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Abstract 

Data envelopment analysis (DEA) is one of the most widely used tools in efficiency analysis 

of many business and non-profit organisations. Recently, more and more researchers investigated 

DEA models without explicit input (DEA-WEI). DEA-WEI models can divide DMUs into two 

categories: efficient DMUs and inefficient DMUs. Usually there is a set of DMUs which are 

“efficient” so that conventional DEA models could not rank them. In this paper, we first develop a 

performance index based on efficient and anti-efficient frontiers in DEA-WEI models. Further, the 

corresponding performance index in DEA-WEI models with quadratic utility terms (quadratic 

DEA-WEI) is proposed also. Finally, we present two case studies on performance assessment of 

basketball players and the evaluation of research institutes in Chinese Academy of Sciences (CAS) 

to show the applicability and usefulness of the performance indices developed in this paper.  

Keywords. Data envelopment analysis; DEA without explicit input; efficient frontier; 

anti-efficient frontier  

1. Introduction  

DEA is a mathematical programming method for evaluating efficiency of decision making 

units (DMUs) with multiple inputs and multiple outputs. It has been widely used in efficiency 

analysis and performance evaluation of many business and non-profit organisations. More and 

more research literatures on DEA appear since Charnes et al. (1978) proposed the first CCR model. 
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Soon after that, Banker et al. (1984) proposed BCC model by considering the assumption of 

variable returns to scale. Besides these two models, there are also some well-known works, e.g., 

the additive model (Charnes et al., 1985), the Weight-restricted model (Dyson and Thanassoulis, 

1998; Allen et al., 1997). One of the unique features of DEA models is that the assessed DMUs are 

allowed to assign their most favourable weights to maximise their performance in the evaluation. 

Cook et al. (2009) and Emrouznejad et al (2008) provided excellent reviews on DEA theories and 

applications. Most of these DEA models, which were formulated for applications, normally have 

both inputs and outputs to measure the technical efficiencies of DMUs.  

There are many standard application of DEA in the literature (e.g. Khalili-Damghani and 

Taghavifard 2013, Agarwal et al. 2014 and Pannu et al. 2011). However, more and more 

researchers identified many applications that there are only input or output variables. In some 

business and management studies (e.g., Emrouznejad and Amin, 2009; Emrouznejad and Cabanda, 

2010), multiple ratio indicators may be used to measure the performance, such as GDP per capita, 

publication per staff, citation per paper, revenue-expenditure ratio, value-added per employee, 

profit per cost and so on. In such cases, it is difficult or sometimes impossible to transform the 

data into the original inputs and outputs. Thus classic DEA models cannot be used to measure the 

performance of DMUs. Furthermore, in practice there are also many multiple criteria decision 

problems (MCDM) which need to consider no input variables. Fernandez-Castro and Smith (1994) 

introduced a seminal model of the General Non-Parametric Corporate Performance (GNCP) that 

combines all financial ratios to a single measure, using the standard DEA model without any input 

variables (See also Emrouznejad et al.; 2012). Lovell and Pastor (1999) studied these DEA models 

systematically and named them as “DEA models without inputs”. They have also shown that: “a 

CCR model without inputs (or without outputs) is meaningless; (ii) a CCR model with a single 

constant input (or with a single constant output) coincides with the corresponding BCC model.” 

(See also Hollingsworth and Smith, 2003). Simultaneously, Caporaletti et al. (1999) proposed a 

framework to rate and classify entities described by multiple performance attributes into 

performers and underperformers. Their approach is equivalent to DEA-WEI models with only 

outputs. Their model is used by Hai (2007) to assess the performance of nations at the Olympics.  

Recently, Yang et al. (2014) proposed generic DEA-WEI models with quadratic utility terms 
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after discussing the relationship between multi-attributes utility theory (MAUT) and DEA models 

without explicit inputs (DEA-WEI), including dual models and some theoretical analysis of 

DEA-WEI models. Cooper et al. (2009) and Yang et al. (2014) mentioned that DEA-WEI models 

measure the “effectiveness” of DMUs instead of efficiency because only output variables are 

considered in the assessment models. Liu et al. (2011) suggested that DEA-WEI could be used to 

measure efficiency, as well as efficacy, where inputs are not taken into account as seen in 

assessing examination performances of students, or overall economic power of countries. Due to 

the consideration that DEA-WEI models are equivalent to the corresponding DEA models with a 

single constant input, we will still use the concept of efficiency in this paper. Similar to standard 

DEA, DEA-WEI models can also divide DMUs into two categories: efficient DMUs and 

inefficient DMUs. It is obvious that usually there are plural DMUs which have the “efficient status” 

(Anderson and Peterson, 1993; Tone, 2002). Alder et al. (2002) argued that “Often 

Decision-Makers (DMs) are interested in a complete ranking, beyond the dichotomized 

classification, in order to refine the evaluation of the units.” In the literature supper efficiency 

models have been used commonly for ranking efficient DMUs (Anderson and Peterson, 1993; 

Tone, 2002). However there are two shortfalls using supper efficiency for ranking. First there 

exists infeasibility problem in variable returns to scale radial super-efficiency model (Seiford and 

Zhu, 1999; Yao, 2005), secondly and more important, Banker and Chang (2006) have recently 

shown that the super-efficiency procedure is suitable for outlier identification not for ranking 

efficient units.  

Therefore, this paper improves DEA-WEI models using both efficient and anti-efficient 

frontiers and with the aim of using them for discrimination DEA-WEI results. Further we will 

extend this approach to the DEA-WEI models with quadratic utility terms (Yang et al. 2014), 

which suffers the problem that multiple efficient DMUs cannot be discriminated in the case of 

having quadratic utility terms. In this paper we intend to provide a general framework for classic 

DEA-WEI models and DEA-WEI models with quadratic utility terms. That is why we select 

DEA-WEI models to explore this approach instead of general DEA models. This is done by 

introducing two performance indices based on efficient and anti-efficient frontiers for DEA-WEI 

models with linear and quadratic utility terms. The earliest work on anti-efficient frontier can be 
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traced to “Inverted” DEA model proposed by Yamada et al. (1994). Compared to the standard 

DEA models which evaluate DMUs from the perspective of optimism, “Inverted” DEA model is 

to evaluate the performance of DMUs from the perspective of pessimism. Recently, some scholars 

employed Inverted DEA model to exploit more information from the data in their applications. 

Paradi et al. (2004) used DEA and Inverted DEA models to identify the worst practices in banking 

credit analysis. Thanassoulis (1999) used some layering or peeling technique to increase the 

classification accuracies through the elimination of self-identifiers. Johnson and McGinnis (2008) 

employed both the efficient and anti-efficient frontiers to identify outliers. Wang and Luo (2006) 

and Wu (2006) constructed the best and worst virtual DMUs and simply add them into the existing 

DMU set to carry out further DEA and Inverted DEA analysis using the extended data set. 

However, it may not be a wise idea because the PPS will be greatly changed in this case. 

Amirteimoori (2007) employed the Inverted DEA models to define the anti-efficient frontier. Then 

he defined a new combined efficiency measures based on the two distances to rank DMUs. 

However, since the efficiency scores of these DMUs on efficient frontier and anti-efficient frontier 

are 1 and -1 respectively, this combined efficiency measure is not able to improve discrimination 

power of DEA models either.  

The rest of the paper is structured as follows. Section 2 introduces utility theory and 

DEA-WEI models, including linear DEA-WEI and quadratic DEA-WEI models, and their dual 

presentations. The attainable set (AS) and quasi-attainable set (qAS) are defined in Section 3. The 

efficient frontier of AS and anti-efficient frontier of qAS are also proposed in this section. 

Alternative performance indices based on efficient and anti-efficient frontiers in DEA-WEI and 

quadratic DEA-WEI are developed in Section 4. Intersections of the two frontiers have been 

discussed in Section 5. In Section 6, we will apply the proposed performance indices to the 

performance assessment of basketball players and an application for measuring performance of 

research institutions in Chinese Academy of Sciences (CAS). Conclusions and direction for future 

research appear in Section 7.  

2. Extended utility and DEA-WEI models 

Extended utility function 
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Multiple Attribute Utility Theory (MAUT) is designed to handle the trade-offs among 

multiple objectives. Decisions such as these involve comparing alternatives that have strengths or 

weaknesses with regard to multiple objectives of interest to DMs. Keeney and Raiffa (1976) and 

von Winterfeldt and Edwards (1986) presented reviews systematically on MAUT. In MAUT, each 

DMU receives a score or a utility value for every criterion, and then these scores are aggregated 

into a multi-attribute utility function to get an overall utility value. As pointed out by Duarte and 

Reis (2006), two necessary conditions must hold when applying MAUT: (1) The DM is able to set 

preference relations between pairs of alternatives with respect to every attribute. (2) The DM 

behaves with pure rationality in the sense that he/she intends to maximize the satisfaction with 

respect to each single objective.  

There is a wide range of applications for MAUT in business and engineering in both public 

and private sectors. For example, Kainuma and Tawara (2006) proposed a MAUT approach to 

lean and green supply chain management. Duarte and Reis (2006) developed a projects evaluation 

system based on MAUT. However, one of the limitations of MAUT is that there is a need on 

pre-decision information on weights of criteria. Keeny and Raiffa (1976) argued that if ix  is 

“utility independent” of 
jx  for all j i , then the following multi-linear utility function is 

appropriate, given 1 2( ,  ,  ...,  )nX x x x= , 2n  :  

1 2

1 1 1
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where ( )i iu x  is a single attribute utility function and is scaled from 0 to 1. Variable iw  is the 

weight for attribute i  where 0 1iw  , and variables 
ijw , 

ijmw , 123...nw  denote the impact 

of the interactions between attributes on preferences respectively. If a more restrictive preference 

condition called “additive independence” is satisfied, we can reformulate the DMs’ preferences as 

follows:  

1

1

( ,..., ) ( )
n

n i i i

i

u x x w u x
=
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where 0 1iw   and 
1

1
n

i

i

w
=

= . We let 
rjy  be the value of certain DMU's partial utility 

function, that is ( )rj r rjy u x= . Then MAUT model can be written as follow: 

                           
1

( )
s

j i rj

i

u X w y
=

= ,                 (1) 

where 0 1iw   and 
1

1
n

i

i

w
=

= .   

Without loss of generality, we consider that there are n alternatives or decision making units 

(DMUs) with s criterions ( )1 2, ,..., sy y y , denoted by 
1,... nY Y , where every criterion 0ry   is 

desirable. DMs need to assign the weights to each attribute or criterion. Normally, there are 

subjective and objective approaches to identify weights. For example, the Analytic Hierarchy 

Process (Saaty 1980, 1986; Forman and Gass, 1999) is one of the subjective approaches and it can 

decide weights through the eigenvalues and eigenvectors of evaluation matrix of experts’ 

judgements. Among objective approaches, Entropy method (see Hwang and Yoon, 1981; Zeleny, 

1982) or Principal Components Analysis can determine the weights only based on the existing 

data through the entropy or the factor loading (i.e., component loadings) of the data respectively.  

All above methods assign the weights by prejudgment. An alternative is to let decision 

makers (DMs) to choose their weights according the best mix, similar to DEA, where a DM allow 

each DMU to select the weights of input and output variables to maximise its performance. 

Therefore we propose the following model:  

          

*

0

1

1

 max     

1,   1,...,
s.t.

0,   1,...,

s

r r

r

s

r rj

r

r

h w y

w y j n

w r s

=

=

=


 =


  =




                   (2) 

The equivalent form of the above Model (2) appears also in Caporaletti et al. (1999), which 

developed a framework to rate and classify based on nonparametric frontiers. Toloo (2012) and 

Toloo (2013) proposed the DEA-WEI with non-Archimedean construct 𝜀 ∈
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(0,𝑚𝑎𝑥{1 ∑ 𝑦𝑟𝑗
𝑠
𝑟=1⁄ : 𝑗 = 1,… , 𝑛}].  

The weights for each DMU are assigned by the maximisation formulation in Model (2), 

which can be viewed to extend utility function method. Model (2) is formulated from optimistic 

viewpoint for each DMU. Similarly, we can formulate a model from pessimistic viewpoint as 

follows.  

            

*

0

1

1

 min     

1,   1,...,
s.t.

0,   1,...,

s

r r

r

s

r rj

r

r

w y

w y j n

w r s


=

=

=


 =


  =




                 (3) 

Yang et al. (2014) argued that linearity cannot reflect evidence enhancement although linear 

truncation of utility function is the most widely used form in practice. They argued that if in some 

applications we must emphasize the interactions of two or more indicators, one should use 

DEA-WEI models with nonlinear terms instead of standard DEA-WEI models. Thus they 

followed the general form of the utility function and proposed the generic DEA-WEI model as 

follows. 

        

*

0 0 0

1 1

1 1
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1
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0,   ,..., ; 1,...,
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r

rk
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
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= = 
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
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
 =

  = =



 

 
              (4) 

where rk  represents the coefficient of quadratic terms. In Model (4), we can see that quadratic 

terms appear in the objective function and the first constraint, which can reflect evidence 

enhancement of two indicators.  

Similarly, we have the corresponding quadratic DEA-WEI model from pessimistic viewpoint 

as follows, which is denoted by quadratic anti-DEA-WEI model in this paper.  
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*
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               (5) 

The dual models 

To understand the above utility-like DEA-WEI models more easily and deduce the attainable 

and quasi-attainable set more directly, we discuss the dual models of Model (2) ~Model (5) in this 

section. The dual of Model (2) reads:  

      
' ' '

0

1 1

min ,  1,..., ; 0,     1,...,  
n n

j rj j r j

j j

y y r s j n  
= =

  
 =  = 

  
          (6) 

We assume 
'

1
1

n

jj
 

=
=   and 

'

j j = . Thus we know that Model (6) can be transformed 

into the following Model (7):                  

     
*

0

1 1

 = max ,  1,..., ; 1, 0,     1,...,
n n

raidal rj j r j j

j j

y y r s j n     
= =

  
 = =  = 

  
    (7) 

Similarly the dual of Model (3) is presented as follows.   

*

0

1 1

 min , 1,..., ; 1, 1
n n

radial j rj r j

j j

y y r s  j ,...,n    
= =

  
=  = = = 

  
        (8) 

Model (8) is similar to Model (7) with the aim to minimize the scale factor  . Model (4) is 

the generic quadratic DEA-WEI model proposed by Yang et al. (2014), in which there are 

quadratic terms in both the objective function and constraints. Here we give the dual model of 

Model (4). 
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*
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


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It is clear that there are several more constraints in Model (9) than in Model (7). These 

constraints are constructed by quadratic terms in Model (4). Similar to Model (9), we can easily 

give the dual model of Model (5) as follows.  

  

 

*

0

1

0 0

1

1

   =   min      

, 1,...,

, 1,..., , ,...,
 s.t.      

0 or 1, 1,..., , ,...,
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n
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r s k r s

 

 

 


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=

=

=


 =




 = =

 = = =
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

= 
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
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      (10) 

Essentially, Model (9) is a linear mathematical program with constraints including 

0 0

1

n

rk rj kj j rk r k

j

y y y y  
=

 , in which quadratic terms 
rj kjy y  appear. Model (10) is the 

corresponding to Model (9) from pessimistic viewpoint. 

3. Attainable set and quasi-attainable set  

This section focuses on the axiom foundations of the DEA-WEI models. For this purpose, we 

first define the attainable set and quasi-attainable set for DEA-WEI model. We use these 

definitions to propose an anti-frontier DEA-WEI model. 

Definition 1 (Attainable set): An attainable set AS  is a non-empty close subset of 
sR+

, 

which contains all DMUs that are realizable. That is ( ){ | 1,..., }= =jAS f Y j n , where
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: + +→s sf R R . For simplicity, assume ( ) =j jf Y Y , that is { | 1,..., }= =jAS Y j n . 

Definition 2 (Inferior set): The inferior set of X is defined by  

( )  ,+=  sIN X Y R Y X  

Assumption 1 (Free-disposal): If an element X AS , then its inferior set belongs to it, i.e. 

for anyY ( )IN X , thenY AS . 

If the Assumption (1) holds, then the AS set can be extended as follows: 

1

( )
n

j

j

AS IN Y
=

=  or  1 1
, 1, 0 or 1  

= =
=  = = 

n n

j j j jj j
AS Y Y Y  

Definition 3 (Efficient frontier of AS): For an element Y AS , if there does not exist

X AS , which satisfies Y X , then Y  is on the efficient frontier of AS.  

Assumption 2 (Convexity): If X , Y  AS , then (1 )X Y + −  AS , for any 

0 1  .  

If the assumptions (1) and (2) hold, the attainable set can be further extended as follows: 

 1 1
, 1, 0  

= =
=  =  

n n

j j j jj j
AS Y Y Y   

As discussed earlier, Model (7) measures the relative distance between the DMU0 and the 

frontier of Attainable set.   

Similarly, we can define quasi-attainable set as follows.  

 1 1
, 1, 0  

= =
=  =  

n n

j j j jj j
qAS Y Y Y  

Note, AS and qAS are all closed and convex sets.  

Based on the definition of quasi-attainable set, we can define the anti-frontier of qAS as 

follows.  

Definition 4 (Anti-efficient frontier of qAS): For an element Y qAS , if there does not 

exist X qAS , which satisfies X Y , then Y is on the anti-frontier of qAS .  

Figure 1 shows the efficient and anti-efficient frontier in the case of two indicators (outputs). 

We can also measure the relative distance between the DMU0 and the anti-frontier of 
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quasi-attainable set. 

        

Figure 1. Efficient and anti-efficient frontiers 

Similar to Yang et al. (2014) who showed that the optimal objective value of Model (2) is the 

reciprocal of that of Model (7), i.e., 
* *1h = , we can proof the following theorems easily.  

Theorem 1: The optimal objective value of Model (3) is equal to the reciprocal of that of 

Model (8), i.e., 
* *1 = .  

Proof: The dual model of (3) is: 

       0

1 1

max ,  1,..., ; 0,     1,...,
n n

j rj j r j

j j

y y r s j n  
= =

  
 =  = 

  
      (11) 

By the constraints of Model (11), we could find 
1

0
n

jj


=
 . We let 

1

n

jj
t 

=
=  and 

'

j j t = , then Model (11) can be transformed to the following model (12): 

    
' ' '

0

1 1

max (1 / ) ,  1,..., ; 1, 0,  1,...,  
n n

j rj r j j

j j

t y t y r s j n  
= =

  
 = =  = 

  
     (12) 

Assume 1/ t =  and substitute the 
j  for 

'

j , then we can easily conclude that the 

optimal objective value of Model (12) is the reciprocal of that of Model (3). Q.E.D. 

Theorem 2: The optimal objective value of Model (4) is the reciprocal of that of Model (9), 

that is 
* *1 =qh q . The proof is similar to Theorem 1, and omitted. Q.E.D. 

Theorem 3: The optimal objective value of Model (5) is equal to the reciprocal of that of 

y1 

y2 Efficient Frontier 

Anti-Efficient Frontier 

· 

· 

· 

· 

· 

· 
· 

· 
DMU0 
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Model (10), i.e., 
* *1 =q q . The proof is similar to Theorem 1, and omitted. Q.E.D.  

4. Intersections of Efficient and Anti-Efficient Frontiers 

As seen in Figure 1, it is evident that the efficient and anti-efficient frontiers can meet 

sometimes, i.e. there exist DMUs that are both good and bad references for the evaluation. In fact 

this is a major limitation for the proposed approach that we address in this section. We first discuss 

a sufficient condition to ensure that the efficient and anti-efficient frontiers will not intersect so 

that it is guarantee that our method works without any issue. We then further discuss how the 

cases where the two frontiers do meet.  

Using Model (2) and Model (3), we can identify the 1s  
efficient DMUs, denoted by 

1

eY , 

2

eY ,…,
1

e

sY , and the 
2s
 

anti-efficient DMUs, denoted by 
1

aY , 
2

aY ,…,
1

a

sY . We let   and   

represent the convex combinations of the 1s  efficient DMUs and the 
2s  anti-efficient DMUs 

respectively, i.e. (a) Set   is defined as the convex combinations of 
1 11 1 2 2 ...e e e

s sY Y Y  + + +  

where 
11 2 ... 1s  + + + = and 

11 2, ,..., 0s    ; (b) Set   is defined as 

2 2

' ' '

1 1 2 2 ...a a a

s sY Y Y  + + +  where 
2

' ' '

1 2 ... 1s  + + + =  and 
2

' ' '

1 2, ,..., 0s    .  

Assume eEF  and aEF denote the efficient and anti-efficient frontiers, respectively. Thus 

we have eEF
 

and aEF . It is clear that if there are no intersections between   and 

 , then eEF  and aEF  must not intersect. Therefore we can have the following sufficient 

condition that can ensure there are no intersections between   and  . We consider the 

following system of linear inequalities:  

         

1 1 2 2

1

2

1 2

' ' '

1 1 2 2 1 1 2 2

1 2

' ' '

1 2

' ' '

1 2 1 2

... ... 0

... 1

... 1

, ,..., 0; , ,..., 0

     

  

  

     

 + + + − − − − =


+ + + =


+ + + =


 

e e e a a a

s s s s

s

s

s s

Y Y Y Y Y Y

      (13) 

where 
1 2

' '

1 1,..., , ,...,s s     are unknown coefficients.  
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If there is no feasible solution in (13), we can ensure that the efficient and anti-efficient 

frontiers will not intersect. It is clear that we can introduce the following auxiliary linear 

programming with slacks variables to determine whether or not there is feasible solution in (13) 

(see, e.g. Dantzig (1998) for more details).  

        

min   g= v
ii=1

s+2

å

s.t.
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1
Y

1

e + l
2
Y
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e + ...+ l
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2
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2

a - ...- l
s
2

' Y
s
2

a +
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v
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è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷
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0

0

æ

è

ç
ç
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ø

÷
÷
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1
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+ ...+ l
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1

+ v
s+1

=1

l
1

' + l
2

' + ...+ l
s
2

' + v
s+2

=1

l
1
,l

2
,...,l

s
1

³ 0;l
1

' ,l
2

' ,...,l
s
2

' ³ 0;v
1
,...,v

s+2
³ 0

ì

í

ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï        

(14)
 

where 
1 2

' '

1 1,..., , ,...,s s     are original unknowns and 1 2,..., m sv v + +  are slacks.  

It is clear that Model (14) has feasible solution, e.g. 
1 2

' '

1 1,..., 0; ,..., 0s s   = = ; 

1 1 2,..., 0; 1; 1s s sv v v v+ += = = . Hence we have the following theorem:  

Theorem 4: There exists no intersection between   and  , if and only if the optimal 

value of objective function in Model (14) is positive.  

Proof: If the optimal value is zero, then there is a feasible solution such that 

1 20,..., 0m sv v + += = . Thus   and   has at least one intersection. If the minimal value is 

larger than zero, suppose that   and   have one intersection so that there exist feasible

1 2

' '

1 1,..., , ,...,s s    such that 1 20,..., 0m sv v + += = . Then, it is clear that this is a feasible 

solution of Model (14) and thus the minimal value should be zero, which is a contradiction. 

Q.E.D.
 

Thus if the optimal value of objective function in Model (14) is positive, there exists no 

feasible solution in (13). Therefore, we have a sufficient condition to ensure there is no 

intersection between efficient and anti-efficient frontiers.  
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However in real applications, often there exist DMUs on both the efficient and anti-efficient 

frontiers. The possible explanation for being on the anti-efficient frontier is that it may have gone 

exceedingly to achieve its superiority in some areas, and this has brought some side effects. Thus 

logically we should not consider it as a bad reference. One possibility is to consider it as an outlier 

in the evaluation and treat it differently. However often we have to evaluate it together. Therefore 

we should remove it from the construction of the anti-efficient frontier, although it is still included 

on the efficient frontier. Following this analysis, whenever there exist DMUs on both efficient and 

anti-efficient frontiers, we will remove them from the anti-efficient DEA-WEI Model (3), and 

apply Theorem (4) to make sure that the two frontiers do not intersect. For these DMUs we will 

use the super-anti-efficiency model to compute their anti-efficiencies. Thus we have the following 

procedure for full ranking of DMUs:   

Step 1: Remove the DMUs on both the efficient and anti-efficient frontiers from Model (3). 

Step 2: Apply the Theorem (4) to make sure that the efficient frontier and the new 

anti-efficient frontiers do not intersect.  

Step 3: Compute the super-anti-efficiencies of the removed DMUs using the following 

super-anti-efficiency Model (15) and Model (16):  

    

0

0

01,

1,

*
=  min

sup
 

, 1,...,
. .

1, 0, 1,...,

n

rj j rj j j

n

j jj j j

er

y y r s
s t

j n

 

 

 

= 

= 

  =



=  =






                      (15) 
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0 01,
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. . , 1,..., , ,...,

1, 0, 1,...,

er

n

rj j rj j j

n

rj kj j r kj j j

n

j jj j j

q

y y r s

s t y y y y r s k r s

j n

 

 

 

 

= 

= 

= 

  =



 = =

 =  =








             (16) 

Model (16) is the corresponding super-anti-efficiency model of Model (10).  

Step 4: Compute the performance indicators proposed in Section 5 and rank these DMUs. 
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In Section 3, in order to show the axiom foundations of the DEA-WEI models, we defined 

attainable set and quasi-attainable set and efficient and anti-efficient frontiers. Based on these 

definitions, we will propose intuitively two alternative performance indices based on efficient and 

anti-efficient frontiers in classic DEA-WEI model and DEA-WEI model with quadratic terms 

respectively in the following section.  

5. Alternative performance indices based on efficient and anti-efficient frontiers  

In this section, we will introduce alternative performance indices based on efficient and 

anti-efficient frontiers. Specifically, we use Model (7) ~ (10) to develop two new performance 

indices using DEA-WEI and quadratic DEA-WEI models.  

It is easy to see that Model (7) ~ Model (10) are DEA-WEI models with radial measurement. 

Specially, in Model (9) and Model (10), quadratic terms appear in constraints. It should be noted 

that if 0rka = , the corresponding quadratic terms will disappear in both Model (9) and Model 

(10).  

Based on Model (7) and Model (8), we propose a new performance index (Index 1) shown in 

formula (17) using DEA-WEI model.   

             ( )* *
*0

1 1 radial
radial

e  


= +  − 2                  (17) 

where 0   is a non-Archimedean infinitesimal. That is, 0   is smaller than any positive 

real number. The new performance measure in formula (17) means DMUs will be ranked using 

the first and second terms in lexicographical order. For example, if we wish to evaluate DMU1 and 

DMU2, we first use 
*1 radial  to compare their performance. If 

( )*

1

1

radial DMU
> (or <) 

( )*

2

1

radial DMU
 then DMU1 is considered to perform better (or worse) than DMU2. If 

( )*

1

1

radial DMU
=

( )*

2

1

radial DMU
, then we use ( )*1 radial−  to compare the performance 

of DMU1 and DMU2. Note that this index is almost the same as the quadratic DEA-WEI score 

                                                        

2 When DMU0 is an intersection between efficient and anti-efficient frontiers, we should substitute 
*

super  in 

Model (17) for 
*

radial .  
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except for those efficient DMUs.  

Similarly, we define the following index (Index 2) for quadratic DEA-WEI model based on Model 

(9) and Model (10) as  

   ( )* *
*0

1 1 radial
radial

qe q
q

 


= +  − 3                  (18) 

Using these two indices, we have full rankings of DMUs according to the numerical value of 

*

0e  or 
*

0qe , which depends on the utility function of DMs. If the DMs’ preference structure 

satisfies the condition of “additive independence”, we could select Index 1 (
*

0e ) to rank DMUs, 

the higher value of index 1 means that the DMU is closer to good frontier. Otherwise, we should 

choose Index 2 (
*

0qe ) to rank DMUs, the higher value of index 2 means that the DMU is farther to 

bad frontier.  

6 Illustrative examples  

In this section, we illustrate two applications to show the practicality of the proposed 

approach: The first application on performance analysis of basketball player and basketball centres 

explains the use of Index 1 (in formula 17); while the second application on evaluation of Chinese 

Academy of Sciences (CAS) institutions explains the use of Index 2 (in formula 18) and its use to 

discriminate the performance to produce full rankings for CAS institutes.  

6.1 An application for ranking basketball players/ centres 

Cooper et al. (2009) assessed the performance of Spanish basketball players in Spanish 

Premier Basketball League (called ACB). They used the data taken from http://www.acb.com/ and 

corresponded to the 2003–2004 season. In this application sample of 172 players consisting of 

those who have played at least 17 games (half a regular season). Similar to Cooper et al. (2009) 

we consider only those who had played a large enough number of games to reflect their 

performances reliably. These 172 players had been classified into the five following groups 

according to their position: playmaker, guard, small forward, power forward and centre. The idea 

                                                        

3 When DMU0 is an intersection between efficient and anti-efficient frontiers, we should substitute 
*

superq  in 

Model (18) for 
*

radialq .   

http://www.acb.com/
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is to have homogenous samples when assessing the efficiency of the players.  

The following indicators have been selected as evaluation indicators for the main aspects of 

the game: shooting, rebounding, ball handling and defense. In particular, the proposed summary of 

indicators to be included in the model has made possible an important reduction of the 

dimensionality of the output space compared to the large number of factors used by the ACB 

(Spanish Premier Basketball League) index. We also use the same variables as in Cooper et al. 

(2009) for measuring the performances of playmakers and centres as representative cases. Here is 

list of variables: 

(1) Adjusted field goal (AFG)=(PTS-FTM)×AFG%, where PTS = points made (per game), 

FTM=free throws made (per game) and AFG%, called  “adjusted field goal percentage”, 

is defined as (PTS-FTM)/(2×FGA), where FGA is the number of field goal attempts. 

AFG% is used in NBA statistics (see http://sports.espn.go.com/nba/statistics/) for the 

purpose of measuring “shooting” efficiency by taking into account the total points a player 

produces through his field goal attempts. The intuition behind this adjustment is largely to 

evaluate the impact of “three-point shooting”. Therefore, AFG is a shooting indicator 

adjusted for opportunities. We could have separately considered PTS-FTM and AFG% but 

we preferred to aggregate both variables into AFG in order to avoid mixing a percentage 

with a volume measure.  

(2) Adjusted free throw (AFT) = FTM×FT%, where FT% is the free throw successes 

percentage. Our comments on the mix of percentages with volume measures are also 

applicable to this variable.  

(3) Rebounds (REB): the number of rebounds per game. 

(4) Assists (AST): the number of assists per game. 

(5) Steals (STE): the number of steals per game. 

(6) Inverse of turnovers (ITURN). We have used the inverse of the number of turnovers per 

game in order to treat the information regarding this indicator as an output that decreases 

with increases in turnovers, instead of an input. This approach is used because it enables 

http://sports.espn.go.com/
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us to obtain an index with the same form as the one used by the ACB league.  

(7) Non-made fouls own (NFO) = 5-FO, FO being the number of fouls made (per game) by 

the assessed player. The purpose of this transformation is the same as in the previous 

variable, ITURN.  

(8) Fouls opposite (FOPP): the number of fouls per game the opposite players have made on 

the player that is being assessed.  

The data for these indicators have been reproduced in Table A-1 and A-2, respectively, for 41 

playmakers and 44 centres.   

6.1.1 Assessment of playmakers 

We can see from Table 1 in Cooper et al. (2009) that the performance indexes of four 

playmakers (Bennett, Bullock, Prigioni and Sánchez) are all equal to 1. That is to say that they are 

all fully efficient. As Alder et al. (2002) argued that DMs are interested in a complete ranking in 

order to refine the evaluation of units. To address this issue, we refer to the information provided 

by the anti-efficient frontier. We use the steps in Section 4 and performance Index 1 (see formula 

17) in Section 5, hence we obtained the full ranking of these playmakers which are shown in 

Column 14 of Table A-1. Compared with the results in Cooper et al. (2009), we know that the 

performances of 4 fully effective playmakers are discriminated in order of: Prigioni > Bennett > 

Bullock > Sánchez.  

6.1.2 Assessment of centres 

Table 4 in Cooper et al. (2009) shows that the performance indexes of four centres (David, 

Garcés, Kambala, Scott and Thompson) are equal to 1. In other words, they are the fully efficient 

centres with best performance. In a similar way, and to discriminate the performances of these 

four fully efficient centres, we refer to the information provided by the anti-efficient frontier. We 

use the steps in Section 4 and performance Index 1 (see formula 7) in Section 5, hence the full 

ranking of these centres are shown in Column 14 of Table A-2. Compared with the results in 

Cooper et al. (2009), we can see that the performances of 5 fully effective centres are 

discriminated as Thompson > David > Garcés > Scott > Kambala.   

6.2 Evaluation of research institutes in Chinese Academy of Sciences (CAS) 
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In 2005, CAS began to attempt the Comprehensive Quality Evaluation (CQE) system for the 

evaluation of its affiliated institutes. The CQE is an effective combination of quantitative and 

qualitative evaluation, peer-review results and management experts' comments. There are several 

steps in CQE system, such as self-evaluation of institutes, evaluation of institutes' strategic 

planning, peer reviews for research quality, previous evaluation results, on-site review, etc. Yang et 

al. (2014) proposed an example on evaluation of research institutes using DEA-WEI in CAS. In 

this evaluation, the DMs in CAS have chosen to add a quadratic term in the utility function to 

reflect its emphasis on training and external grant because the importance of training graduates 

and obtaining external funding was emphasized by CAS for the sustainable development of its 

institutes. Consequently, In this case, there will be a quadratic terms as shown in Model (9) and 

Model (10). Thus we can use Index 2 to discriminate their performances.  

In this paper, we carry out a pilot study on applying the new performance index (Index 2) to 

evaluate the efficiency of 16 research institutes in Chinese Academy of Sciences (CAS). They are 

comparable in the sense that they conduct researches in the similar fields and have identities in 

research activities.  

Within the framework of the CQE, CAS headquarter uses several quantitative indicators to 

monitor multiple-inputs and multiple-outputs of research institutes each year. The data of the 

indicators used in this paper come from the quantitative monitoring report in 2010 in CAS and 

Statistical Yearbook of CAS in 2010.  

However, the decision makers (DMs) in CAS prefer to use ratio data to evaluate those 

institutes based on the consideration of outputs per capita in the affiliated institutes (see Yang et al. 

2014). Thus, selected by the DMs, we use DEA-WEI and anti DEA-WEI with five variables as 

follows: 

1 jy =SCI Pub. / Staff; 2 jy =High Pub. / Staff; 3 jy =Grad. Enroll. / staff;  

4 jy =Exter. Fund. / staff; 5 jy =Awards / Staff.  

Therefore, in this paper, we use the following ratio indicators to measure the performance of 

these institutes. 

------ [Table 1 about here] ------- 
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Before running these models we standardize the output variables by dividing each variable to 

the maximum value of that variable, i.e. = =max , 1...5
rj rj rj

j

y y y r , and the results are shown in 

Table 2 as follows:  

------ [Table 2 about here] ------- 

Because these institutes mainly conduct basic research, SCI Publications and High-quality 

publications are very important. Also external funding is the focus for sustainable development for 

institutes in CAS. So, CAS encourages researchers to gain more funds and produce more SCI 

papers. Thus we consider the quadratic terms could be 1 4j jy y . Hence, we will use the new 

performance index (Index 2 in formula 18) to evaluate these institutes. We first run Model (9) to 

have the performance scores of DMUs and their rankings listed in the second and the third 

columns of Table 4, respectively. Second, we employ Model (10) to obtain the information from 

anti-efficient frontier, hence the anti-scores are listed in the fourth column in Table 4. According to 

the performance Index 2 (see formula 18), we can have full rankings of 16 research CAS institutes 

as shown in Table 3 (See Column 6).   

------ [Table 3 about here] ------- 

From Table 3, we can see that DMU1, DMU2, DMU3, DMU6 DMU10, and DMU12 are all 

efficient DMUs in Model (9). That is to say that Model (9) cannot discriminate the performance of 

these six DMUs. Thus we use the information from the anti-efficient frontier. The anti-efficient 

scores of these 16 institutes are listed in Column 4 in Table 3. We can test the intersections of 

efficient and anti-efficient frontiers using Theorem (4). We find that the there is no intersection 

between efficient and anti-efficient frontiers. Using Index 2 based on efficient and anti-efficient 

frontiers produced from Model (9) and Model (10) respectively, we can have full ranking of these 

16 basic research institutes as shown in Column 6. In particular, we can see that DMU6 > DMU10 > 

DMU2 > DMU3 > DMU12 > DMU1.  

6. Conclusions 

DEA-WEI models can classify DMUs into two categories: efficient DMUs and inefficient 

DMUs. As Anderson and Peterson (1993) and Tone (2002) mentioned, usually there are plural 
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DMUs which have the “efficient status”. Alder et al. (2002) argued that in order to refine the 

evaluation of the units, DMs are interested in a complete ranking. To address this issue, in this 

paper we first developed a performance index based on efficient and the anti-efficient frontiers in 

DEA models without explicit inputs (DEA-WEI). Furthermore, we proposed the corresponding 

performance index in DEA-WEI models with quadratic utility terms (quadratic DEA-WEI). The 

results of illustrative examples showed the features of these two new performance indices. We find 

that these two indices can discriminate DMUs with “efficient status” in DEA-WEI models and 

quadratic DEA-WEI models respectively.  
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Table 1: Input/output indicators 

Indicators Type Units Explanations 

SCI Pub. / 

Staff 

Ratio 

indicator 

Number / Full 

Time Equivalent 

(FTE) 

The ratio of number of international papers indexed by 

the Web of Science published by Thompson Reuters 

divided by FTE of full-time research staff. 

High Pub. / 

Staff 

Ratio 

indicator 

Number/FTE The ratio of number of high-quality papers published in 

top research journals (e.g., journals with top 15% 

impact factors) divided by FTE of full-time research 

staff.  

Grad. Enroll. 

/ Staff 

Ratio 

indicator 

Number/FTE The ratio of number of graduate students' enrolment in 

2009 divided by FTE of full-time research staff. 

Exter. Fund / 

Staff 

Ratio 

indicator 

RMB in million 

/FTE 

The ratio of amount of external research funding from 

research contracts divided by FTE of full-time research 

staff.  

Awards/ Staff Ratio 

indicator 

Score /FTE The ratio of awards score divided by FTE of full-time 

research staff, where award score is defined as follows: 

for the award indicator, the awards are divided into 

different levels according to the importance and impact 

of the awards. Each level is given different weighted 

scores. The institutes’ score of award indicator is 

achieving by summing up the weighted scores of the 

awards they obtained.  
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Table 2: Standardized indices  

Institutes y1j y2j y3j y4j y5j  y1j  * y4j 

DMU1 0.4596  0.2367  0.7899  0.1341  0.8598  0.0616  

DMU2 0.5925  0.3916  0.7196  0.6226  0.3869  0.3689  

DMU3 1.0000  1.0000  0.7797  0.1847  0.7895  0.1847  

DMU4 0.2122  0.1616  0.3390  0.2096  0.5975  0.0445  

DMU5 0.1970  0.0920  0.5207  0.4486  0.0000  0.0884  

DMU6 0.5993  0.1878  1.0000  0.6774  0.3119  0.4060  

DMU7 0.2149  0.1277  0.2419  0.3169  0.8993  0.0681  

DMU8 0.1260  0.0603  0.3719  0.1202  0.0247  0.0151  

DMU9 0.2381  0.2766  0.4481  0.6303  0.4344  0.1501  

DMU10 0.5469  0.4247  0.7072  0.4854  1.0000  0.2655  

DMU11 0.2279  0.1422  0.2252  0.7868  0.2377  0.1793  

DMU12 0.1763  0.0955  0.5255  1.0000  0.2182  0.1763  

DMU13 0.2567  0.2073  0.6844  0.3535  0.7700  0.0908  

DMU14 0.2319  0.0582  0.3522  0.1184  0.6720  0.0275  

DMU15 0.2953  0.3086  0.4829  0.3650  0.0000  0.1078  

DMU16 0.0288  0.0042  0.4530  0.1310  0.0000  0.0038  
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Table 3: The performance scores of 16 research institutes in 2009 

DMU 

Model 9  

(
*

radialq ) 

Model 10 

(
*

radialq ) 

Index 2 

( ( )* *
*0

1 1 radial
radial

qe q
q

 


= +  − ) 

 Scores  Rank Scores Performance scores Rank 

DMU1 1.0000  1 0.8829  1.0000+ε*0.1171 6 

DMU2 1.0000  1 0.4527  1.0000+ε*0.5473 3 

DMU3 1.0000  1 0.6435  1.0000+ε*0.3565 4 

DMU4 1.6736  13 0.9319  0.5975+ε*0.0681 13 

DMU5 1.6911  14 0.8700  0.5913+ε*0.1300 14 

DMU6 1.0000  1 0.3556  1.0000+ε*0.6444 1 

DMU7 1.1120  7 1.0000  0.8993+ε*0.0000 7 

DMU8 2.6889  16 1.0000  0.3719+ε*0.0000 16 

DMU9 1.1715  10 0.6809  0.8536+ε*0.3191 10 

DMU10 1.0000  1 0.4390  1.0000+ε*0.5610 2 

DMU11 1.1614  9 1.0000  0.8610+ε*0.0000 9 

DMU12 1.0000  1 0.6724  1.0000+ε*0.3276 5 

DMU13 1.1265  8 0.5124  0.8877+ε*0.4876 8 

DMU14 1.4881  11 1.0000  0.6720+ε*0.0000 11 

DMU15 1.5823  12 0.9381  0.6320+ε*0.0619 12 

DMU16 2.2075  15 1.0000  0.4530+ε*0.0000 15 
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Appendix A 

Table A-1: Assessment of playmakers 

Player AFG AFT REB AST STE ITURN 
NF

O 
FOPP model (7) model (8) 

model 

(15) 

Index 1 
Ranking 

Bennett, Elmer 5.68 3.4 2.94 6.06 1.94 0.36 2.24 6.33 1.0000  0.9284   1+ε*0.0716 5 

Victoriano, L. 0.83 0.87 1.54 1.88 1.04 0.89 2.38 1.79 1.3373  1.0000   0.7478+ε*0 40 

Herna´ndez, B. 1.21 0.63 1.75 1.97 0.66 0.76 2.94 0.84 1.2008  1.0000   0.8328+ε*0 36 

Sa´nchez, Pepe 2.42 1.21 3.71 6.33 1.76 0.4 2.62 2.57 1.0000  1.0000  1.0923 1+ε*(-0.0923) 9 

Gomis, Joseph 4.18 1.91 1.61 1.91 0.76 0.52 2.39 2.88 1.1943  1.0000   0.8373+ε*0 35 

Lewis, Danny 2.85 1.59 1.62 1.85 1.15 0.57 2.71 2.85 1.1511  1.0000   0.8687+ε*0 32 

Rodrı´guez, Javi 2.42 2.89 3.06 4.65 1.59 0.33 1.88 5.12 1.0413  1.0000   0.9603+ε*0 19 

Larraga´n, Borja 1.36 0.4 0.34 1.1 0.34 1.53 3.55 0.9 1.0851  1.0000   0.9216+ε*0 27 

Comas, Jaume 3.16 1.66 1.88 2.47 1.76 0.55 2.03 3.03 1.1639  1.0000   0.8592+ε*0 33 

Rodilla, Nacho 2.35 1.47 1.55 1.73 0.88 0.94 3.39 2.79 1.0147  0.8313   0.9855+ε*0.1687 15 

Galilea, J.L. 3.62 0.58 1.41 2.91 0.81 0.57 2.66 1.81 1.1249  1.0000   0.889+ε*0 30 

Lo´, pez Ferran 2.12 0.5 1.53 2.12 0.85 0.63 3.47 1.68 1.0226  1.0000   0.9779+ε*0 16 

Santangelo, M. 5.44 1.06 2.18 2.71 1 0.6 2.71 2.47 1.0000  0.9188   1+ε*0.0812 4 

Cherry, Carlos 1.61 1.13 0.97 1.24 0.85 0.87 3.41 1.88 1.0623  1.0000   0.9414+ε*0 22 

Rodrı´guez, N. 1.61 1.07 2.15 2.24 1.38 0.87 3.53 1.97 1.0000  0.8555   1+ε*0.1445 2 

Martı´nez, G. 2.25 0.84 2.1 3.8 0.67 0.64 2.93 1.83 1.0814  0.9985   0.9247+ε*0.0015 25 

Reyne´s, P. 3.02 0.69 1.76 2.38 0.65 0.6 3.29 2.03 1.0140  1.0000   0.9862+ε*0 14 

Johnson, Sydney 2.37 0.91 2.68 2.71 1.21 0.56 2.76 2.88 1.0673  1.0000   0.9369+ε*0 24 

Jofresa, Rafa 2.13 1.02 1.17 1.13 0.42 0.73 3.21 1.29 1.1321  1.0000   0.8833+ε*0 31 

Montecchia, A. 4.96 1.01 2.28 2.38 1.38 0.71 1.94 1.69 1.0823  1.0000   0.924+ε*0 26 
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Llompart, Pedro 0.89 0.31 0.35 0.65 0.12 2.43 3.82 0.88 1.0274  1.0000   0.9733+ε*0 17 

Popovic, Marko 1.86 1.63 0.82 1.36 0.55 0.88 3.32 2.64 1.0355  1.0000   0.9657+ε*0 18 

Corrales, Iva´n 3.08 1.41 1.5 4.38 0.97 0.35 2 2.38 1.2889  1.0000   0.7759+ε*0 39 

Gil, David 0.72 0.82 0.97 1.58 0.21 0.92 4.06 1.3 1.0000  1.0000  1.6135 1+ε*(-0.6135) 12 

Prigioni, Pablo 2.37 0.89 1.94 3.52 2.13 0.86 2.52 1.42 1.0000  0.9069   1+ε*0.0931 3 

Caldero´n, J.M. 3.57 1.3 2.82 2.18 1.3 1.03 3.09 1.94 1.0000  0.8103   1+ε*0.1897 1 

Brewer, Corey 3.85 1.32 1.94 1.35 0.76 0.54 2.65 2.88 1.1249  1.0000   0.889+ε*0 29 

Azofra, Nacho 3.32 0.9 1.65 2.88 0.94 0.79 1.71 1.44 1.3660  1.0000   0.7321+ε*0 41 

Miso, Andre´s 2.09 0.54 1 0.63 0.46 1.71 3.79 1.38 1.0000  1.0000  1.2007 1+ε*(-0.2007) 11 

Marco, Carles 4.89 1.64 2.03 4.15 1.06 0.4 2.41 2.38 1.0637  0.9683   0.9401+ε*0.0317 23 

Dumas, Stephane 1.91 0.85 1.41 2.06 0.76 0.71 3.29 1.47 1.0861  0.9768   0.9207+ε*0.0232 28 

Guzma´n, J.M. 1.29 0.49 1.47 1.74 0.53 0.95 3.11 1.53 1.1736  1.0000   0.8521+ε*0 34 

Oliver, Albert 3.08 3.07 3.44 3.09 1.21 0.56 2 4.44 1.0000  0.9656   1+ε*0.0344 7 

Cistero´, Maiol 0.49 0.42 0.7 1.06 0.33 1.83 3.06 0.67 1.2387  1.0000   0.8073+ε*0 38 

Martı´nez, Rafa 1.09 0.56 0.72 0.63 0.47 2.67 3.91 1.31 1.0000  1.0000  1.0257 1+ε*(-0.0257) 8 

Bullock, Louis 7.63 3.68 2.76 1.94 0.91 0.58 2.21 4.24 1.0000  0.9643   1+ε*0.0357 6 

Cabezas, Carlos 2.6 1.32 1.79 1.29 0.68 0.87 3.24 1.76 1.0610  0.9222   0.9425+ε*0.0778 21 

Turner, Andre 4.97 2.31 2.41 4.53 1.74 0.37 2.47 3.62 1.0105  0.9450   0.9896+ε*0.055 13 

Monta´n˜, ez Roma´n 5.28 2.52 1.71 1.68 1.18 0.44 1.56 4.26 1.2128  1.0000   0.8245+ε*0 37 

San, Emeterio 1.88 0.97 2.76 1.29 0.85 0.92 2.88 2.03 1.0492  1.0000   0.9531+ε*0 20 

Mc, Guthrie C. 1.79 0.64 0.52 1.43 0.52 1.21 3.78 0.74 1.0000  1.0000  1.1763 1+ε*(-0.1763) 10 
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Table A-2: Assessment of centers 

Player AFG AFT REB AST STE ITURN NFO FOPP model (7) model (8) model (15) Index 1 Ranking 

Kambala, K. 9.23 2.55 6.06 0.31 0.66 0.45 1.44 4.63 1.0000  1.0000  1.2749 1+ε*(-0.2749) 11 

Bueno, Antonio 3.29 0.76 2.57 0.18 0.32 0.88 2.68 1.39 1.1958  1.0000   0.8363+ε*0 33 

De, Miguel I. 3.09 1.11 4.12 0.94 1.35 0.81 1.26 3.06 1.0276  1.0000   0.9731+ε*0 18 

Junyent, Oriol 4.52 1.57 4.8 0.8 0.53 0.67 1.87 2.43 1.2977  1.0000   0.7706+ε*0 41 

Garce´s, Rube´n 5.26 0.96 9.81 0.53 0.91 0.46 1.72 2.84 1.0000  1.0000  1.1420 1+ε*(-0.1420) 9 

Gonza´lez, R. 2.64 1.06 2.14 0.21 0.93 1.56 2.68 1.64 1.0580  0.9967   0.9452+ε*0.0033 20 

Ferna´ndez, P. 1.31 0.31 2.23 0.13 0.58 1.19 2.55 0.84 1.2323  1.0000   0.8115+ε*0 36 

Guardia, Salva 4.58 1.9 4.74 0.53 0.56 0.67 1.76 2.97 1.2053  1.0000   0.8297+ε*0 34 

Jackson, Robert 5.6 1.08 5.62 0.15 0.73 0.79 1.69 2.46 1.2473  1.0000   0.8017+ε*0 39 

Garcı´a, Dani 1.6 0.11 1.82 0.5 0.12 3.78 3.32 0.32 1.0000  1.0000  2.5129 1+ε*(-1.5129) 13 

Bramlett, A.J. 5.73 0.65 8.06 1.44 0.88 0.47 1.21 2.56 1.1083  1.0000   0.9023+ε*0 27 

Alston, Derrick 5.56 1.45 6.73 1.24 1.18 0.72 2.03 3.61 1.0481  0.8075   0.9541+ε*0.1925 19 

Scott, Brent 8.82 2.43 9.15 1.91 0.71 0.3 1.47 5.65 1.0000  1.0000  1.2428 1+ε*(-0.2428) 10 

Reynolds-Dean,  5.9 2.11 6.53 1.26 1.41 0.52 2.35 3 1.0000  0.9458   1+ε*0.0542 3 

Horton, Steve 0.56 0.19 1.48 0.04 0.48 4.5 3.41 0.78 1.0000  1.0000  3 1+ε*(-2.0000) 14 

Jones, Alvin 2.43 0.91 5 0.33 0.79 0.77 2.58 2.46 1.0643  1.0000   0.9396+ε*0 22 

Mikhailov, M. 1.31 0.08 3.6 0.6 0.57 1.58 3.2 1.2 1.0183  0.9507   0.982+ε*0.0493 17 

Femerling, P. 3.59 1.42 5.27 0.82 0.82 0.67 2.36 2.97 1.0729  0.9840   0.9321+ε*0.016 23 

Duen˜, as Roberto 3.54 0.67 5.19 0.5 0.34 0.63 2.94 1.5 1.0005  1.0000   0.9995+ε*0 15 

Varejao, A. 3.88 0.83 4.41 1.04 1.26 0.79 2 2.59 1.1349  0.9456   0.8811+ε*0.0544 29 

Va´zquez, Fran 3.78 0.88 4.18 0.21 0.27 1.32 2.82 1.67 1.0953  1.0000   0.913+ε*0 26 

Burke, Pat 5.93 0.87 5.35 0.25 0.65 0.65 2.7 1.75 1.0000  1.0000  1.1352 1+ε*(-0.1352) 8 

Thomas, John 5.25 1.47 5.13 0.52 0.84 0.52 1.48 2.55 1.3318  1.0000   0.7509+ε*0 42 
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Struelens, Eric 3.81 0.64 5.22 0.75 0.69 0.71 2.22 1.28 1.1911  1.0000   0.8396+ε*0 32 

Rogers, Paul 2.27 0.26 4.33 0.29 0.54 1.2 2.83 1.58 1.0781  1.0000   0.9276+ε*0 24 

Oberto, F. 7.05 0.5 5.35 1.82 0.94 0.5 1.65 2.85 1.0620  1.0000   0.9416+ε*0 21 

Tomasevic, D. 4.55 0.78 7.5 3.15 1.56 0.52 2.15 3.18 1.0000  1.0000  1.0200 1+ε*(-0.0200) 6 

Garcı´a, Asier 2.21 0.57 1.67 0.52 0.19 1.59 3.52 0.63 1.0000  1.0000  1.3553 1+ε*(-0.3553) 12 

Toledo, S. 3.08 0.4 2.91 0.5 0.38 1.52 3.5 1.09 1.0000  0.8704   1+ε*0.1296 1 

Guille´n, R. 2.41 1 2.48 0.28 0.24 2.64 3.59 1 1.0000  0.9596   1+ε*0.0404 4 

Savane, Sitapha 6.45 1.54 5.67 0.8 0.73 0.64 1.8 3.5 1.1523  0.9087   0.8678+ε*0.0913 31 

David, Kornel 7.25 2.61 5.12 1.53 0.97 0.62 1.5 2.85 1.0000  0.9603   1+ε*0.0397 5 

Betts, Andrew 3.98 0.87 3.45 0.8 0.55 0.8 1.8 2.35 1.4086  1.0000   0.7099+ε*0 43 

Jelic, Dusan 1.52 0.5 2.53 0.12 0.29 2.13 2.65 1.24 1.2442  1.0000   0.8037+ε*0 38 

Reyes, Felipe 8.25 1.86 8.24 1.59 1.09 0.34 1.76 5.12 1.0000  1.0000  1.0269 1+ε*(-0.0269) 7 

Tabak, Zan 7.64 0.87 7.09 1.18 0.44 0.44 2 2.82 1.0032  1.0000   0.9968+ε*0 16 

Alzamora, Alf. 3.05 1.68 3.12 0.74 0.76 1.03 2.18 2.94 1.1257  0.9228   0.8883+ε*0.0772 28 

Brown, John 6.83 1.02 6.06 0.79 0.65 0.47 1.94 2.38 1.0922  1.0000   0.9156+ε*0 25 

Llorens, Jordi 1.32 0.44 2.73 0.24 0.33 1.03 2.06 1.18 1.5368  1.0000   0.6507+ε*0 44 

Kornegay, Chuck 3.81 0.74 5.83 0.5 0.8 0.63 1.8 2.2 1.2810  1.0000   0.7806+ε*0 40 

Gabriel, Germa´n 3.38 0.79 3.06 0.32 0.59 0.81 2.59 1.97 1.1419  1.0000   0.8757+ε*0 30 

Weis, Frederic 0.82 0.06 2.7 0.2 0.35 1.54 2.75 0.95 1.2279  1.0000   0.8144+ε*0 35 

Thompson, Kevin 8.1 2.52 9.53 1.09 0.94 0.46 1.88 4.68 1.0000  0.8874   1+ε*0.1126 2 

Ferna´ndez, G. 4.54 0.73 2.56 0.26 0.41 0.94 2.18 1.35 1.2362  1.0000   0.8089+ε*0 37 

 

 


