiO2 nanoparticle 

surface to redistribute [32]. The distribution of positive and negative charges is not a gradual gentle 

transition process from the inside of nanoparticles to SMPU matrix, but it is a shielding process with 

jumping characteristics. This results in the local electron density fluctuation at the interface between TiO2 

and SMPU matrix because the electrons at the interface are interfered by opposite charges [32].  

Also, a large number of traps are formed at the interface due to the incorporation of inorganic TiO2 

nanoparticles, which leads to the generation of space charges, affecting the electron density in the 

interface between TiO2 nanoparticles and SMPU [32]. Similarly, for pure SMPU, the distribution of 

positive and negative charges is not a gentle transition process at the interface between the hard and soft 

phases of SMPU. The electrons at the interface are interfered by opposite charges to cause the local 

electron density fluctuation. Also, the formed traps at the interface lead to electron density changes.  

3.6 Shape memory effects  

To study effects of TiO2 contents on the shape memory effects of SMPU, the shape memory 

properties of TiO2/SMPU with different TiO2 contents are characterized by Rf and Rr. The test results of Rf 

and Rr of TiO2/SMPU samples with different TiO2 contents are within the standard deviations, and the 

average values of Rf and Rr are presented in Table 1. 

Table 1 Test results of shape memory effects of TiO2/SMPU specimens with different TiO2 contents 

TiO2 content (%) l0 (mm) l1 (mm) l2 (mm) l3 (mm) Rf Rr 

0.0 40.0 42.7 42.7 40.0 100% 100% 

1.0 40.0 43.0 43.0 40.0 100% 100% 

3.0 40.0 43.2 43.1 40.1 96.9% 96.8% 

5.0 40.0 42.9 42.7 40.2 93.1% 92.6% 
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From Table 1, it is found that both Rf and Rr of pure SMPU and 1%TiO2/SMPU specimens are 100%, 

indicating that a small amount of TiO2 nanoparticles has few effects on the shape memory properties of 

SMPU. Both Rf and Rr of 3%TiO2/SMPU and 5%TiO2/SMPU specimens are slightly less than those of 

pure SMPU and 1%TiO2/SMPU specimens. This suggests that the shape memory properties of SMPU are 

lowered as the TiO2 content is further increased. The resons for this are that the addition of TiO2 

nanoparticles loweres the crystallization of soft segments in SMPU, and thus affects the Rf of SMPU. At 

the same time, the added TiO2 nanoparticles in the composite system prevent the hard phase from 

recovering to its original states, and this resistance is increased with the increase in TiO2 content. 

Therefore, both Rf and Rr of TiO2/SMPU nanocomposites are decreased. However, it is noted that both Rf 

and Rr of TiO2/SMPU nanocomposites are larger than 90%, indicting that the prepared TiO2/SMPU 

nanocomposites have better shape memory effects. 

3.7 Mechanical properties 

Effects of TiO2 content on tensile properties of SMPU are discussed here since it is obvious that the 

compressive performance of SMPU is improved after reinfored by TiO2 nanoparticles. Test results of 

tensile stress-strain responses of TiO2/SMPU with different TiO2 contents are given in Fig. 8. 

 
Fig. 8 Tensile stress-strain responses of TiO2/SMPU composites with different TiO2 contents  

As shown in Fig. 8, both tensile strength and elongation at break of TiO2/SMPU nanocomposites are 
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first increased and then decreased as the TiO2 content is increased from 0% to 5%. The 3%TiO2/SMPU 

specimen shows the highest tensile properties. This is mainly because SMPU belongs to the foam 

materials, and there are a lot of tiny pores in SMPU matrix. When a small amount of TiO2 is added in 

SMPU, these nanoparticles are filled in the tiny pores. The obvious size and surface effects of TiO2 

nanoparticles lead to a close combination with SMPU matrix, thus the intermolecular interaction force is 

improved. Thus when the TiO2/SMPU specimen is in tension, the tensile strength and elongation at break 

of the nanocomposites are increased.  

However, TiO2 nanoparticles are not uniformly dispersed in SMPU matrix as TiO2 content is more 

than 3%. The formed agglomeration of TiO2 nanoparticles affect the motion and orderness of molecular 

chains so local defects are easily generated in TiO2/SMPU nanocomposites. This leads to the stress 

concentration in TiO2/SMPU nanocomposites during the tension test, and then the tensile strength and 

elongation at break are lowered. 

4. Conclusions 

In this study, TiO2/SMPU nanocomposites with different rutile TiO2 contents are prepared, and their 

various properties are characterized and discussed. The main conclusions are obtained as follows. 

(1) The melting temperature of soft segments in SMPU is used as the shape memory Tt of 

TiO2/SMPU. It is lowered as TiO2 content is increased, but showing a slight influence on the Tt. All shape 

memory Tts of TiO2/SMPU are at around 55oC, and the programming temperature is proposed at 65 oC. 

(2) The prepared SMPU is porous structures. All pores are almost filled up when TiO2 content is 3%, 

and TiO2 nanoparticles are wrapped by SMPU to form compact skeleton structures in TiO2/SMPU. Some 

agglomerations are found as TiO2 content is up to 5% which affect test results of crystallization behaviors, 

optical performance, shape memory effects, mechanical properties, etc. 
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(3) The added rutile TiO2 lowers the crystallinity of SMPU and decreases the diffraction peak 

intensity of TiO2/SMPU. TiO2 retains its original crystal structures in TiO2/SMPU. The suitable TiO2 

content can improve the absorptivity to UV light and increase the reflectivity to visible light of 

TiO2/SMPU. This improves the anti-aging properties of TiO2/SMPU, thus prolonging its service life. 

(4) Both SMPU and TiO2/SMPU show similar isotropic 2D-SAXS scattering patterns, but the 

scattering intensity of TiO2/SMPU is obviously higher than that of pure SMPU. SAXS profile of 

TiO2/SMPU present a more obvious decreasing trend than that of SMPU due to the larger electron density 

difference between TiO2 nanoparticles and SMPU matrix. 

(5) The microphase separation in SMPU is affected by the addition of TiO2 nanoparticles, and 

ordered structures in SMPU are decreased. SAXS intensity plots of SMPU and TiO2/SMPU do not 

conform to Porod law, showing typical positive deviations. There are electron density fluctuations at the 

interfaces between hard and soft phases, and between SMPU and TiO2 in TiO2/SMPU. 

(6) Both Rf and Rr of TiO2/SMPU are decreased with the increase in TiO2 content, but they are larger 

than 90% even if TiO2 content reaches 5%. Prepared TiO2/SMPU nanocomposites have better shape 

memory effects. The tensile properties of TiO2/SMPU are improved by adding a suitable TiO2 content. 

TiO2 content of 3% is proposed to prepare TiO2/SMPU nanocomposites. 
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