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Abstract  

Traditional Data Envelopment Analysis (DEA) models find the most desirable weights 

for each Decision Making Unit (DMU) in order to estimate the highest efficiency score 

as possible. Usually, decision makers are using these efficiency scores for ranking the 

DMUs. The main drawback in this process is that the ranking based on weights obtained 

from the standrad DEA models ignore other feasible weights, this is due to the fact that 

DEA may have multiple solutions for each DMU. To overcome this problem, Salo and 

Punkka (2011) deemed each DMU as a “Black box” and developed a mix-integer model 

to obtain the ranking intervals for each DMU over sets of all its feasible weights. 

In many real world applications, there are DMUs that have a two-stage production 

system. In this paper, we extend the Salo and Punkka (2011)’s model to more common 

and practical applications considering the two-stage production structure. The proposed 

approach calculates each DMU’s ranking interval for the overall system as well as 

ranking interval for each subsystem/sub-stage. An example is given to illustrate the 

applicability of the proposed approach while an application for non-life insurance 

companies has been discussed to show the usefulness of this method. A real application 

in Chinese commercial banks shows how this approach can be used by policy makers. 

 

Keywords: Ranking intervals, Data Envelopment Analysis, two-stage production 

systems 

 

1. Introduction  

Data Envelopment Analysis (DEA), first developed by Charnes et al. (1978), has been 

proven as an effective tool for performance evaluation and benchmarking. This 

technique makes no assumptions on the production function and imposes no subjective 

weights on multiple inputs and multiple outputs. DEA has been widely applied in many 
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areas (Emrouznejad and Yang, 2017). The DEA technique allows a DMU to choose the 

most favorable weights to achieve the best possible relative efficiency. Then, these 

efficiency scores serve as a basis for obtaining the rankings of the DMUs. But when 

there are multiple decision making units, the traditional DEA model present difficulty 

in ranking the decision-making units as there may be two or more efficient DMUs. Thus, 

it makes raking DMUs unavailable. In order to overcome this issue, Andersen and 

Petersen (1993) proposed a super-efficiency data envelopment analysis (SEDEA) and 

the model could be used in ranking the performance of efficient DMUs. Afterwards, 

super-efficiency DEA has been extended and applied to many areas (e.g. Zhu, 2001;Ray, 

2008; Sadjadia et al. 2011; Du et al. 2014; Banker et al. 2017). However, the standard 

ranking procedure does not consider all the possible weights as it only considers the 

weights most favorable to each DMU. The main issue that has been ignored in the past 

literature is that, the rankings of a DMU relative to other DMUs can change over 

different weights when applying the DEA models. Hence, it is important to consider all 

possible weights to evaluate each DMU. 

To overcome this problem, Salo and Punkka 2011 have proposed a procedure to 

rank DMUs by taking into account all possible weights (see also Yang et al. 2012). They 

have introduced an interval for all possible rankings that is determined by the best and 

worst ranking. For each DMU, the best ranking is defined as the minimum number of 

other DMUs with strictly larger efficiency scores, while the worst ranking is defined on 

the maximum number of other DMUs with larger or equal efficiency scores. For this 

purpose, Salo and Punkka (2011) developed mix-integer models to obtain the ranking 

interval for each DMU over sets of all feasible weights. Alcaraz et al. (2013) applied 

similar mix-integer models in cross-efficiency evaluation to obtain the ranking interval 

for each DMU. Besides, Yang et al. (2012) obtained the best and worst ranking of each 

DMU over all possible weights by using an acceptability analysis constructed from the 

resulting matrix of interval cross-efficiencies. All these methods for obtaining the 

ranking intervals treated each DMU as a “Black Box”. Thus, they ignored the internal 

structure of the production system. 

However, as discussed in many DEA studies, in many real applications, DMUs 
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have a two-stage structure. The issue of two-stage DEA has been extensively studied 

by Seiford and Zhu (1999), Chen and Zhu (2004), Kao and Hwang (2008),Chen et al. 

(2009)a, Chen et al. (2009)b, Fukuyama and Weber (2010), Zha and Liang (2010) and 

Li et al. (2012). Seiford and Zhu (1999) proposed an standard two stage DEA model. 

Kao and Hwang (2008) considered two sub-stage production where the immediate 

products are considered as the outputs of sub-stage 1 and the inputs to the sub-stage 2. 

Zha and Liang (2010) and Li et al. (2012) extended two-stage DEA models by 

considering freely distributed inputs of two subsystems and the additional inputs to the 

second stage, respectively. Chen and Zhu (2004) and Kao and Hwang (2008) developed 

efficiency measurement framework for classic two-stage systems. The first subsystem 

uses inputs to produce outputs, which then become the inputs to the subsequent 

subsystem. The second subsystem thus consumes these outputs from the first subsystem 

to produce its outputs. Zha and Liang (2010) expanded the technology sets of each 

subsystem by considering the shared inputs between two serial subsystems. More 

recently, Li et al. (2012) further extended the two-stage network structures by assuming 

there existed exogenous inputs to the second subsystem. As results, two-stage DEA has 

been extensively applied to many areas, such as hotels (Sexton and Lewis, 2003; Huang 

et al. 2014), banks (Wang et al. 2014, Shi et al. 2017), insurance companies (Kao and 

Hwang, 2008; Eling and Schaper, 2017), industry (Wu et al. 2017; Zhao et al. 2017), 

airports (Lozano et al. 2013; Tsui et al. 2014) and so on. 

In this paper, we develop a method to obtain the ranking intervals for the classic 

two-stage production systems as discussed by Seiford and Zhu (1999), Chen and Zhu 

(2004), and Kao and Hwang (2008). That is, the first subsystem uses inputs to produce 

outputs that then become the inputs to the second subsystem to produce the final outputs. 

The proposed model calculates each DMU’s ranking intervals for the overall system as 

well as two subsystems. We belive that this process provides more accurate information 

for decision makers by identifying the best (and/or worst) DMUs in the overall system 

and both subsystems over all feasible weights. Besides, the proposed approach provides 

information regarding the sensitivity of the DMU’s ranking intervals for the overall 

system and both two subsystems over sets of all feasible weights. 
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The remainder of this paper is organized as follows. In the next section, the ranking 

interval procedure of Salo and Punkka (2011) has been reviewed briefly.  Then, in 

Section 3, a method is developed to obtain the ranking interval considering the two-

stage production systems. This is followed by illustration example in Section 4. An 

application is also given in this section to show the usefulness of the proposed 

procedure. In Section 5, the method is extended to measure the ranking interval for 

more general two-stage systems. Finally, conclusions and direction for future research 

are given in Section 6.  

 

2. Ranking intervals by Salo and Punkka (2011) 

Assume that there are n  DMUs denoted as ),,2,1( njDMU j = . Each DMU uses 

inputs ),...,1( mixij =  to produce outputs ( )sryrj ,...,1=  . Based on the definition of 

Charnes et al. (1978) and Dyson et al. (2001), the efficiency of kDMU  is defined as: 

( )



=

i iki

r rkr

k
xv

yu
vuE ,      (1) 

Where ( )srur ,...,1=  and ( )mivi ,...,1=  are the output weights and input weights, 

respectively. 

For any feasible weights ( )srur ,...,1=   and ( )mivi ,...,1= , Salo and Punkka 

(2011) defined two ranking sets based on the efficiency scores from (1)： 

( )   ( ) ( ) vuEvuEnlvuR klk ,,,...,1, =
 

( )     ( ) ( ) vuEvuEknlvuR klk ,,\,...,1, =
 



kR  contains the indexes of those other DMUs with strictly larger efficiency scores than 

that of kDMU  . And 


kR   contains the indexes of those other DMUs with no less 

efficiency scores than that of kDMU  .That is, 


kR
  

and 


kR
  

contain the indexes of 

DMUs dominating kDMU  . The corresponding efficiency rankings are defined as

( ) ( )vuRvur kk ,1,  += and ( ) ( )vuRvur kk ,1,  += , where R denotes the cardinality of the 
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set R .  

The ranking interval of kDMU  is then defined as  maxmin , kk rr , where the best and 

worst rankings for kDMU  are given by ( )vurr k
vu

k ,min
,

min =  and ( )vurr k
vu

k ,max
,

max = , 

respectively.  

The following proposition shows how to find the best ranking 
min

kr  
for kDMU . 

( )

( ) ( )
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  ( )
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==
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 






   (2) 

where C is a large positive constant. Model (2) is a mixed-integer linear problem. The 

constraints (2.1) and (2.2) assure that lDMU
 
has larger efficiency score than that of 

kDMU . The optimal value of model (2) is the best ranking of kDMU
 
over sets of all 

feasible weights. The best ranking of kDMU is defined as the minimum number of 

other DMUs that have larger efficiency scores than it. Obviously, no matter how the 

weights change, other DMUs dominating kDMU
 
have better rankings than it. 

By definition 1, the most unfavorable scenario for kDMU  is that in which we 

have the minimum number of DMUs that perform worse or, equivalently, the maximum 

number of DMUs that perform no worse than kDMU . The following definition 

establishes what we mean by the worst ranking (
max

kr ) of a given kDMU : 
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   (3) 

where C is a large positive constant. Model (3) is a mixed-integer linear problem. The 

optimal value of model (3) is the worst ranking of kDMU
 
over sets of all feasible 

weights. The worst ranking of kDMU
 
is defined as the maximum number of DMUs 

that have no less efficiency scores than it. Obviously, no matter how the weights change, 

other DMUs dominating kDMU
 
have no worse rankings than it. Based on model (2) 

and (3), the ranking interval  maxmin , kk rr  of kDMU
 
can be computed. These models 

treat the production systems as “Black Box”.  

The approach can be generalized to systems composed of two subsystems 

connected in series. In the next section, we will discuss how to calculate the best ranking 

and the worst ranking for each DMU with a two-stage production system. 

 

3. Ranking intervals for two-stage production systems 

Suppose the operation of a DMU can be divided into two subsystems or processes, as 

depicted in Fig.1. For kDMU , subsystem 1 applies inputs ikx ( )mi ,...,1=  to produce 

the intermediate products dkz ( )Dd ,...,1=  . All these intermediate products are then 

used by subsystem 2 to produce the final outputs rky ( )sr ,...,1=  . Based on the 

definition of Kao and Huang (2008), kDMU ’s efficiency scores for the overall system 

and two subsystems are defined as: 




=

i iki

r rkr

k
xv

yu
E   (4) 
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


=

i iki

d dkd

k
xv

zw
E

1

1  (5) 




=

d dkd

r rkr

k
zw

yu
E

2

2 (6) 

where ( )srur ,...,1=   and ( )mivi ,...,1=  are the output weights and input weights, 

respectively. Accordingly,
1

dw ( )Dd ,...,1=  and 
2

dw ( )Dd ,...,1= are the weights attached 

to the intermediate measures for subsystem 1 and subsystem 2, respectively. Similar to 

Kao and Hwang (2008) and Liang et al. (2008), we assume that the weights attached to 

the intermediate outputs in both subsystem 1 and subsystem 2 are the same, i.e. 

21

dd ww =  . This assumption represents the serial relationship between the two 

subsystems (Chen et al., 2009a). If we solve the two-stage DEA without this assumption, 

then our method is identical to independently employing the model for each subsystem. 

Therefore, this paper assumes ddd www == 21
. 

 

 

Fig. 1 Two-stage production system 

 

3.1. Ranking interval of a DMU for the overall system 

As discussed in section 2, choosing different weights may lead to different rankings for 

a “Black-Box” DMU. Similarly, choosing different weights may result in different 

rankings for a DMU with a two-stage production system. To obtain the ranking intervals 

for DMUs with a two-stage production system, we firstly give some definitions: 

Definition 1. For every set of ( )idr vwu ,, , miDdsr ,...,1,,...1,,...1 === , 
 

( )  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 























=

vwuEvwuEandvwuEvwuE

orvwuEvwuEandvwuEvwuE

orvwuEvwuEandvwuEvwuE

nlvwuR

klkl

klkl

klkl

k

,,,,,,,,

,,,,,,,,

,,,,,,,,

,...,1,,

2211

2211
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( )mixij ,...,1=  ( )Ddzdj ,...,1=  
Subsystem 1 

( )sryrj ,...,1=  
Subsystem 2 
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( )vwuRk ,,
  contains the indexes of those other DMUs with larger efficiency 

scores for both subsystems, or with larger efficiency scores for one sub-system and no 

less efficiency scores for the other sub system than that of kDMU . According to Kao 

and Hwang (2008), the overall efficiency score is the product of the efficiency scores 

of two sub-systems. Thus, if ( )klnlDMU = ,,...,1l  has larger efficiency scores for 

both subsystems, or has larger efficiency scores for one sub-system and no less 

efficiency scores for the other sub-system than that of kDMU  , then the overall 

efficiency score of lDMU  would be surely larger than that of kDMU . In such case, 

not only lDMU ’s two sub-systems performed no worse than that of kDMU , but also 

lDMU  ’s overall system performed better than that of kDMU  . 

( )klnlDMU = ,,...,1l   dominates kDMU  . Therefore, ( )vwuRk ,,
  contains the 

indexes of ( )klnlDMU = ,,...,1l  that dominate kDMU . 

Definition 2. For every set of ( )idr vwu ,, , miDdsr ,...,1,,...1,,...1 === , 
 

( )   ( ) ( ) ( ) ( ) vwuEvwuEandvwuEvwuEknlvwuR klklk ,,,,,,,,\,...,1,, 2211 =  

 ( )vwuRk ,,
  contains the indexes of those other DMUs with no less efficiency 

scores for both subsystems than that of kDMU . The corresponding efficiency rankings 

for kDMU  are defined as ( ) ( )vwuRvwur kk ,,1,,  +=  and ( ) ( )vwuRvwur kk ,,1,,  +=  , 

respectively. If kDMU  is CCR efficient, then its efficiency score is no less than that 

of other DMUs. Thus, its best ranking in Proposition 1 will be one.  

Proposition 1. The optimum of the minimization problem 
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( )

( )

 

)6.7(,...,1;,...,1;,...,1,,,

)5.7(,1,0,

)4.7(1

)3.7(1

)2.7(,,...,1

)1.7(,,...,1..

min

21

1

2

21

,,,, 21

miDdsrvwu

klpp

xvzw

zwyu

klnlCpxvzw

klnlCpzwyuts

pp

idr

ll

i ikid dkd

d dkdr rkr

li ilid dld

lr d dldrlr

ll
ppvwu

===



==

==

=+

=+

+







 

(7) 

is to identify the DMUs with strictly larger efficiency scores for both subsystems than 

that of kDMU . The constraints (7.1), (7.2), (7.3) and (7.4) assure that lDMU
 
has 

larger efficiency scores for both subsystems than that of kDMU  . If 
11

kl EE    & 

22

kl EE  ，then the optimal value in the objective function is 2, i.e., 2*2*1 =+ ll pp . If 

11

kl EE    & 
22

kl EE   , or if 
11

kl EE    & 
22

kl EE   , then 1*2*1 =+ ll pp  holds; if 

11  kl EE    & 
22

kl EE   , then 0*2*1 =+ ll pp   holds. Thus, the model has a feasible 

solution. The proof of this proposition is given in the Appendix. 

Therefore, the optimal value in the objective function may be three values: 0, 1 or 

2. (1) If 2*2*1 =+ ll pp   holds in model (7), then lDMU  dominates kDMU  .(2) If 

0*2*1 =+ ll pp   holds, then the efficiency scores of lDMU  and kDMU   may satisfy 

one of the following conditions: 
11  kl EE    and 

22

kl EE   ; 
11  kl EE    and 

22

kl EE =  ; 

11  kl EE =   and 
22

kl EE   ;
11  kl EE =   and 

22

kl EE =  . So, lDMU   does not dominate 

kDMU  as kl DMUDMU  or kl DMUDMU  . (3) If 1*2*1 =+ ll pp  holds, the efficiency 

scores of lDMU  and kDMU  may satisfy one of the following conditions: 
11

kl EE   

and 
22

kl EE =  ; 
11

kl EE    and 
22

kl EE   ; 
11

kl EE =   and 
22

kl EE   ; 
11

kl EE    and 

22

kl EE   . Thus, if 1*2*1 =+ ll pp holds, then lDMU  dominates kDMU  

( kl DMUDMU   ) or no dominating relationship may exist between lDMU   and 

kDMU . Therefore, by applying model (7), we could identify the DMUs dominating 
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kDMU   if 2*2*1 =+ ll pp   holds. However, we could not identify whether lDMU  

dominates kDMU  or no dominating relationship between them if 1*2*1 =+ ll pp  holds. 

To further identify whether lDMU  dominates kDMU   if 1*2*1 =+ ll pp   holds, we 

should identify whether lDMU   satisfies 
11

kl EE    and 
22

kl EE =   (or 
11

kl EE =   and 

22

kl EE  ). 

If 1*2*1 =+ ll pp   holds and 
11

kl EE   and
22

kl EE   (From model (7)), then the 

following model could further identify whether lDMU
  

satisties 
11

kl EE 
  

and 

22

kl EE = . 

( )

( )

 

)6.8(,...,1;,...,1;,...,1,,,

)5.8(,1,0,

)4.8(1

)3.8(1

)2.8(,,...,1

)1.8(,,...,1..

min

21

,,

miDdsrvwu

klpp

xvzw

zwyu

klnlxvzw

klnlzwyuts

C

idr

ll

i ikid dkd

d dkdr rkr

i ilid dld

r d dldrlr

vwu

===



==

==

=

=







 

 (8) 

The objective value of C   is constant. kDMU   is the evaluated DMU. The 

constraints (8.1), (8.2), (8.3) and (8.4) assure that lDMU has larger efficiency score for 

subsystem 1 and no less efficiency score for subsystem 2 than that of kDMU . If model 

(8) has a feasible solution, then 
11

kl EE    and 
22

kl EE =  . In such case, lDMU  

dominates kDMU . If model (8) has no feasible solution, then
11

kl EE   and 
22

kl EE  . 

In such case, there exists no dominating relation between lDMU  and kDMU . Thus, 

this model could identify the DMUs dominating kDMU  .Similarly, if 1*2*1 =+ ll pp  

holds and 
11

kl EE   and 
22

kl EE  (From model (7)), then the following model could 

identify whether lDMU  satisfies 
11

kl EE =  and 
22

kl EE  . 
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( )

( )

 

)6.9(,...,1;,...,1;,...,1,,,

)5.9(,1,0,

)4.9(1

)3.9(1

)2.9(,,...,1

)1.9(,,...,1..

min

21

,,,

miDdsrvwu

klpp

xvzw

zwyu

klnlxvzw

klnlzwyuts

C

idr

ll

i ikid dkd

d dkdr rkr

i ilid dld

r d dldrlr

pvwu

===



==

==

=

=







 

(9) 

The objective value of C  is constant. The constraints (9.1), (9.2), (9.3) and (9.4) 

assure that lDMU  has no less efficiency score for subsystem 1 and larger efficiency 

score for subsystem 2 than that of kDMU . If model (9) has a feasible solution, then 

11

kl EE =  and 
22

kl EE  . In such case, lDMU  dominates kDMU . If model (9) has no 

feasible solution, then
11

kl EE   and 
22

kl EE  . In such case, there exists no dominating 

relation between lDMU  and kDMU .  

The most unfavorable scenario for kDMU  is that in which we have the minimum 

number of DMUs whose two subsystems both perform worse or, equivalently, the 

maximum number of DMUs whose two subsystems perform no worse than kDMU
 

by definition 2. The following proposition establishes what we mean by the worst 

ranking of a given kDMU . 

Proposition 2. In the following model, the optimum of the maximization problem, i.e. 

max

kr , is the worst efficiency ranking of kDMU  considering each DMU has a two-

stage production system. 
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The constraints (10.1), (10.2), (10.3) and (10.4) assure that lDMU  has no less 

efficiency scores for both two subsystems than that of kDMU  . The optimal value 


kl

ll pp *2*1 *

  

in the objective function denotes the number of DMUs with no less 

efficiency scores for both subsystems than that of kDMU . When the efficiency scores 

of lDMU  for both two sub systems are no less than that of kDMU , 
*2*1 * ll pp  is one, 

otherwise, 
*2*1 * ll pp  is zero. The model is a mixed-integer program and non-linear. We 

solve it by using YALMIP toolbox in Matlab. The proof of this proposition is given in 

the Appendix. 

The entire proposed procedure of calculating the best ranking of the whole system 

is depicted in a flowchart produced in Fig.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Run model (7) 

2*2*1 =+ ll pp  
1*2*1 =+ ll pp  

0*2*1 =+ ll pp  

 

11

kl EE 
  

and 
22

kl EE   

11

kl EE 
 

and
22

kl EE   

Or 

11

kl EE 
 

and
22

kl EE   

 

11  kl EE   and 22

kl EE   
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Fig.2 The flowchart of calculating the best ranking of the whole system 

 

The proposed algorithm is summarized as follows: 

First, we use model (7) to identify the possible dominating relationship between 

lDMU  nl ,...,1  and the evaluated kDMU    Thus, if 2*2*1 =+ ll pp  , then 

kl DMUDMU   ; if 1*2*1 =+ ll pp  , dominating relationship is unknown as 

kl DMUDMU   or no dominating relationship exists between them; if 0*2*1 =+ ll pp , 

then kl DMUDMU   or kl DMUDMU  .  

Second, we run model (8) if 1*2*1 =+ ll pp   and 
11

kl EE    and
22

kl EE    (from 

model (7)). If model (8) has feasible solution, kl DMUDMU   , otherwise, no 

dominating relationship exists between them. Similiarly, we run model (9) if 

1*2*1 =+ ll pp  and 
11

kl EE   and 
22

kl EE   (from model (7)). If model (9) has feasible 

solution, kl DMUDMU  , otherwise no dominating relationship exists between them. 

DMUl dominates 

DMUk 

DMUl does not 

dominates DMUk 

Run model (8) Run model (9) 

Not Feasible Feasible Not Feasible 

11

kl EE   

& 

 
22

kl EE =  

11

kl EE   

& 

 
22

kl EE   

11

kl EE =  

& 

 
22

kl EE   

11

kl EE  & 

 
22

kl EE   

No dominating 

relation 

DMUl dominates 

DMUk 

DMUl dominates 

DMUk 

No dominating 

relation 

Feasible 
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Third, ( ) ( )vwuRvwur kk ,,1,,  +=   is thus obtained by adding the number of 

DMUs dominating kDMU  and one.  

Fourth, by running model (10), we could obtain the worst efficiency ranking of

kDMU
.
 

3.2. Ranking intervals of a DMU for both subsystems 

In this section, we discuss the ranking intervals of DMUs for two subsystems. we 

firstly give some definitions: 

Definition 3. For every set of ( )idr vwu ,, , miDdsr ,...,1,,...1,,...1 === , 
 

( )   ( ) ( ) vwEvwEnlvwR klk ,,,...,1, 111 =  

( )   ( ) ( ) wuEwuEnlwuR klk ,,,...,1, 222 =  

( )vwRk ,1
 contains the indexes of those other DMUs with larger efficiency scores 

for subsystem 1 than that of kDMU over feasible weights ( )vw, . ( )wuRk ,2
 contains 

the indexes of those other DMUs with larger efficiency scores for subsystem 2 than that 

of kDMU  over feasible weights ( )wu,  . The corresponding efficiency rankings of

kDMU  for subsystem 1 and subsystem 2 are defined as ( ) ( )vwRvwr kk ,1, 11  +=   and 

( ) ( )wuRwur kk ,1, 22  += , respectively.  

Definition 4. For every set of ( )idr vwu ,, , miDdsr ,...,1,,...1,,...1 ===  

( )   ( ) ( ) vwEvwEknlvwR klk ,,\,...,1, 111 =  

( )   ( ) ( ) wuEwuEknlwuR klk ,,\,...,1, 222 =  

( )vwRk ,1
 contains the indexes of those other DMUs with no less efficiency scores 

for subsystem 1 than that of kDMU over feasible weights ( )vw, . Similarly, ( )wuRk ,2
 

contains the indexes of those other DMUs with no less efficiency scores for subsystem 

2 than that of kDMU  over feasible weights ( )wu,  . The corresponding efficiency 

rankings of kDMU  for subsystem 1 and subsystem 2 are defined as 
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( ) ( )vwRvwr kk ,1, 11  +=  and ( ) ( )wuRwur kk ,1, 22  += , respectively.  

Proposition 3. The optimum of the following minimization problem is 
min1

kr , i.e. the 

best ranking of kDMU  for subsystem 1. 

( )

( ) ( )

( )

  ( )

)4.11(,...,1;,...,1,,

3.11,1,0

2.111

1.11,,...,1..

1min

,min

1

1

1

,,

1

,

min1

1

miDdvw

klp

xvzw

klnlCpxvzwts

p

vwrr

id

l

i ikid dkd

li ilid dld

kl

l
pvw

k
vw

k

==



==

=+

+=

==










(11) 

In Model (11), the optimal value 
kl

lp *1   in the objective function denotes the 

number of other DMUs with larger efficiency scores for subsystem 1 than that of kDMU

over all feasible weights ( )vw, . The constraints (11.1) and (11.2) assure that lDMU  

has larger efficiency score for subsystem 1 than that of kDMU  over sets of all feasible 

weights ( )vw, . The proof of this proposition is given in the Appendix. 

Proposition 4. The optimum of the following maximization problem is 
max1

kr , i.e. the 

worst ranking of kDMU  for subsystem 1. 

( )

( ) ( ) ( )

( )

  ( )

)4.12(,...,1;,...,1,,

3.12,1,0

2.121

1.12,,...,11..

1max

,max

1

1

1

,,

1

,

max1

1

miDdvw

klp

xvzw

klnlpCzwxvts

p

vwrr

id

l

i ikid dkd

ld dldi ili

kl

l
pvw

k
vw

k

==



==

=−+

+=

==










(12) 

The constraints (12.1) and (12.2) assure that lDMU  has no less efficiency score 

for subsystem 1 than that of kDMU  . The optimal value 
kl

lp *1
  in the objective 

function denotes the number of DMUs with no less efficiency scores for subsystem 1 
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than that of kDMU . The proof of this proposition is given in the Appendix. 

Similarly, according to the definition 3, the most favorable scenario of subsystem 

2 for kDMU  is that in which we have the maximum number of DMUs that perform 

worse in subsystem 2 or, equivalently, the minimum number of DMUs that perform 

better than kDMU
 
in subsystem 2. The following definition establishes what we mean 

by the worst ranking (
min2

kr ) of a given kDMU
 
in subsystem 2. 

Proposition 5. The optimum of the following minimization problem is 
min2

kr , i.e. the 

best ranking of kDMU  for subsystem 2. 

( )

( ) ( )

( )

  ( )

)4.13(,...,1;,...,1,,

3.13,1,0

2.131

1.13,,...,1..

1min

,min

2

2

2

,,

2

,,

min2

2

2

Ddsrwu

klp

zwyu

klnlCpzwyuts

p

wurr

dr

l

d dkdr rkr

lr d dldrlr

kl

l
pwu

k
pwu

k

==



==

=+

+=

=



 






(13) 

The optimal value 
kl

lp *2
 in the objective function denotes the number of other 

DMUs with larger efficiency scores for sub system 2 than that of kDMU  . The 

constraints (13.1) and (13.2) assure that lDMU   has larger efficiency score for 

subsystem 2 than that of kDMU . The proof is similar to Proposition 3. 

According to the definition 4, the most unfavorable scenario of subsystem 2 for 

kDMU  is that in which we have the minimum number of DMUs that perform worse 

or, equivalently, the maximum number of DMUs that perform no worse than kDMU .  

The following definition establishes what we mean by the worst ranking (
max

kr ) of 

a given kDMU in subsystem 2. 

Proposition 6. The optimum of the following maximization problem is 
max2

kr , i.e. the 
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worst ranking of kDMU  for subsystem 2. 

( )

( ) ( ) ( )

( )

  ( )

)4.14(,...,1;,...,1,,

3.14,1,0

2.141

1.14,,...,11..

1max

,max

2

2

2

,,

2

,,

max2

2

2

Ddsrwu

klp

zwyu

klnlpCyuzwts

p

wurr

dr

l

d dkdr rkr

r lrlrd dld

kl

l
pwu

k
pwu

k

==



==

=−+

+=

=










(14) 

The constraint (14.1) assures that lDMU   has no less efficiency score for 

subsystem 2 than that of kDMU  . The optimal value 
kl

lp *2   in optimal objective 

function denotes the number of DMUs with no less efficiency scores for subsystem 2 

than that of kDMU . The proof is similar to Proposition 4. 

 The approach proposed above provides ranking intervals of kDMU   for the 

overall system and both subsystems. On one hand, the ranking intervals provide 

information regarding the overall performance and the performance of two subsystems 

for different DMUs. For example, if 
min1min1

lk rr    and
min2min2

lk rr   , this means that 

kDMU may have better rankings for the overall system and both subsystems than that 

of lDMU . On the other hand, it could be used to analyze the stability of the rankings 

for the overall system and both subsystems. For example, if 
maxmin

kk rr =  , then the 

ranking of kDMU is stable over all feasible weights and insensitive to the weights.  

4. Extension to multi-stage production process 

In this section, we extend the ranking interval model to multi-stage systems. In 

reality, many decision-making units (DMUs) have a multi-stage system structure (Kao 

2014). For example, see Fig. 3 that shows a multi-stage process of q sub-systems in 

series. The first sub-system uses inputs Xi, i = 1,… ,m  supplied from outside to 

produce intermediate products Zd
1 , d ∈ M1 for sub-system 2 to use. In subsequent sub-

systems, every sub-system p  consumes intermediate products Zd
p-1
, d ∈ Mp-1 , 
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produced by its preceding process p-1, to produce intermediate products Zd
p
, d ∈ Mp 

for the succeeding process p + 1  to use. For the last sub-system qq , it consumes 

intermediate products Zd
q-1
, d ∈ Mq-1 to produce final outputs Yr, r = 1,… , s. 

 

 

1         . . .        p         …        q 

 

 

Fig. 3 Multi-stage production process 

 

According to Kao (2014), the efficiency for the overall system and sub-systems 

are defined as follows: 

𝐸𝑘 =
∑ 𝑢𝑟𝑌𝑟𝑘
𝑠
𝑟=1

∑ 𝑣𝑖𝑋𝑖𝑘
𝑚
𝑖=1

                  (15) 

Ek
1 =

∑ wdZdk
1

d∈M1

∑ vi
m
i=1 Xik

                (16) 

Ek
p
=

∑ wdZdk
p

d∈Mp

∑ wdZdk
p-1

d∈Mp-1
, p = 2,… , q-1  (17) 

E𝑘
q
=

∑ 𝑢𝑟𝑌𝑟𝑘
𝑠
𝑟=1

∑ wdZdk
q−1

d∈Mq−1
              (18)   

where 𝑢𝑟(𝑟 = 1,… , 𝑠) ,𝑤𝑑(𝑑 ∈ 𝑀)  and 𝑣𝑖(𝑖 = 1,… ,𝑚)  are the output weights, 

intermediate weights and input weights, respectively. The system efficiency for the 

overall system with a multiple-stage structure is the product of the efficiencies for all 

sub-systems’ efficiencies. 

Similar to section 2, to obtain the ranking intervals for DMUs with a multi-stage 

production system, we firstly need to give some definitions. 

Definition 6. For every set of (𝑢𝑟 , 𝑤𝑑 , 𝑣𝑖), 𝑟 = 1,… , 𝑠; 𝑑 ∈ 𝑀; 𝑖 = 1,… ,𝑚, 

𝑅𝑘
>(𝑢, 𝑤, 𝑣) =

{
 
 

 
 

𝑙𝜖{1,… , 𝑛} |
|

𝐸𝑙
𝑝(𝑢, 𝑤, 𝑣) > 𝐸𝑘

𝑝(𝑢, 𝑤, 𝑣), 𝑝 = 1,… , 𝑞 𝑜𝑟

𝐸𝑙
𝑡(𝑢, 𝑤, 𝑣) > 𝐸𝑘

𝑡(𝑢, 𝑤, 𝑣), 𝑡𝜖{1, … , 𝑞} 𝑎𝑛𝑑 

𝐸𝑙
𝑡1(𝑢, 𝑤, 𝑣) ≥ 𝐸𝑘

𝑡1(𝑢, 𝑤, 𝑣)

, 𝑡1 ≠ 𝑡 𝑎𝑛𝑑 𝑡1𝜖{1, … , 𝑞} }
 
 

 
 

 

( )vwuRk ,,
  contains the indexes of those other DMUs with larger efficiency 

scores for all subsystems, or with larger efficiency scores for one sub-system and no 

less efficiency scores for other sub systems than that of kDMU  . Similar to the 

X𝑖 

i=1,…,m 

Z𝑑
1  

d ∈ 𝑀1 

Z𝑑
𝑝−1

 

d ∈ 𝑀𝑝−1 

Z𝑑
𝑝

 

d ∈ 𝑀𝑝 

Z𝑑
𝑞−1

 

d ∈ 𝑀𝑞−1 

𝑌𝑟  

r = 1,… , s 
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Definition 1 for the ranking intervals of two-stage process, ( )vwuRk ,,
 contains the 

indexes of ( )klnlDMU = ,,...,1l  that dominate kDMU . 

Definition 7. For every set of ( )idr vwu ,, , miDdsr ,...,1,,...1,,...1 === , 
 

𝑅𝑘
≥(𝑢, 𝑤, 𝑣) = {𝑙𝜖{1, … , 𝑛} ∖ 𝑘|𝐸𝑙

𝑝(𝑢, 𝑤, 𝑣) ≥ 𝐸𝑘
𝑝(𝑢, 𝑤, 𝑣), 𝑝 = 1,… , 𝑞 } 

 ( )vwuRk ,,
  contains the indexes of those other DMUs with no less efficiency 

scores for all subsystems than that of kDMU . The corresponding efficiency rankings 

for kDMU  are defined as ( ) ( )vwuRvwur kk ,,1,,  +=  and ( ) ( )vwuRvwur kk ,,1,,  +=  , 

respectively. We can see the following proposition as an extension of Proposition 1 to multi-

stage systems: 

Proposition 7. The optimum of the minimization problem 

Min
𝑢,𝑤,𝑣,𝑡1,…,𝑡𝑞

∑𝑡𝑙
𝑝

𝑞

𝑝=1

                                                                                                 

𝑠. 𝑡.  ∑ 𝑢𝑟𝑌𝑟𝑙
𝑠

𝑟=1
≤∑ wdZdl

q−1

d∈Mq−1
+ 𝐶𝑡𝑙

𝑞
, 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘) (19.1)  

                              ∑ wdZdl
p

d∈Mp
≤∑ wdZdl

p−1

d∈Mp−1
+ 𝐶𝑡𝑙

𝑝
, 𝑝 = 2,… , 𝑞 − 1, 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘) (19.2)

 

        

∑ wdZdl
1

d∈M1 ≤ ∑ vi
m
i=1 Xil + 𝐶𝑡𝑙

1, 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘)  (19.3)          

∑ 𝑢𝑟𝑘
𝑠
𝑟=1 = ∑ 𝑤𝑑𝑍𝑑𝑘

𝑞−1
𝑑∈𝑀𝑞−1 = 1                                    (19.4)        

∑ wdZdk
p

d∈Mp = ∑ wdZdk
p−1

d∈Mp−1 = 1                              (19.5)     

 

∑ wdZdk
1

d∈M1 = ∑ 𝑣𝑖𝑋𝑖𝑘
𝑚
𝑖=1 = 1       (19.6)

𝑡𝑙
1, 𝑡𝑙

2, … , 𝑡𝑙
𝑞
∈ {0,1}, 𝑙 ≠ 𝑘                  (19.5)

𝑢𝑟 , 𝑤𝑑 , 𝑣𝑖 ≥ 0, ∀𝑟, 𝑑, 𝑖                         (19.7)

             (19) 

is to identify the DMUs with strictly larger efficiency scores for all subsystems than 

that of kDMU . The constraints (19.1) - (19.6) assure that lDMU
 

has larger efficiency 

scores for all subsystems than that of kDMU  . If 𝐸𝑙
𝑝(𝑢, 𝑤, 𝑣) > 𝐸𝑘

𝑝(𝑢, 𝑤, 𝑣), 𝑝 =

1,… , 𝑞 , then the optimal value in the objective function is q , i.e.,  ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 = 𝑞 

∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 = 𝑞. If lDMU
 
has larger efficiency scores for some sub-systems while it 
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has no less efficiency scores for other sub-systems than that of kDMU  , then 1 ≤

∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 ≤ 𝑞 − 1 holds; if lDMU
 
has no larger efficiency scores for all sub-systems 

than that of kDMU , i.e., 𝐸𝑙
𝑝(𝑢, 𝑤, 𝑣) ≤ 𝐸𝑘

𝑝(𝑢, 𝑤, 𝑣), 𝑝 = 1,… , 𝑞, then ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 = 0 

holds. Thus, the model has a feasible solution. 

Therefore, the optimal value in the objective function may be clarified into three 

categories: 0, [1, q − 1] or q. (1) If  ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 = 𝑞 holds in model (19), then lDMU

dominates kDMU  .(2) If  ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 = 0  holds, then lDMU   does not dominate 

kDMU   as kl DMUDMU   or kl DMUDMU   . (3) If 1 ≤ ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 ≤ 𝑞 − 1  holds, 

lDMU dominates kDMU  ( kl DMUDMU  ) or no dominating relationship may exist 

between lDMU  and kDMU . Therefore, by applying model (19), we could identify 

the DMUs dominating kDMU   if  ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 = 𝑞  holds. However, we could not 

identify whether lDMU  dominates kDMU  or no dominating relationship between 

them if 1 ≤ ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 ≤ 𝑞 − 1 holds. To further identify whether lDMU  dominates 

kDMU  if 1 ≤ ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 ≤ 𝑞 − 1 holds, similar models like model (8) and model (9) 

could be proposed. 

For example, if  ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 = 1  holds and 
11

kl EE    and 𝐸𝑙
𝑝(𝑢, 𝑤, 𝑣) ≤

𝐸𝑘
𝑝(𝑢, 𝑤, 𝑣), 𝑝 = 2,… , 𝑞 (From model (19)), then the following model could further 

identify whether lDMU
  

satisties 
11

kl EE    and 𝐸𝑙
𝑝(𝑢, 𝑤, 𝑣) = 𝐸𝑘

𝑝(𝑢, 𝑤, 𝑣), 𝑝 =

2,… , 𝑞. 

    Min
𝑢,𝑤,𝑣

  𝐶                                                                                                                

𝑠. 𝑡.  ∑ 𝑢𝑟𝑌𝑟𝑙
𝑠

𝑟=1
≥∑ wdZdl

q−1

d∈Mq−1
, 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘) (20.1) 

                                ∑ wdZdl
p

d∈Mp
≥∑ wdZdl

p−1

d∈Mp−1
, 𝑝 = 2,… , 𝑞 − 1, 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘) (20.2)

 

∑ wdZdl
1

d∈M1 > ∑ vi
m
i=1 Xil, 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘)                  (20.3)  

∑ 𝑢𝑟𝑘
𝑠
𝑟=1 = ∑ 𝑤𝑑𝑍𝑑𝑘

𝑞−1
𝑑∈𝑀𝑞−1 = 1                                        (20.4) 

∑ wdZdk
p

d∈Mp = ∑ wdZdk
p−1

d∈Mp−1 = 1                                (20.5) 

(20) 
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∑ wdZdk
1

d∈M1 = ∑ 𝑣𝑖𝑋𝑖𝑘
𝑚
𝑖=1 = 1 (20.6)

𝑢𝑟 , 𝑤𝑑 , 𝑣𝑖 ≥ 0, ∀𝑟, 𝑑, 𝑖                        (20.7)
    

The objective value of C   is constant. kDMU   is the evaluated DMU. The 

constraints (20.1) - (20.6) assure that lDMU  has larger efficiency score for subsystem 

1 and no less efficiency score for other subsystems than that of kDMU . If model (20) 

has a feasible solution, then  
11

kl EE   and 𝐸𝑙
𝑝(𝑢, 𝑤, 𝑣) = 𝐸𝑘

𝑝(𝑢, 𝑤, 𝑣), 𝑝 = 2,… , 𝑞. In 

such case, lDMU   dominates kDMU  . If model (20) has no feasible solution, then 

11

kl EE    and 𝐸𝑙
𝑝(𝑢, 𝑤, 𝑣) < 𝐸𝑘

𝑝(𝑢, 𝑤, 𝑣), 𝑝 = 2,… , 𝑞 . In such case, there exists no 

dominating relation between lDMU  and kDMU . Thus, this model could identify the 

DMUs dominating kDMU  .Similar models could be developed to identify whether 

lDMU  dominates kDMU  when the optimal value of model (19) is between 1 and 

q − 1, i.e.,  1 ≤ ∑ 𝑡𝑙
𝑝∗𝑞

𝑝=1 ≤ 𝑞 − 1 . 

The most unfavorable scenario for kDMU  is that in which we have the minimum 

number of DMUs whose all subsystems perform worse or, equivalently, the maximum 

number of DMUs whose all subsystems perform no worse than kDMU
 
by definition 

7. The following proposition establishes what we mean by the worst ranking of a given 

kDMU . 

Proposition 8. In the following model, the optimum of the maximization problem, i.e. 

max

kr , is the worst efficiency ranking of kDMU  considering each DMU has a multi-

stage production system. 

max
𝑢,𝑤,𝑣

 𝑟𝑘
≥ (𝑢, 𝑤, 𝑣) = max

𝑢,𝑤,𝑣,𝑡1,…,𝑡𝑞
1 +∑∏𝑡𝑙

𝑝

𝑞

𝑝=1𝑙≠𝑘

 

𝑠. 𝑡.  ∑ wdZdl
q−1

d∈Mq−1
≤∑ 𝑢𝑟𝑌𝑟𝑙

𝑠

𝑟=1
+ 𝐶(1 − 𝑡𝑙

𝑞
), 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘) (21.1)                         

∑ wdZdl
p−1

d∈Mp−1
≤∑ wdZdl

p

d∈Mp
+ 𝐶(1 − 𝑡𝑙

𝑝
), 𝑝 = 2,… , 𝑞 − 1, 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘) (21.2)
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 ∑ vi
m
i=1 Xil ≤ ∑ wdZdl

1
d∈M1 + 𝐶(1− 𝑡𝑙

1), 𝑙 = 1,… , 𝑛(𝑙 ≠ 𝑘) (21.3)       

∑ 𝑢𝑟𝑘
𝑠
𝑟=1 = ∑ 𝑤𝑑𝑍𝑑𝑘

𝑞−1
𝑑∈𝑀𝑞−1 = 1                                                  (21.4)       

∑ wdZdk
p

d∈Mp = ∑ wdZdk
p−1

d∈Mp−1 = 1                                          (21.5)      

                 (21) 

∑ wdZdk
1

d∈M1
=∑ 𝑣𝑖𝑋𝑖𝑘

𝑚

𝑖=1
= 1 (21.6)

𝑡𝑙
1, 𝑡𝑙

2, … , 𝑡𝑙
𝑞
∈ {0,1}, 𝑙 ≠ 𝑘              (21.7)

𝑢𝑟 , 𝑤𝑑 , 𝑣𝑖 ≥ 0, ∀𝑟, 𝑑, 𝑖             (21.8)     

 

The constraints (21.1)- (21.6) assure that lDMU  has no less efficiency scores for 

all subsystems than that of kDMU . The optimal value ∑ ∏ 𝑡𝑙
𝑝𝑞

𝑝=1𝑙≠𝑘

 

in the objective 

function denotes the number of DMUs with no less efficiency scores for both 

subsystems than that of kDMU  . When the efficiency scores of lDMU   for all 

subsystems are no less than that of kDMU , ∏ 𝑡𝑙
𝑝∗𝑞

𝑝=1  is one, otherwise, ∏ 𝑡𝑙
𝑝∗𝑞

𝑝=1  is 

zero. The model is a mixed-integer program and non-linear. We solve it by using 

YALMIP toolbox in MATLAB.  

 

5. Empirical illustration 

To illustrate the proposed approach of ranking intervals for two-stage production 

systems, we use the following two examples. 

5.1. An illustration example 

For illustration purpose, we use a numerical example with two inputs, one intermediate 

and two outputs as used in Kao and Hwang (2010) and reproduced in Table 1. 

 

Table 1: Numerical data set (Example 1) 

DMU x1 x2 z y1 Y2 

P1 1 2 1.6 2 3 

P2 2 1 1 3 3 

P3 4 5 0.67 2 4 

P4 5 5 0.6 1 2 

 

Table 2 reports the results of ranking intervals based on the proposed approach and 

compare it with Salo and Punkka (2011)’s approach. The ranking intervals considering 
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the two-stage production system (based on our approach) are shown from Column 2 to 

7 while the ranking intervals treating the production as a “Black Box” (based on Salo 

and Punkka (2011)’s approach) are shown in Column 8 and 9. 

 

Table 2: Ranking intervals (Example 1) 

DMU 

Our approach 
Salo & Punkka 

(2011)’s approach  

min

kr  
max

kr  
min1

kr  
max1

kr  
min2

kr  
max2

kr  
min

kr  
max

kr  

P1 2 2 1 2 3 4 1 2 

P2 1 1 1 2 3 4 1 3 

P3 2 2 3 3 1 2 2 4 

P4 3 3 4 4 1 2 3 4 

 

This example is the situation that the ranking intervals based on our approach may 

be narrower than that of Salo and Punkka (2011)’s approach. Thus, the rankings may 

be not very sensitive to the weights based on our approach. As shown in Column 2 and 

3 in Table 2, it could be found that DMU (P1) and DMU (P3) always ranks 2 regardless 

what weights are chosen. DMU (P2) always ranks 1 and DMU (P4) always ranks 3 

regardless of what weights are chosen. Therefore, we can conclude that the rankings of 

these DMUs do not depend on the choice of DEA weights that the DMUs make. Hence, 

there is no difference between the best ranking and the worst ranking. However, the 

ranking intervals based on Salo and Punkka (2011)’s approach are wider. For example, 

DMU (P1) has the best ranking of 1 and the worst ranking of 2 if we do not consider 

the two-stage structure. 

This example also shows that the best rankings based on our approach are no less 

than that of Salo and Punkka (2011)’s approach.Similarly, the worst rankings based on 

our approach are no larger than that of Salo and Punkka (2011)’s approach. For example, 

regardless what weights are chosen, DMU (P2) always ranks 1 based on our approach. 

However, the best and worst rankings based on Salo and Punkka (2011)’s approach are 

1 and 3, respectively. It is similar to other three DMUs. This may be due to the fact that 
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if a DMU dominates the other DMU, then it has larger efficiency scores for both 

subsystems, or larger efficiency score for one subsystem and no less efficiency score 

for the other subsystem (see Definition 1). 

The ranking intervals also provide information to rank the DMUs in the overall 

system and both two subsystems. If we consider the two-stage production system, DMU 

(P2) always ranks 1 in the overall system regardless what weights are chosen. So DMU 

(P2) has the best performance in the overall system. But if we do not consider the two-

stage system structure, DMU (P1) and DMU (P2) may have good performance as they 

may rank 1. The result is different from our approach because they do not consider the 

two-stage production structure. We believe that our approach produces a more realistic 

results since it considers the internal structure of DMUs and could be applied to real 

two-stage production processes. In subsystem 1, DMU (P1) and DMU (P2) have the 

best ranking of 1, accordingly, they are the best DMUs in subsystem 1. Similarly, in the 

subsystem 2, DMU (P3) and DMU (P4) are the best DMUs as their best ranking could 

attain 1. 

5.2. An application of non-life insurance companies 

In this section, we take the data set of 24 non-life insurance companies from (Kao & 

Hwang, 2008). These non-life insurance companies’ whole production system has a 

typical two-stage structure. The production system is divided into two subsystems: 

premium acquisition and profit generation. These companies are evaluated by using 

two inputs, two intermediates, and two outputs.  

 

Table 3: Ranking intervals for each non-life insurance company (Example 2) 

DMU 

NO. Our approach 
Salo & Punkka (2011)’s 

model 

 
min

kr  
max

kr  
min

kr  
max

kr  

Taiwan Fire 1 6 12 2 17 

Chung Kuo 2 11 19 1 20 

Tai Ping 3 20 23 2 23 

China Mariners 4 19 21 8 24 

Fubon 5 3 15 1 13 

Zurich 6 9 16 6 23 
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Taian 7 5 11 9 19 

Ming Tai 8 4 10 8 20 

Central 9 5 12 15 22 

The First 10 8 13 5 19 

Kuo Hua 11 7 13 9 24 

Union 12 7 17 1 21 

Shingkong 13 3 8 6 23 

South China 14 8 15 10 20 

Cathay Century 15 2 7 1 13 

Allianz President 16 11 17 9 20 

Newa 17 2 4 3 14 

AIU 18 10 14 12 21 

North America 19 1 3 2 21 

Federal 20 2 2 2 16 

Royal & Sun 

Alliance 
21 

7 7 
13 23 

Asia 22 1 1 1 12 

AXA 23 12 21 6 24 

Mitsui Sumitomo 24 6 6 14 24 

 

Table 3 reports the ranking intervals of each DMU based on our approach and Salo & 

Punkka (2011)’s approach. Column 5 and column 6 in Table 3 report the DMUs’ 

ranking intervals treating the production system as a “Black Box”, which are 

represented graphically red in Fig.4. Column 3 and column 4 in Table 3 report the 

DMUs’ ranking intervals when considering the inner production structure, which are 

represented graphically blue in Fig.4. 
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Fig. 4 Ranking intervals for each non-life insurance company considering and without considering 

the two-stage production system 

 

From Fig.4, we can find that if we do not consider the two-stage production 

structure, the best DMUs are Chung Kuo (DMU 2), Fubon (DMU 5), Union (DMU 12), 

Cathay Century (DMU 15), and Asia (DMU 22) as they have the best ranking of 1. 

Though these DMUs may rank 1, they have wide ranking ranges. Among these five 

DMUs, Asia (DMU 22) has the best performance as it has the narrowest ranking 

intervals as well as the best ranking of 1. The worst DMUs are China Mariners (DMU 

4), Kuo Hua (DMU 11), AXA (DMU 23) and Mitsui Sumitomo (DMU 24) as their 

worst rankings are 24. Among these four DMUs, the best ranking of AXA (DMU 23) 

is 14, which is larger than that of other three DMUs. Thus, AXA (DMU 23) is the worst 

DMU.  

The best performers (or worst performers) based on our approach may not be the 

same as that of Salo and Punkka (2011)’s approach. The blue bar char in Fig.4 reports 

the DMUs’ ranking intervals when the two-stage structure is considered. Fig.4 shows 

that only North America (DMU 19) and Asia (DMU 22) are ranked 1 as they all have 

the best ranking of 1. But Asia (DMU 22) has the narrowest ranking interval as it ranks 

1 regardless of what weights are chosen, so it is the best performer. Tai Ping (DMU 3) 

is the worst DMU as it has the worst ranking of 23. Besides, we can compare some 
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DMUs over sets of all feasible weights. For example, Tai Ping (DMU 3) has a best 

ranking of 20 and a worst ranking of 23, while Ming Tai (DMU 8) has a best ranking 

of 4 and a worst ranking of 10. That is, 
min

3

min

8 rr    and 
max

3

min

3

max

8 rrr   . Hence, 

Ming Tai (DMU 8) always performs better than Tai Ping (DMU 3) regardless of the 

choice of the weights.  

When the two-stage structure is considered, the ranking intervals may be narrower 

based on our approach than that of Salo and Punkka (2011)’s approach. For example, 

as shown in Column 3 and 4 in Table 3, it could be found that Allianz President (DMU 

16) has the best ranking of 2 and the worst ranking of 20. However, as shown in Column 

5 and 6 in Table 3, it has the best ranking of 10 and the worst ranking of 22 over all 

feasible weights. Thus, the ranking intervals based on Salo and Punkka (2011)’s 

approach are wider. 

 

Table 4: Ranking intervals for two subsystems 

DMU NO. 

Ranking intervals for 

subsystem 1 

Ranking intervals for 

subsystem 2 

min1

kr  
max1

kr  
min2

kr  
max2

kr  

Taiwan Fire 1 1 12 4 19 

Chung Kuo 2 1 18 5 21 

Tai Ping 3 9 22 1 23 

China Mariners 4 7 24 9 23 

Fubon 5 3 23 1 15 

Zurich 6 2 23 12 20 

Taian 7 7 23 5 19 

Ming Tai 8 8 23 5 21 

Central 9 1 19 12 24 

The First 10 4 24 3 14 

Kuo Hua 11 7 24 11 24 

Union 12 1 23 3 17 

Shingkong 13 5 21 2 23 

South China 14 9 23 6 18 

Cathay Century 15 1 19 2 13 

Allianz President 16 2 20 10 22 

Newa 17 9 24 1 12 

AIU 18 3 21 12 23 

North America 19 1 20 3 23 
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Federal 20 2 24 2 19 

Royal & Sun Alliance 21 7 24 8 22 

Asia 22 5 24 1 17 

AXA 23 3 16 6 24 

Mitsui Sumitomo 24 1 24  6 24 

 

As for two subsystems, Table 4 shows the subsystem’s ranking intervals of each 

insurance company. The third and fourth columns in Table 4 are the best and worst 

rankings for subsystem 1. The fifth and sixth columns in Table 4 are the best and worst 

rankings for subsystem 2. It shows that Taiwan Fire (DMU 1), Chung Kuo (DMU 2), 

Central (DMU 9), Union (DMU 12), Cathay Century (DMU 15), North America (DMU 

19) and Mitsui Sumitomo (DMU 24) are the best performers in subsystem 1. As Taiwan 

Fire (DMU 1) has the narrowest ranking interval, it is the best DMU for subsystem 1. 

It can be seen that Taiwan Fire (DMU 1) has the best ranking of 4 and the worst ranking 

of 19 in subsystems 2, so it does not perform very well in subsystem 2. Therefore, the 

reason that Taiwan Fire (DMU 1)’s overall ranking is good is due to its well 

performance in subsystem 1. As for the subsystem 2, Tai Ping (DMU 3), Fubon (DMU 

5), Newa (DMU 17), Asia (DMU 22) are the best DMUs as their best rankings are all 

1. Central (DMU 9), Kuo Hua (DMU 11), AXA (DMU 23) and Mitsui Sumitomo 

(DMU 24) are the worst DMUs as their worst rankings can attain 24.  

 

5.3. An application to Chinese commercial banks 

In the DEA literature for bank and bank branch evaluation, about the input and output 

selections for bank efficiency measures, there are three common approaches, 

production approach, profitability approach and intermediation approach (Paradi et al. 

2011). The production approach is used to investigate the ability of a branch/bank for 

using inputs - capital and labor to produce outputs - transaction services (e.g. Berger 

and Humphrey (1997); Fukuyama and Weber (2009)).The intermediation approach 

evaluates the operation of a branch as an entity using monetary assets as inputs to make 

loans and investments as outputs (e.g. Maudos et al. 2002; Chen et al. 2005).The 

profitability approach measures a branch’s profitability based on expenses as inputs and 
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revenues as outputs (Drake et al. (2006); Pasiouras, 2008a). Wang et al. 2014 considers 

the internal structure of a bank, and divides the producing process into two sub-systems, 

where deposits are taken as intermediate measure. In the first stage, fixed assets and 

labor are used to produce deposits; in the second stage, deposits are used to produce 

interest income and non-interest income. According to the available data and the 

characters of Chinese commercial banks, in this paper, the production approach is 

selected to choose the indexes. 

In the first stage, deposit-producing stage, fixed assets and employee expenses are 

used to produce deposits. Fixed assets refer to the asset value of physical capital, and 

employee expenses refers to the payment to full-time employees hired. In the second 

stage, profit-earning stage, the deposits are used to produce interest income and non-

income interest. Deposits includes current deposits and time deposits, interest incomes 

refer to incomes that are primarily derived from loans and non-interest incomes include 

fees, commissions, investment and other business income. Our study considers 16 

stock-listed commercial banks in China. They could be divided into three kinds, that is, 

State-owned commercial banks (SOB), National joint-stock commercial banks (NJB) 

and city commercial banks (CB). Among 16 main commercial banks, China 

Construction Bank (CCB), Industrial and Commercial Bank of China (ICBC), Bank of 

China (BOC), Agriculture Bank of China (ABC) and Bank of Communications 

(BOCOM) belong to State-owned commercial Banks; China Merchants Bank (CMB), 

China CITIC Bank (CNCB), China Minsheng Bank (CMBC), Industrial Bank (IB), 

Shanghai Pudong Development Bank (SPDB), China Everbright Bank (CEB), Hua Xia 

Bank (HXB), and Ping An Bank (PAB) belong to National joint-venture commercial 

banks (NJB) contain; Beijing Bank (BJB), Nanjing Bank (NJB) and Ningbo Bank 

(NBB) belong to City commercial banks. The data of Chinese commercial banks are 

derived from Bank-scope resource package produced by Bureau Van Dijk (BVD), 

Yearly Statistics Book of China’s Finance and the annual reports of the banks. The 

descriptive statistics of the inputs, intermediate measures, and outputs of these banks 

are presented in Table 5. 
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Table 5: Descriptive statistics of the inputs, intermediate measures, and outputs of Chinese 

commercial banks 

Variables Mean Standard deviation Maximum Minimum 

Fixed Assets 677.05 803.02 2436.19 54.19 

Labors 139.6 127.28 399.02 18.63 

Deposits 56177.15 59528.32 178253.02 5114.05 

Interest Income 695.06 655.45 2040.45 53.91 

non-interest income 2875.72 2469.74 7914.80 337.54 

 

Table 6 reports the results of ranking intervals based on the proposed approach. 

The ranking intervals for the overall system are shown in Column 3 and 4. And, the 

ranking intervals for two sub-systems are shown in Column 5 to 8. 

The best performers (or worst performers) based on our approach could be 

identified. From Table 6, it could be seen that CMBC (DMU 4) and CMB (DMU 5) 

may be best DMUs as they both have the best ranking of 1. But CMBC (DMU 4) has 

the narrowest ranking interval as it ranks 1 regardless of what weights are chosen, so it 

is the best performer. ABC (DMU 7) is the worst DMU as it has the worst ranking of 

16. Besides, we can compare some DMUs over sets of all feasible weights. For example, 

CCB (DMU 11) has a best ranking of 7 and a worst ranking of 12, while CMB (DMU 

5) has a best ranking of 1 and a worst ranking of 6. That is,  𝑟5
𝑚𝑖𝑛 < 𝑟11

𝑚𝑖𝑛 and 𝑟5
𝑚𝑎𝑥 <

𝑟11
𝑚𝑖𝑛 < 𝑟11

𝑚𝑎𝑥. Hence, CMB (DMU 5) always performs better than CCB (DMU 11) 

regardless of the choice of the weights. 

The ranking intervals also provide information to rank the DMUs in the overall 

system and both two subsystems. CMBC (DMU 4) and CMB (DMU 5) may rank 1 in 

the overall system, so they have the best performance in the overall system. In 

subsystem 1, PAB (DMU 1), BOCOM (DMU 8), ICBC (DMU 9), CNCB (DMU 13) 

and BJB (DMU 14) have the best ranking of 1, accordingly, they are the best DMUs in 

subsystem 1. Similarly, in the subsystem 2, CMBC (DMU 4) and CMB (DMU 5) are 

the best DMUs as their best ranking could attain 1. CMBC (DMU 4) may be the best 
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DMU in the overall system as its good performance in subsystem 2 (it has best ranking 

of 1 and worst ranking of 8 in subsystem 2) 

 

Table 6: Ranking intervals for Chinese commercial banks based on our approach 

DMU NO. 

Ranking intervals for 

overall system 

Ranking intervals for 

subsystem 1 

Ranking intervals for 

subsystem 2 

min

kr  
max

kr  
min1

kr  
max1

kr  
min2

kr  
max2

kr  

PAB 1 4 5 1 14 3 5 

SPDB 2 2 2 2 5 2 4 

HXB 3 13 13 7 16 7 13 

CMBC 4 1 2 10 15 1 8 

CMB 5 1 6 2 12 1 12 

IB 6 4 4 6 15 1 4 

ABC 7 13 16 6 12 15 16 

BOCOM 8 9 10 1 16 6 11 

ICBC 9 9 13 1 14 11 15 

CEB 10 6 6 3 13 3 7 

CCB 11 7 12 5 12 9 14 

BOC 12 6 8 7 15 6 16 

CNCB 13 5 6 1 8 7 12 

BJB 14 6 7 1 5 5 14 

NJB 15 13 15 6 11 7 15 

NBB 16 9 9 11 13 6 9 

 

 

6. Conclusions and direction for future research 

In previous DEA literature, each DMU is evaluated by using the most favorable weights. 

However, it ignores other feasible weights. To overcome this problem, Salo and Punkka 

(2011) deemed each DMU as a “Black Box”, and developed mix-integer models to 

obtain the ranking intervals over sets of all feasible weights. In this paper, we expand 

their method by considering the internal structure of the DMUs. We extend their method 

to compute ranking intervals for a two-stage production system and illustrate the 

method by revisiting reported DEA studies. Thus the “Black Box” is opened, and more 

accurate information on the ranking intervals for the overall system and both 

subsystems is provided by to the decision maker.  
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The efficiency measure used in this paper is radial, some non-radial measures have 

also been proposed in the literature, such as the slack-based measure (Tone and Tsutsui, 

2009; Tone and Tsutsui, 2010). Obtaining the ranking intervals for two-stage production 

systems based on non-radial DEA is another interesting avenue to explore in the future.  
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Appendix 

Proof of Proposition 1 

Proof. The constraints (7.1) and (7.2) are included in model (7) in order to identify 

DMUs with larger efficiency scores for subsystem 1 and subsystem 2 than that of 

kDMU  . The constraint (7.3) 1== d dkdr rkr zwyu   implies kDMU  ’s efficiency 

score in subsystem 2 is one, namely 12 =kE  ; and the constraint (7.4) 

 ==
i ikid dkd xvzw 1   implies kDMU  ’ efficiency score in subsystem 1 is one, 

namely 11 =kE . Hence, for every feasible choice of DEA weights, if
22

kl EE   holds, that 

is 1
2

2

=



d dkdr rkr

d dldr rlr

k

l

zwyu

zwyu

E

E
 (or  

d dldr rlr zwyu  ), then 
2

lp   will be 

necessarily 1. In the same manner, if 
11

kl EE  (or  
i ilid dld xvzw ) holds, then 

1

lp  

will be necessarily 1.  

While if 
22

kl EE    and
11

kl EE    (or  
d dldr rlr zwyu   and 

 
i ilid dld xvzw ) hold, then

1

lp  and 
2

lp  can be either 0 or 1. As we minimize the 

sum of 
21

ll pp +   in the objective (7). Thus, at optimum,
22

kl EE    and 
11

kl EE    are 

necessarily associated with 11 =

lp   and 12 =

lp  , while 
22

kl EE    and 
11

kl EE    are 

necessarily associated with  01 =

lp   and 02 =

lp  . Consequently, the objective 

ofmodel (7) identifies the DMUs with strictly larger efficiency scores for both two 

subsystems than that of kDMU . □ 

Proof of Proposition 2  

Proof. The proof is similar to Proposition 1. 

For every feasible choice of DEA weights, if 
22

kl EE  (or  
d dldr rlr zwyu ) holds, 

then 
2

lp   will be necessarily 0 or 1. In the same manner, if 11

kl EE    (or 

 
i ilid dld xvzw ) holds, then

1

lp  will be either 0 or 1.  

While if 
22

kl EE   and 
11

kl EE   hold, then 
1

lp  and 
2

lp  can be necessarily 0. 
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As we maximize the sum of 
21 * ll pp  in the objective (10), at optimum, 

22

kl EE   and 

11

kl EE   are associated with 11 =lp  and 12 =lp , while 
22

kl EE   and 
11

kl EE   are 

associated with 01 =lp   and 02 =lp  . Consequently, the objective
max

kr  of model (10) 

accounts for the maximum number of DMUs with efficiency scores larger than or equal 

to those of kDMU  (excluding kDMU  ).Thus, the objective inmodel (10) obtains the 

worst ranking of kDMU which has a two-stage production system. □ 

Proof of Proposition 3 

Proof. The constraint (11.3) 1== d dkdr rkr zwyu and (11.4)  ==
i ikid dkd xvzw 1  

imply kDMU ’s efficiency scores in subsystem 2 and subsystem 1are 1, respectively. 

That is, 12 =kE   and 11 =kE  . For every feasible choice of weights, if 
11

kl EE    (or

 
i ilid dld xvzw  ), then 

1

lp   will be necessarily 1. Similarly, if 
22

kl EE   (or 

 r d dldrlr zwyu ), then 
2

lp  will be necessarily 1. 

While if 
11

kl EE  , then 
1

lp  can be either 0 or 1. Similarly, if 
22

kl EE  ,then 
2

lp  

can be either 0 or 1. As we minimize the sum of 
1

lp  in the objective (11), at optimum, 

11

kl EE    is necessarily associated with 11 =lp  , while 
11

kl EE    isnecessarily 

associated with 01 =lp  . Consequently, the objective ofmodel (11) accounts for the 

minimum number of DMUs with efficiency scores larger than that of kDMU

(excluding kDMU  ). Thus, the objective in model (11) obtains the best ranking of 

kDMU in subsystem 1. □ 

Proof of Proposition4 

Proof. For every feasible choice of DEA weights of each DMU, if 
11

kl EE 
  

(or 

 
i ilid dld xvzw  ), then 

1

lp   will be necessarily 0 or 1. While if 
11

kl EE 
  

(or 
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 
i ilid dld xvzw ), then 

1

lp  can be necessarily 0. As we maximize the sum of 
1

lp  

in the objective (12), at optimum
11

kl EE  is necessarily associated with 11 =lp , while 

11

kl EE   is necessarily associated with 01 =lp . 

Consequently, the objective
max1

kr of model (12) accounts for the maximum number 

of DMUs with efficiency scores larger than or equal to that of kDMU  (excluding

kDMU  ).Thus, the objective in model (12) obtains the worst ranking of kDMU   in 

subsystem 1. □ 

 

 


