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Thesis Summary 

The calcitonin gene-related peptide (CGRP) receptor is an unusual G protein-coupled receptor 

(GPCR) in that it comprises the calcitonin receptor-like receptor (CLR), receptor activity modifying 

protein 1 (RAMP1) and the receptor component protein (RCP). The RAMP1 has two other 

homologues – RAMP2 and RAMP3. The endogenous ligand for this receptor is CGRP, a 37 amino 

acid neuropeptide that act as a vasodilator. This peptide has been implicated in the aetiology of health 

conditions such as inflammation, Reynaud’s disease and migraine. A clear understanding of the mode 

of activation of this receptor could be key in developing therapeutic agents for associated health 

conditions. Although the crystal structure of the N-terminal extracellular domain (ECD) of this 

receptor (in complex with an antagonist) has been published, the details of receptor-agonist 

interactions at this domain, and so ultimately the mechanism of receptor activation, are still unclear. 

Also, the C-terminus of the CLR (in the CGRP receptor), especially around the presumed helix 8 (H8) 

region, has not been well studied for its role in receptor signalling. This research project investigated 

these questions. 

In this study, certain residues making up the putative N-terminal ligand-binding core of the CLR (in 

the CGRP receptor) were mapped out and found to be crucial for receptor signalling. They included 

W69 and D70 of the WDG motif in family B GPCRs, as well as Y91, F92, D94 and F95 in loop 2 of 

CLR N-terminus. Also, F163 at the cytoplasmic end of TM1 and certain residues spanning H8 and 

associated C-terminal region of CLR were found to be required for CGRP receptor signalling. These 

residues were investigated by site-directed mutagenesis where they were mutated to alanine (or other 

residues in specific cases) and the effect of the mutations on receptor pharmacology assessed by 

evaluating cAMP production, cell surface expression, total cell expression and αCGRP-mediated 

receptor internalization. Moreover, the N-terminal ECDs of the CLR and RAMPs (RAMP1, RAMP2 

and RAMP3) were produced in a yeast host strain (Pichia pastoris) for the purpose of structural 

interaction study by surface plasmon resonance (SPR). Following expression and purification, these 

receptor proteins were found to individually retain their secondary structures when analysed by 

circular dichroism (CD). Results were analysed and interpreted with the knowledge of the secretin 

family receptor paradigm. 

The research described in this thesis has produced novel data that contributes to a clearer 

understanding of CGRP receptor pharmacology. The study on CLR and RAMPs ECDs could be a 

useful tool in determining novel interacting GPCR partners of RAMPs. 

Keywords: G protein-coupled receptor, calcitonin receptor-like receptor, receptor activity modifying 

protein, Pichia pastoris, extracellular domain, site-directed mutagenesis. 
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Chapter 1 Introduction 

1.1 Membrane Proteins  

The cell is the structural and functional unit of life. It is made up of biomolecules and organelles with 

which it performs its biological activities. These cellular constituents are enclosed within a 

phospholipid bilayer that serves as a barrier between the cell’s internal and external environment. This 

bilayer is called the cell membrane. It regulates the flux of materials in and out of the cell due to its 

selective permeability. The fatty acyl chains of the phospholipid form a hydrophobic core that is about 

25-30 Å in width and the polar head groups, a hydrophilic region each measuring about 10-15 Å 

(Smith and Veenstra, 2003). The presence of these two (hydrophilic and lipophilic) regions gives 

these membranes their “amphipathic” characteristic (Childs, 2003). There are proteins located 

at/associated with cell membranes that give them diverse functional characteristics. These proteins are 

termed “membrane proteins” (Lodish et al., 2000). Biological membranes show a large amount of 

homogeneity in structure but differ in functions depending on the proportion of proteins to lipid, type 

of proteins associated with them and the type of phospholipid they contain (Childs, 2003). Their 

functions are usually determined by the type of the cell/organelle in which they are located (Lodish et 

al., 2000). For example, the myelin sheath, which insulates nerve fibres, has a protein to lipid ratio of 

about 1:4 while the mitochondria inner membrane, on the other hand, has a higher proportion of 

proteins than lipid (protein:lipid = 3:1) for the purpose of ATP synthesis, importation of newly 

synthesized proteins and transfer of small molecules (Yeagle and Lee, 2002; Childs, 2003). That of 

the plasma membrane is 1:1 (Petty, 1993).  

Membrane proteins (MPs) fall into two large groups – the peripheral and integral membrane proteins 

(Fig. 1.1) - based on their mode of interaction with the lipid bilayer. The peripheral or extrinsic 

membrane proteins are attached to the surfaces of the membrane, either directly to the polar head 

groups of the bilayer or to integral membrane protein(s) by electrostatic, hydrophobic or other non-

covalent interaction. They can therefore be dissociated from the membrane upon treatment with 

relatively high ionic-strength buffers like that of carbonate at high pH (Smith and Veenstra, 2003; 
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Nelson and Cox, 2005). These water-soluble proteins play a role in the regulation of membrane-bound 

enzymes and in limiting the mobility of integral membrane proteins by leashing them to intracellular 

structures (Nelson and Cox, 2005). Examples include the cytoskeletal proteins – microfilament, actins 

and tubulins – and cytochrome c (Petty, 1993). The integral or intrinsic membrane proteins (IMPs), on 

the other hand, have a significant proportion of their mass buried within the membrane (Lodish et al., 

2000; Smith and Veenstra, 2003). These proteins’ hydrophobic and hydrophilic regions interact more 

firmly with the fatty acyl hydrophobic core and the polar head groups of the membrane respectively, 

and can therefore only be solubilised by amphipathic agents such as detergents e.g. Triton X-100 

(Smith and Veenstra, 2003; Petty, 1993). Most IMPs span the entire membrane with a portion of their 

structure at both phases of the membrane allowing communication between the exterior and interior 

of the cell/organelle and are in this case also referred to as transmembrane proteins e.g. glycophorin 

and insulin receptor (Lodish et al., 2000; Smith and Veenstra, 2003).  

 

Fig 1.1: Diagrammatic representation of membrane proteins. The different types of membrane proteins as well 

as the components of the phospholipid bilayer are shown as labelled. Mol Cell Bio. 2000. WH Freeman & Co 

 

The membrane-spanning segments of IMPs are dominated by lipophilic amino acid residues like Leu, 

Ile, and Val as well as aromatic residues like Trp, Phe and Tyr. Their lipophilicity makes them highly 

compatible with the hydrophobic core of the membrane lipid bilayer (Muller et al., 2008).  So far, 
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only two major secondary structures – the alpha (α) helix and the beta (β) barrel – have been reported 

for these proteins (Sternberg, 1996; Lodish et al., 2000; Childs, 2003; Pifat-Mrzljak, 2007). The α 

helix is formed from the folding of transmembrane segments made up of long stretches of non-polar 

side chains of the amino acids. These side chains form van der Waals interaction with the membrane 

lipid hydrophobic core thereby shielding the carbonyl and the imino (NH) groups. A group of 

positively charged Lys and Arg believed to interact with the negatively charged phospholipid head 

groups prevents the helix from slipping across the hydrophobic lipid bilayer (Sternberg, 1996; Lodish 

et al., 2000). Most IMPs are composed of one or more transmembrane α helix with each protein 

having a specific number of transmembrane α helices. For example, receptor activity modifying 

proteins (RAMPs), glycophorin, bacteriorhodopsin and the bacterial photosynthetic reaction centre 

(PRC) have 1, 2, 7 and 11 membrane-spanning α helices respectively (McLathie et al., 1998; 

Sternberg, 1996; Lodish et al., 2000). Up to 19 membrane-spanning α helices have also been reported 

for the voltage-dependent Ca
2+

 channel (Muller et al., 2008). β barrels on the other hand are large 

antiparallel sheets that form cylindrical structures in which the strands have uncharged amino acids 

that protrude out of the outer surface of the barrel at every second position in the sequence (Sternberg, 

1996). A prominent example is the class of transmembrane proteins called “porins” that have 

primarily different structure from other IMPs. A number of these proteins are found in the outer 

membrane of gram-negative bacteria like Echerichia coli [E. coli] (Lodish et al., 2000). Despite the 

successes recorded in the past in the study of membrane proteins, a large part of the knowledge of 

their structures, and how this influences processes such as membrane insertion and folding 

mechanisms, is still considered rudimentary (Muller at al., 2008). Although models have been 

proposed to unravel these mechanisms (White et al., 2001; Engelman, 2003), they have their limiting 

factors and cannot make a clear representation of an in-vivo mechanism. Further studies are still 

therefore required to better understand many structural features of these proteins. 

The function of membrane proteins in a living organism cannot be overemphasized. Membrane 

proteins help in stabilising the structure of the cell by maintaining polarity, shape and size of the cell. 

A group of them function in energy transduction using electrochemical gradient to generate high 



23 
 

energy compounds like ATP. They also serve as transporters building and/or maintaining 

concentration gradients of biomolecules such as electrolytes, water and metabolic cofactors. 

Membrane proteins such as kinases and proteases also perform some enzyme activities. Molecule 

recognition in the immune system and cell adhesion in the formation of tight junctions both involve 

certain groups of membrane proteins (Muller et al., 2008). This is just to mention a few of the 

countless roles played by these versatile biological molecules. It is no surprise that about 30% of all 

active genes encode membrane proteins (von Heijne, 2007). Of all the functions attributed to 

membrane proteins (especially the integral membrane proteins), a very prominent one is their role as 

receptors for extracellular ligands that bind to their extracellular or transmembrane domain (Muller et 

al., 2008). 

 

1.1.1 The “Receptor Concept”  

Contemporary scientists share the notion that hormones and drugs produce their effects by specific 

interactions with “receptors” in a manner similar to the interaction between enzymes and substrates. 

The insights came from early works of scientists who explored a number of investigations to make 

their points evident (Limbird. 1996). Claude Bernard (1813 – 1878) with his investigation of the 

selectivity and specificity of drug action pioneered the idea of specific drug interaction (Limbird, 

1996). Although Bernard never used the word “receptor”, he was particular about the locus of drug 

action and by so doing brought to light a first method to establish the specificity of drug action. In 

learning the mode of action of the arrow poison curare, he discovered they were effective when 

administered by an arrow but harmless while administered orally. He noticed that the orally 

administered curare was unaltered by saliva, bile, pancreatic or gastric juice but was unabsorbed by 

the gastrointestinal tract (GIT), and could not reach the neuromuscular junction – its site of action 

(Limbird, 1996; Scheidlin, 2001). His findings suggested that the poison requires access to its target 

organ system to elicit its effect. This was suggested as a prerequisite for drug action. 
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In 1878, the English physiologist, John N. Langley first proposed the existence of physiological 

substances that form complexes with the pilolcarpine and atropine. It was later in 1905 that he used 

the word “receptive substance” to describe the effects of nicotine and curare on skeletal muscle 

(Hollinger, 2003; Rang, 2006). A.V. Hill later used the law of mass action – derived in 1918 by 

Langmuir, an eminent physical chemist, to describe adsorption of gases - to study this interaction 

quantitatively and opined that it obeys the law. The equation describing this interaction was then 

tagged the Hill-Langmuir equation and this formed the basis of the “receptor theory” (Limbird, 1996; 

Rang, 2006). The formulation of this theory became the first significant achievement of the 

pharmacology discipline in terms of drug-receptor interaction. Paul Ehrlich, a German contemporary 

of Langley, baptized the receptive substance described by Langley as “receptor” from his interest in 

immunology and chemotherapy while working with bacteria toxins (Hollinger, 2003; Seth and Seth, 

2009). Ehrlich’s idea was that bacterial toxins interact with nutrient-capturing structures of cells 

(sidechains) thereby starving the cells. He also found out that these bacterial sidechains are distinct 

from that of the host cells. This led him to the discovery of Salvarsan, the first potent treatment for 

syphilis (Rang, 2006). 

After this period, the receptor concept was now in the limelight and formed the foundation for many 

other scientists to build on. Notable was the work of A.J. Clark and J.H. Gaddum who worked 

extensively on the actions of acetylcholine and atropine on frog’s isolated heart as well as that of 

adrenaline and ergotamine on rabbit uterus. They derived the equations to describe the log 

concentration-effect curve, which is now a cornerstone of pharmacology (Rang, 2006). More work 

was done to seal the root of the receptor concept into the ground. The first was the study of 

competitive antagonism. It was found that while some drugs act as agonists, others act as antagonists. 

Another was direct measurement of drug binding, which made possible the techniques of receptor 

isolation and cloning. Most of the initial works were performed on the β-adrenergic receptor (Rang, 

2006; Seth and Seth, 2009). Though Clark and Gaddum failed to mention drug antagonism from 

competition between agonist and antagonist for the same receptor in their earlier work, Gaddum later 

(in 1937) derived an equation to describe the binding of two drugs to the same receptor. Schild (1947) 
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developed this idea and came up with the “dose ratio” – “the factor by which the agonist 

concentration must be increased in order to produce the same level of equilibrium occupancy as the 

concentration of antagonist is increased”  (Rang 2006).  

Further modifications to Clark and Gaddum’s works by Ariens (1954), Stephenson (1956) and 

Furchgott (1966), added some other interesting parameters to the drug-receptor relation. At this time, 

the idea of drug “affinity” and “efficacy” or “intrinsic activity” sprang up (Rang, 2006; Seth and Seth, 

2009). While affinity was defined as the ability to combine with receptors, efficacy represented the 

ability to produce response. These two terms were then used to theoretically distinguish between 

agonists and antagonists. While both agonists and antagonists are capable of showing affinity (i.e. 

interactions) for a receptor, only an agonist could possess efficacy or intrinsic activity (i.e. produce 

desired response) following the interaction (Seth and Seth, 2009). The antagonist in this respect 

prevents a response by blocking the interaction of the agonist with the receptor. Receptor ligand 

interaction is likened to the lock and key model postulated for enzymes and substrates, which is based 

on biochemical structure. Antagonists are therefore usually, but not always, similar in structure to the 

agonists and are bound by the receptor on this basis making the receptor “unavailable” for its ligand 

(agonist). The key difference here is that while the agonist binds and activates the receptor, the 

antagonist only binds but does not activate the receptor. Moreover, agonists and antagonists do not 

necessarily bind to the receptor at the same site, but their sites of binding to the receptor may overlap. 

There are drugs that specifically act as antagonists. An example is the opiate antagonist, naloxone, 

which blocks the binding of morphine (the agonist) to the opiate receptor (Seth and Seth, 2009). 

Agonists could be full/pure, partial or inverse. The full agonist binds to the receptor producing the 

desired effect. Most agonists fall into this category. Partial agonists share the characteristics of pure 

agonist and antagonist. They have high affinity for the receptor but typically produce a weaker 

response, compared to the full agonist, and in the process prevent the interaction of the full agonist 

with the receptor. An example is the β-adrenergic antagonist, oxprenolol. The inverse agonist 

produces an exactly opposite effect to that of the pure agonist.  It reduces the activity of the receptor 

by inhibiting the receptor’s constitutive or basal activity. An example of an inverse agonist is β-



26 
 

carbolines which produce an opposite effect to that of benzodiazepine in the CNS (Seth and Seth, 

2009).  

The mechanism by which receptors alternate between the inactive and active states in the presence or 

absence of a ligand has been described using the two-state model schematically similar to that 

postulated for the interaction between oxygen and haemoglobin by Monod, Wyman and Changeux 

(see Leff, 1995). The two-state model is presented in Fig 1.2 below.  

 

Fig 1.2: The two-state model for receptor activation. (Adapted from Leff (1995)). R and R* represent the 

receptor in the inactive (or resting) and active states respectively. L is the equilibrium constant for the 

interconversion between the two receptor states in the absence of a ligand. A is the ligand and has affinity for 

both receptor states.  As an agonist, it preferentially binds to R*. KA and KA* are dissociation equilibrium 

constants for A at the inactive and active receptor states respectively.  

 

When A shows a higher affinity for the receptor in the inactive state (i.e. R), it is an inverse agonist. 

Whereas, when A displays a higher affinity for the receptor in its active state, it is an agonist. These 

imply that while an inverse agonist stabilizes the receptor in its inactive conformation, an agonist 

stabilizes the receptor’s active conformation. A neutral antagonist stabilizes both receptor states (i.e. 

active and inactive) without altering the equilibrium.    
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In some cases, receptors can become active in the absence of an agonist in which case they are said to 

display “constitutive activity”. This is commonly observed as a result of mutation to residue(s) that 

helps the receptor maintain its inactive state. This mutation could be naturally occurring or 

experimentally induced. For instance, mutating A293 in hamster α1b-adrenoceptor, to any other amino 

acid, results in constitutive activity (Kjelsberg et al., 1992). This constitutive activity is usually 

blocked by an inverse agonist, and by so doing, it (inverse agonist) is said to display a negative 

efficacy (Lambert et al., 2004).  

Drugs could interact with receptors reversibly by forming weak bonds (such as hydrogen, van der 

Waals or electrostatic) with the receptor. They could also form strong (e.g. covalent) bonds in which 

case they interact irreversibly, although this is rarely the case. The reversible drug-receptor complexes 

obey the law of mass action. The degree of response of a drug depends on the number of occupied 

receptors (Seth and Seth, 2009). Considering the following equation for instance,                                                                                                                                                                                                                                                       

D + R             DR            Effect 

where D is the drug, R the free receptor, and k1 and k2 are the association and dissociation rate 

constants respectively. The equilibrium constant K = k1/k2. It is a feature of both drug and receptor 

and it is the concentration of the drug required to occupy 50% of the receptor’s binding site at 

equilibrium (Seth and Seth, 2009). 

Finally, receptors can be a single unit of homomeric molecules or a combination of heteromeric 

subunits with each subunit having equal or varying contribution towards the receptor specificity. 

Despite the diversity and complexity in the structure and function of these receptors, Triggle (2000) 

classified them into four principal families of chemically sensitive pharmacological receptors 

(Triggle, 2000). These are: 

1. Ion channels: integral MP comprising subunits, each with membrane inserts forming different 

pores of the channel. 

2. Enzyme-associated: one-transmembrane protein with kinase activity 

k1 

k2 
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3. Nuclear receptors: non-membrane intracellular proteins that regulate transcription. 

4. G protein-coupled: seven-transmembrane receptor proteins that couple to proteins of the G 

protein family. 

 

1.2 G protein-Coupled Receptors  

G-protein coupled receptors (GPCRs) are seven-transmembrane (7-TM) α-helical receptor proteins 

(Fig 1.3) that transduce signals via heterotrimeric guanine nucleotide-binding proteins (G proteins) 

coupled on their cytoplasmic surface (Neves et al., 2002; Park et al., 2009). The heterotrimeric G 

protein comprises the α, β and γ subunits (Gαβγ) and, at resting state, are normally bound to 

guanosine diphosphate (GDP) at the α subunit. The overall signal transduction involves the exchange 

of bound GDP for GTP on the α subunit. When activated, for instance following the binding of an 

extracellular stimulus, GPCRs undergo conformational changes that allow G protein binding and 

subsequent release of GDP from Gα. On association of GTP with Gα subunit, conformational changes 

within the Gα subunit allow the release of bound trimeric G protein from the receptor and the 

dissociation of this protein into the active Gα (bound to GTP) and Gβγ. These subunits then interact 

with downstream effector proteins, for example adenylate cyclase, which produces the second 

messenger, cyclic AMP (Kristiansen, 2004). The cycle is terminated by the hydrolysis of GTP to GDP 

by Gα subunit which paves way for the reassociation of the α and βγ subunits (Oldham and Hamm, 

2008). 

GPCRs constitute a remarkably large and ubiquitous family of membrane receptors through which the 

majority of extracellular signals including photons, neurotransmitters, ions, nucleotides, peptides and 

lipids mediate intracellular responses (Lundstrom and Chiu, 2006; Kroeze and Roth, 2006). They 

comprise a large proportion (~3.7%) of the human genome, making them the biggest single family in 

the genome, and their genes show over 60% sequence identity to one another (Offermanns and 

Rosenthal, 2008). They are found in a wide range of organisms including the invertebrates e.g. 

nematodes, vertebrates e.g. fish and mammals (Kroeze and Roth, 2006). For these reasons, especially 
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in their remarkable role in signal transduction coupled with their easy accessibility by hydrophilic 

hormones and drugs (since they are expressed on the plasma membrane), GPCRs are now therapeutic 

targets for up to 50% of clinically marketed drugs (Fredriksson et al., 2005; Lundstrom and Chiu, 

2006; Insel et al., 2007; Daulat et al., 2008; Park et al., 2009). GPCRs have been reported to be the 

therapeutic target for almost all known antipsychotic drugs (Kroeze and Roth, 2006). In 2003, drugs 

targeting these receptor proteins made about 23% of total sales of prescription drugs (Lundstrom and 

Chiu, 2006). These drugs include Salmetrol, “an antiasthmatic β2 adrenergic agonist”, Losartan, “an 

antihypertensive angiotensin II receptor antagonist”, and the prostate cancer drug, Leuprolide, 

targeted at the gonadotropin-releasing hormone (GnRH) receptor (Kroeze and Roth, 2006). The 

physiological importance of native GPCRs accounts for their pharmacological relevance.  

Fig 1.3: Basic structure of a GPCR. The TM helices are numbered 1 – 7 and the intracellular 8
th

 helix is labelled 

8. The extracellular loops (ECL) and intracellular loops (ICL) are indicated and numbered accordingly. 

Pharmacol Ther. 2004; 103(1):21-80  

 

1.2.1 The GPCR Superfamily 

There are about 850 members of the GPCR superfamily, which are mostly found within the first three 

classes of this superfamily of receptor proteins. They share a common backbone structure of an amino 

terminal region (or N-terminus), a 7-TM helical domain, and a carboxyl terminal region (or C-
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terminus). The main structural distinction among these receptors is in their N-termini, which form the 

orthosteric site (primary binding sites for endogenous agonists) for many receptors (Kristiansen, 2004; 

Park et al., 2009).  The most widely accepted classification system for GPCRs is that introduced by 

Fredriksson et al. (2003), which is called the GRAFS classification system. According to this system, 

GPCRs are classified, mainly based on sequence homology, into 5 classes namely; glutamate, 

rhodopsin, adhesion, frizzled/tatse2, and secretin (Fredriksson et al., 2003). A sum-up of these 

classes, with their alternative family names with which they are sometimes described, are presented 

below.  

 

1.2.1.1 Rhodopsin-like (family A) GPCRs 

The rhodopsin family (or family A) of GPCRs is so called because members of this family show 

structural and functional homology with rhodopsin, an important light-sensing receptor protein that 

plays a crucial role in vision (Fredriksson et al., 2003; Schioth and Fredriksson, 2005; Kobilka, 2007). 

It was the first characterized representative member of the family. This rhodopsin- or β2 adrenergic 

receptor-like family constitutes the largest member of the GPCR family making close to 90% (701 of 

800) of all GPCRs (Fredriksson et al., 2003; Lundstrom and Chiu, 2006; Kobilka, 2007). They serve 

as receptors for the widest range exogenous and endogenous ligands including odorants, biogenic 

amines (adrenergic, muscarinic, dopaminergic etc), neuropetides and peptidergic hormones, 

nucleotides, lipids and lipids derivatives, and photons (for rhodopsin) among others (Armbruster and 

Roth, 2004; Lundstrom and Chiu, 2006). They have a characteristic relatively short N-terminus, albeit 

with a few exceptions like the luteinizing hormone (LH) receptor and follicle-stimulating hormone 

(LSH) receptor. They also possess conserved disulphide bridge (between Cys110 and Cys187), a 

“E/DRY” motif (Glu/Asp-Arg-Tyr) on TM3 on the cytosolic phase and an “NPXXY” motif (Asn-Pro-

X-X-Tyr, where X could be any amino acid) on TM7 within the lipid bilayer (Lundtsrom and Chiu, 

2006; Krauss, 2008; Flanagan, 2005; He et al., 2001, Insel et al., 2007). While the DRY motif is 

thought to be involved in the maintenance of a stable active/inactive conformation by the receptor, the 
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NPXXY motif connects the 7
th
 TM to an 8

th
 cytosolic helix and both roles are believed to be 

important in signal transduction (Flanagan, 2005; He et al., 2001).  

 

1.2.1.2 Secretin-like (family B) GPCRs 

The secretin/glucagon-like family of GPCRs are a much smaller group (15 members) compared to the 

family A (Fredriksson et al., 2003; Schioth and Fredriksson, 2005), but with diverse structure and 

function (Harmar, 2001). The secretin receptor was the first family B GPCR to be cloned (Ishihara et 

al., 1991) and this probably explains why this sub-family was named the “secretin family” GPCRs.  

They usually bind peptide hormones of higher molecular weight such as secretin, calcitonin, glucagon 

and parathyroid hormones. These peptides range in length from about 27 to 52 amino acids (Insel, 

2007; May et al., 2007). Receptors of this family have a large N-terminal domain that is bigger than 

that of the rhodopsin family (see Fig 1.4), and many disulphide bonds (Krauss, 2008). Orthosteric 

binding to these receptors involves the N-terminus and the TM domain as well as the loops making it 

a complex mechanism (Hoare, 2005). A number of these members form heterodimers with receptor-

activity-modifying proteins (RAMPs) - a family of single-span TM protein that modifies the 

receptors’ ligand binding and signalling characteristics (McLathie et al., 1998; Krauss, 2008). This is 

specifically seen in the calcitonin receptor-like receptor (CLR) from which three receptor phenotypes 

are derived following heterodimerization with a RAMP e.g. the CGRP is an heterodimer of the CLR 

and RAMP1 (McLathie et al.,1998). The complexity in the orthosteric binding of this receptors 

coupled with the rather allosteric interaction of the RAMPs, where this exists, has made it more 

difficult to understand the pharmacology of these receptors.        

     

1.2.1.3 Glutamate (family C) GPCRs 

The glutamate receptor family (or family C) is another small family of GPCRs with 15 major group 

members (Fredriksson et al., 2003). They are receptors mainly to low molecular weight 
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neurotransmitters (e.g. glutamate and Gamma (γ) aminobutyric acid (GABA)) (Insel et al., 2007). 

Prominent in this family include metabotropic glutamate and GABA, calcium and vomeronasal 

(Krauss, 2008). They possess a very large (300-600 amino acids) bilobate N-terminal domain, 

commonly referred to as “Venus flytrap”, with which they bind their primary ligands. They have been 

reported to show homo- and heterodimerization (Devi, 2005; May, 2007; Krauss, 2008). 
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Fig 1.4: Structural representation of rhodopsin, secretin and glutamate families of GPCRs. (a) rhodopsin family 

(b) secretin family (c) glutamate family. Endocrine Reviews 21(1): 90-113 

 

1.2.1.4 Frizzled/Taste2 GPCRs 

The Frizzled/Taste 2 receptors are a newly organized family comprising the frizzled and taste 2 

subfamilies, which were formerly separate. The frizzled was first observed in Drosophila and was 

(a) 

(c) 

(b) 
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found to be activated by the glycoprotein, Wnt, which was “curled” and “twisted” (hence the name 

frizzled) (Fredriksson et al., 2003; Schioth and Fredriksson, 2005; Schulte and Bryja, 2007). The 

frizzled receptor group regulates proliferation, embryogenesis and tissue homeostasis. Their N-

terminus is about 200 residues long (Schioth and Fredriksson, 2005). The taste2 (TAS2) receptors on 

the other hand function as bitter taste receptors as they have been found to be expressed in the tongue 

and palate (Schioth and Fredriksson, 2005). While the frizzled receptors are found in a wide range of 

organisms, from Caenorhabditis elegans to mammals, the taste receptors have only been found in 

mouse and human and this is a major reason why there are still controversies as regards their 

evolution (Schioth and Fredriksson, 2005). However, some few important common features, which 

have been observed for both groups from test sequences in humans, include the IFL, SFLL and 

SxKTL motifs in the 2
nd

, 5
th
 and 7

th
 TMs respectively (Rognan et al., 2006; Schioth and Fredriksson, 

2005). 

 

1.2.1.5 Adhesion GPCRs 

This class is commonly known as the “Adhesion” family and is the second largest class of all known 

GPCRs, although their evolution is not clearly understood (Fredriksson et al., 2003; Rognan et al., 

2006). Before now, this family has been given different names owning to one characteristic or the 

other that they possess. These names include EGF-TM7 (because they have the epidermal growth 

factor, EGF, domains in their N-termini); LN-TM7 (due to their long N-termini dominated by the 

amino acids Serine and Threonine); and B2 (owning to their similarity with the secretin receptor) ( 

Schioth and Fredriksson, 2005; Rognan et al., 2006). The Ser and Thr residues form O- and N- 

glycosylation sites giving the N-terminal domain a highly glycosylated, mucin-like characteristic. 

These residues contribute to the receptors’ specificity (Rognan et al., 2006). These receptors are 

peculiarly known to associate with other membrane-bound proteins like lectin, globulin and cadherin, 

which are thought to also contribute to the receptors’ specificity (Armbruster and Roth, 2004; Schioth 

and Fredriksson, 2005; Rognan et al., 2006). Adhesion receptors are found in virtually all organ 
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system of the body including the central nervous, immune and reproductive systems among others and 

are therefore believed to have a diverse physiological function (Rognan et al., 2006; Schioth and 

Fredriksson, 2005).  

It is important to add that a good percentage of these GPCRs are yet to be characterized for their 

physiological role and are, by so doing, referred to as “orphan GPCRs” (Kobilka, 2007; Insel et al., 

2007; Lundstrom and Chiu, 2006; Armbruster and Roth, 2004). The majority of them are potential 

drug targets and are subject of ongoing research.    

 

1.2.2 Activation and signalling cascade 

The activation of GPCRs is another broad subject area due to the diversity in structure and function of 

the various classes of this receptor. However, it has been reported that the conformational changes 

that accompany their activation (as observed in rhodopsin – a well-studied representative member of 

this superfamily of receptors) could be ascribed to other rhodopsin-like GPCRs, albeit with some 

degree of variations (Kobilka, 2007; Gether et al., 2002; McDonough, 2003; Seifert and Wieland, 

2005). The orthosteric site location of a GPCR determines a great deal in its mode of activation. 

Based on the location of this site, GPCRs can be broadly categorised into two. The first group have 

their ligand-binding pocket formed mainly within the 7-TM domain (most common with members of 

family A) while in some others, this is shared by both the N-terminal extracellular domain and the TM 

bundle (the two-domain model proposed for family B GPCRs). In the latter, the orthosteric pocket 

formation is favoured by the presence of Cys residues that form disulfide bonds thereby enhancing 

proper folding of this region. Many of these receptors’ extracellular domains have been found to bind 

ligands in the absence of the TM domain, based on evidence from crystallographic studies (Park et al., 

2007; Koth et al. 2010). This is specifically the case for family B GPCRs.  

The successful crystallization of the full structure of rhodopsin (Palczewski et al., 2000), as well as 

the more recent bovine opsin (ligand-free rhodopsin) (Park et al., 2008) and the constitutively active 

rhodopsin in complex with the C-terminus of transducin (a G protein) α-subunit (Standfuss et al., 
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2011), has been a plus in the in-depth molecular study of its activation. This is usually used as a 

prototype of GPCR activation especially for those that have their orthosteric binding site within the 

TM domain (Park et al., 2009); although this has now been overtaken by yet another milestone in 

GPCR structural studies with the release of an active β2-AR-Gs complex structure by Brian Kobilka 

and co-workers (2011). These crystal structures are further discussed in section 1.2.4 below. The basis 

of rhodopsin activation is the “rotational” and “tilt” movement observed for the TM6 relative to TM3 

(Kobilka, 2007; Huber and Sakmar, 2009). At the inactive state, TM3 associates with TM7 and TM6 

on the extracellular and cytosolic faces of the membrane respectively and this interaction maintains 

the inactive conformation of the receptor (Huber and Sakmar, 2009). On binding the ligand, 11-cis 

retinal (an inverse agonist) that is rapidly converted to all-trans retinal (a full agonist) during light 

absorption, there is a conformational change in the ligand-binding pocket on TM7, which weakens the 

association between TM3 and 7, as well as TM3 and 6 (Huber and Sakmar, 2009). It is this change in 

conformation between TM3 & 7 that gives rise to the movement of TM6 generating a G-protein 

biding site that binds the G-protein (Gαβγ), which then dissociates (on binding to GTP) into its 

component Gα-GTP and Gβγ subunits (Huber et al., 2008; Jang et al., 2001, Seifert and Wieland, 

2005). The Gα-GTP carries out onward signalling usually the activation of the enzyme adenylate 

cyclase that converts ATP (adenosine triphosphate) to cAMP (cyclic adenosine monophosphate). 

cAMP activates another protein kinase, protein kinase A, to produce the required effect (Pochet and 

Donato, 2000; Ali and Haribabu, 2006).  
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Fig 1.5: GPCR signalling. G = G –protein (subtypes s & q); PLC = Phospholipase C; PIP2 = 

Phosphatidylinositol 4, 5-bisphosphate; IP3 = Inositol 1, 4, 5-triphosphate; Inositol 1, 4-bisphosphate; IP1 = 

Inositol monophosphate; E.R. = Endoplasmic reticulum; PDE = Phosphodiesterase.  Genetic Engineering & 

Biotechnology News. 2009; 29 (4) 

  

1.2.3 GPCR endocytosis 

Endocytosis of GPCRs involves the process of channelling GPCRs to distinct endocytic sites at the 

plasma membrane from where they are internalized into intracellular compartments to be degraded or 

recycled back to the plasma membrane (Moore et al., 2007). This pathway is usually initiated by the 

phosphorylation of an active (i.e. ligand-bound) GPCR by a G protein-coupled receptor kinase (GRK) 

usually at the third intracellular loop and C-terminal region (Ferguson, 2001; van Koppen and Jakobs, 

2004). GRKs are a 7-membered (GRK1 - 7) family of protein kinases with significant sequence 

homology (Stoffel et al., 1997) that specifically phosphorylate serine/threonine residues at the amino 

acid side chain hydroxyl group (Moore at al., 2007). Another group of protein kinases, called the 

second messenger-dependent protein kinases e.g. cAMP-dependent protein kinase (PKA) and protein 

kinase C (PKC) also perform the phosphorylation task and are capable of phosphorylating both the 

agonist- and non-agonist-bound receptors (Hausdorff et al., 1989). These cAMP-dependent kinases 

are thought to be the main phosphorylating machinery in the presence of low agonist concentration 

(Ferguson, 2001). 
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The phosphorylation of GPCRs initiates the binding of cytosolic cofactor proteins called arrestins 

(Benovic et al., 1987). Arrestins comprises 4 family members, and are further divided into two sub-

families (see Table 1.1 for details). The most common of these are the β-arrestins found across 

various systems in mammals. The binding of β-arrestin to a phosphorylated GPCR is believed to be 

driven by the disruption of a polar core within β-arrestin by the negatively charged phosphate groups 

of the phosphorylated GPCRs thereby converting β-arrestin to a high-affinity receptor-binding state 

(van Koppen and Jakobs, 2004). The binding of β-arrestin normally results in the uncoupling of 

bound G-protein and/or prevention of G-protein coupling due to steric hindrance (Ferguson, 2001; 

van Koppen and Jakobs, 2004). The process of β-arrestin binding and subsequent uncoupling of G-

protein is normally referred to as receptor desensitization. This process is one of the regulatory 

mechanisms deployed by the cell to disrupt GPCR signalling. 

 

Table 1.1: Descriptive features of arrestin family members. Modified from Ferguson (2001). 

Name Other 

names 

No of 

amino 

acids 

Subfamily  Tissue distribution Target 

receptors 

Arrestin 1 S antigen, 

visual 

arrestin 

404 Visual Mostly light-sensing tissues e.g. 

retinal, pinealocytes, rod inner and 

outer segment. Also in cerebellum 

and primary blood leukocytes 

Rho > β2AR 

> m2 

mAChR 

Arrestin 2 β-arrestin 1 418 Non-

visual 

Ubiquitous. Present in most tissues 

except those mentioned above 

β2AR > m2 

mAChR 

>>Rho 

Arrestin 3 β-arrestin 410 Non-

visual 

Same as Arrestin 2, but abundance 

varies with tissue 

β2AR, m2 

mAChR 

>>Rho 

Arrestin 4 Cone 

arrestin, C- 

or X-

arrestin 

388 Visual Mainly pinealocytes, pituitary and 

lung 

ND 

ND = not determined 

 

Upon β-arrestin binding, the interaction of β-arrestin with certain endocytic proteins, notably clathrin 

and clathrin adaptor (AP2) is triggered and this targets the receptor to clathrin-coated pits (CCP), 
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which then form clathrin-coated vesicles (CCV) that translocate the receptor, in the internalization 

process, to intracellular compartments (Ferguson, 2001; Moore et al., 2007). The first site of 

deposition of the internalized receptors is the mildly acidic ‘early endosome’ located at the periphery 

of the cell and receives most vesicles from the cell membrane (Mellman, 1996). At the early 

endosome, internalized receptors are sorted for either degradation or recycling. Receptors for 

recycling can be translocated to the cell membrane at this stage while the ones marked for degradation 

are transported to the lysosomes (Ferguson, 2001). Enroute to the lysosome, the receptors are first 

delivered to the late endosome where some final sorting is carried out (Stoorvogel et al., 1991). In the 

lysosomes, a large vacuole-resembling compartment and the last compartment of the endocytosis 

pathway, breaking down of unwanted receptors and other macromolecules delivered for the endosome 

is performed (Gruenberg and Maxfield, 1995).  
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Fig 1.6: Schematic representation of β-arrestin-dependent GPCR internalization. Prolonged receptor stimulation 

following agonist binding induces receptor phosphorylation by GRK (G protein-coupled receptor kinase)  and/or 

other kinases (not shown). Cytosolic β-arrestin then binds to phosphorylated receptor and also interacts with 

clathrin and clathrin adaptor complex (AP-2) as well as other cytosolic components (not shown). This results in 

the immobilization of the GPCR in clathrin-coated pit, which forms clathrin-coated vesicle (CCV) translocating 

the receptor into the cytosol for processing. β-arrestin is then released and the receptor dephosphorylated to be 

recycled or degraded in the lysosome.   

 

It is important to note that there is evidence suggesting that not all GPCRs necessarily undergo 

internalization in a β-arrestin- and clathrin-dependent manner (Ferguson, 2001). For instance, 

experiments assessing the extent of internalization in COS7 and HEK 293 cells and that involving 

dominant-negative mutants of β-arrestin and dynamin have suggested that the angiotensin II type 1A 

receptor (AT1AR) and the m2 muscarinic acetylcholine recptor (mAChR) internalize via a mechanism 

independent of β-arrestin and clathrin (see Zhang et al., 1996). Aside the clathrin dependent pathway, 
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the other most common pathway is that involving the cholesterol-binding protein, caveolin (Parton 

and Simons, 2007). 

      

1.2.4 Advances in GPCRs crystal structures: the bovine rhodopsin era and beyond 

The importance of GPCRs cannot be overemphasized. The structures of this ubiquitous family of 

integral membrane proteins are as important as the proteins themselves, especially for drug discovery. 

Attempts to grow crystals of the transmembrane domain of GPCRs have been greeted with a great 

deal of difficulty. Structural determination of proteins, employing crystallographic technique, 

generally requires that they are present in a reasonably large quantity. GPCRs, however, are naturally 

not readily available in organisms where they are found, and therefore require to be produced using 

recombinant techniques to obtain large quantity (Lunstrom, 2006). The use of GPCRs produced by 

heterologous protein expression for structural studies has faced a number of obstacles. This is 

specifically due to the highly hydrophobic transmembrane region of these receptor proteins. The use 

of detergents to solubilized this region of the receptor to mimic the native phospholipid membrane has 

experienced limited success as the proteins tend to be highly unstable and fail to maintain their native 

form (Grisshamer et al., 2006; Lundstrom and Chiu, 2006; Kobilka, 2007; McCusker et al., 2007). 

Despite the undisputable physiological and pharmacological significance of GPCRs, in the long years 

after GPCR discovery and efforts to break the deadlock in determining their structure, the first 

structure of a GPCR did not show up until August  2000 when Palczewski et al. (2000) released the 

crystal structure of bovine rhodopsin covalently bound to retinal (Palczewski et al., 2000). The 

structure became the first ever high resolution structure of a GPCR to be determined. The structure 

showed 11-cis retinal bound to Lys296 in TM 7 at one end while the other end a β-ionone ring is 

submerged in a hydrophobic core (formed by Trp265, Phe212 and Tyr268) between TM 5 and 6. The 

interaction between Trp265 and the β-ionone ring causes conformational changes between the active 

and inactive states in the Trp265. This particular conformational change is termed the “toggle switch”, 

which is deemed important for the activation and inactivation of rhodopsin (Topiol and Sabio, 2009). 
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There is more evidence supporting the involvement of these residues in the relative movement of the 

TM bundle in rhodopsin activation. In the work of Lin and Sakmar (1996) for instance, using 

tryptophan UV-absorbance, an elimination of spectral differences that distinguishes rhodopsin from 

metarhodopsin II was obtained on mutating the Trp residues in TM 3 and 6 (Lin and Sakmar, 1996). 

Another feature in this structure is the ionic lock, which is thought to keep the receptor in its inactive 

state (Palczewski et al., 2000). The ionic lock is an ionic interaction between the charged residues 

Arg135
3.50

 and Glu247
6.30.

at the intracellular end of TM3 and TM6 respectively. Arg135
3.50

 is part of 

the E/DRY motif of the rhodopsin family receptors and has up to 98.1% conservation across the 

family (Smith, 2010). This ionic lock is believed to stabilize the inactive state of rhodopsin and upon 

rhodopsin activation, it is disrupted mainly with contributions from Tyr223, Met257 and Tyr306 (see 

Smith, 2010). 

There were a number of shortcomings identified about using this structure as a template for 

constructing homology models for other GPCRs. These limitations as highlighted in reviews by 

Parrill (2008) and Topiol and Sabio (2009) included the unusual covalently bound retinal and the 

scepticism about whether other GPCRs would share the same binding-site geometry in relation to the 

movement and rotation of TM bundle (Parrill, 2008; Topiol and Sabio, 2009). Other limitations were 

the very low (≤ 20%) overall sequence identity between rhodopsin and other GPCRs, especially of 

families B and C; the small size of the binding cavity of rhodopsin compared to that obtainable for 

other GPCRs; the blocking of the binding site by ECL2 (as seen in rhodospin); and the problem of 

deciding what oligomerization to consider in modelling a target GPCR (see Topiol and Sabio, 2009). 

Despite these shortcomings, there is much interest in modelling GPCRs using the rhodopsin as 

template. For instance, the structures of agonist-bound and antagonist-bound forms of human 

dopamine D3, among others, were modelled using rhodopsin as structural template (Bissantz et al., 

2003).     

The crystal structure of rhodopsin was the only GPCR structure until 2007 when the crystal structures 

of β2-adrenegic receptor (β2-AR) were deposited (Cherezov et al., 2007; Rasmussen et al., 2007). The 

structure was a complex of the receptor with an inverse agonist, carazolol. This work employed two 
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different strategies both aimed at offering stability to the receptor’s flexible ICL3 to aid 

crystallization. The first involved complex formation of the ICL3 with a monoclonal antibody. The 

crystals for the structure were grown with lipidic micelles producing a 3.4Å resolution. The second 

strategy replaced the ‘notorious’ ICL3 with T4-lysozyme and the crystals grown with lipidic cubic 

phase with a resultant 2.4 Å resolution (Cherezov et al., 2007; Rasmussen et al., 2007). Despite the 

presence of a ‘pioneer’ GPCR crystal structure, this structure was nevertheless greeted with great 

enthusiasm as it was regarded as the first ligand-mediated GPCR crystal structure and was believed to 

bring with it answers to questions raised by the rhodopdin structure (Topiol and Sabio, 2009). On 

releasing this structure, it was imperative that comparisons were made to the rhodopsin structure. The 

overall architecture shares resemblance with that of bovine rhodopsin and the ligand binding position 

of carazolol to β2-AR tallies with that of retinal to rhopsin. Moreover, the TM domain shares 

structural conservation of at least 13 amino acids in each helix (Parrill, 2008). Some distinguishing 

features are however noteworthy. For instance, the nature of ligand-receptor interaction differs. While 

retinal is covalently bound to rhodopsin, carazolol is bound by hydrogen bonding. Also, the ECL2 of 

rhodopsin contained a β-sheet, while that of β2-AR was composed of an α-helix with two disulphide 

bridges, one within the loop and the other connected to TM3 (Cherezov et al., 2007; Topiol and 

Sabio, 2009). This feature douses the concern about the blockade of the binding site by ECL2 of 

rhodopsin as these bridges prevent similar encounter in β2-AR. One controversial issue with the β2-

AR/rhodopsin structures was the “ionic lock” hypothesized for rhodopsin. Although the Trp, Arg and 

Tyr residues occupying positions 130-132 respectively in β2-AR were reported to form the “D(E)RY” 

motif indicated in the ionic lock for rhodopsin, the ionic interaction (which represents the ionic lock)  

between the equivalent residues in β2-AR was absent in the solved β2-AR crystal structures 

(Rasmussen et al., 2007). 

In the year following the release of the carazolol-bound β2-AR, another structure of the β2-AR was 

deposited to protein data bank (PDB) by Hanson et al. (2008). Although this time bound to a partial 

inverse agonist, timolol, this was more or less a repetition of the success achieved for the previously 

repeated β2-AR structures. Here, as before, the ICL3 was replaced by T4L and as expected, the 
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structure resembles that of the carazolol bound (Hanson et al., 2008). The only observable difference 

was in the binding site conformation which was due to the presence of a different agonist. Also, two 

cholesterol binding sites, not involved in crystal packing, were revealed in this structure as opposed to 

the initial structure (Topiol and Sabio, 2009). 

In another display of technical brilliance, the crystal structure of the β1-adrenergic receptor (β1-AR) 

became available through Serrano-Vega et al. (2008). This structure was a complex of an antagonist, 

cyanopindolol, and turkey β1-AR. The work undertook a completely different approach in stabilizing 

this agonist-bound GPCR for easier crystallization. Here, the authors made six mutations (R68S, 

M90V, Y227A, A282L, F327A and F338M), which conferred thermostability on the receptor 

(Serrano-Vegal et al., 2008). It is important to mention however that the authors excised some 

residues from ICL3 and C-terminus, albeit with no extraneous protein introduced. This structure, as 

expected, shares a large degree of similarity with the β2-AR. However, the basal activity observed for 

the β2-AR structure was absent in β1-AR. This has been suggested to be due to antagonist bound to β1-

AR (Topiol and Sabio, 2009). Also, the ionic lock was observed for the β1-AR with different residues 

indicated (Serrano-Vega et al., 2008). 

2008 saw the release of the 3
rd

 GPCR crystal structure in a row on the release of the human A2A 

adenosine receptor bound to a high affinity antagonist, ZM241385, by Jaakola et al. (2008). The T4L 

replacement of ICL3 was employed in this work. This was another welcomed development in the 

realm of GPCR crystal structures. The ECL2 in this structure is random coiled (Jaakola et al., 2008). 

This differs from the earlier reported β-sheet and α-helix for rhodopsin and β2-AR respectively. 

Moreover, in comparison with either rhodopsin or β2-AR, there are significant shifts observed in the 

helices and a notable difference in the binding of the antagonist (Topiol and Sabio, 2009). The “ionic 

lock” paradigm was observed for this receptor structure (Jaakola et al. (2008) indicating agreement, in 

this wise, with rhodopsin and β1-AR. This mixture of similarities and dissimilarities further reiterate 

the difficulty in using a GPCR structure as a template for the structural homology modelling of the 

other, either within or outside the same family.  
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The boom of GPCR structures was put to a short hold until 2010 when the crystal structures of the 

CXCR4 chemokine receptor (Wu et al., 2010) and dopamine D3 receptor (Chien et al., 2010) were 

released. CXCR4 was the first peptide GPCR to be crystalized. It showed a more open conformation 

at the extracellular end and so may be more relevant to the study of family B GPCRs. The CXCR4 

structures were crystallized bound to a small molecule antagonist, IT1t, or a cyclic peptide inhibitor, 

CVX15, both at resolutions of 2.5Å and 2.9Å respectively. The dopamine D3 receptor structure was 

in complex with a selective antagonist, eticlopride. Both receptor structures employed the methods of 

thermostability (with mutations at L125
3.41

 (CXCR4) and L119
3.41

 (dopamine D3), both to Trp) and 

T4L fusion of ICL3. There are observed structural differences for these receptor structures compared 

to previous receptor structures. The extracellualar end of TM1 in CXCR4 receptor, for instance, shifts 

towards the central axis of the receptor by 9Å (relative to β2-AR) and more than 3Å (relative to A2A) 

while the TM2 makes a tighter (~120º) helical turn at Pro92
2.58

 of its extracellular end with a 

consequential one-residue gap in sequence alignment with other receptors (Wu et al., 2010). In the 

case of dopamine D3, some shifts are observed in TM 6 & 7 relative to β2-AR abd unlike β2-AR, the 

“ionic lock” is observed (Chien et al., 2010). The presence of this ionic lock tends to refute the idea 

that its absence in the β2-AR might have been caused by the presence of the T4L. 

Between the years 2011 and 2012, there was a surge in the solution of GPCR structures with up to 14 

structures deposited to PDB. These included the active forms of human β2-AR and bovine rhodopsin 

(see Venkatakrishnan et al., 2013). All these structures are from within the rhodopsin family and were 

all crystallized via X-ray crystallographic technique except for the human CXCR1 chemokine 

receptor which was the first structure to be solved by nuclear magnetic resonance (NMR) 

spectroscopy. The most fascinating of these structures, which forms another remarkable achievement 

in the study of GPCRs, is the structure of the active state ternary complex of β2-AR with the 

heterotrimeric G protein (Gs) (Rasmussen et al., 2011). The conformational changes observed in this 

structure are comparable to that of rhodopsin. The most striking movement observed within the TM 

bundle, when compared to the inactive conformation, was a 14Ǻ outward movement of TM6 taking 

the Cα carbon of Glu268 as reference point. Also observed was an α helix formed within ICL2 of the 
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active receptor which was absent in the inactive state; although this helical conformation has also 

been observed in ICL2 of inactive avian β1-AR and therefore might not be specifically characteristic 

to the active state. The ICL2 however contributes to the β2-AR-Gαs interface (see Rasmussen et al., 

2011). The receptor in this structure interacts only with the α subunit of Gs with no direct interaction 

with the β and γ subunits observed (Rasmussen et al., 2011). 

Most recently, in April 2013, the first non-rhodopsin family GPCR, the human smoothened (SMO) 

receptor (belonging to the frizzled family) was released (Wang et al., 2013). Although this receptor 

share very low (less than 10%) sequence homology with family A GPCRs and lack most of the 

conserved family A motifs, it exhibits the conventional GPCR 7TM fold with connecting intracellular 

and extracellular loops as well as an intracellular membrane-parallel helix 8 (Wang et al., 2013). 

Moreover, some intracellular structural features of the rhodopsin family were observed to be 

preserved in this receptor. For example, a helical turn was observed within the short intracellular loop 

(ICL) 1 of this receptor as seen for family A receptors. However, one striking difference observed 

within the TM bundle is the absence of any proline in the TM6. In other words, this receptor is devoid 

of the common kink (caused by the highly conserved P
6.50

) in TM6 of family A GPCRs and its TM 

helix 6 is therefore straighter than those of family A GPCRs (see Wang et al., 2013).        

 

1.2.5 GPCR 8
th

 helix: structural and functional variations 

The release of X-ray crystal and NMR structures for family A GPCRs have shown that virtually all 

possess an amphipathic helix at the proximal end of the carboxyl tail usually oriented parallel to the 

membrane bilayer and perpendicular to the TM bundle. This helix (tagged helix 8 or the 8
th
 helix or 

simply H8) is typically 3 helical turns in length and attached to TM7 by a short linker 

(Venkatakrishnan et al., 2013). In many cases, but not all, this helix ends with one or two cysteine 

residue(s) which serve as potential palmitoylation sites for anchoring the helix to the membrane 

bilayer (Palczewski et al., 2000; Venkatakrishnan et al., 2013). While these (potential palmitoylation) 

sites, for instance, are present in bovine rhodopsin, the human β2-AR and turkey β1-AR, they are 
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absent in human adenosine A2A and Histamine H1 receptors (Palczewski et al., 2000; Cherezov et al., 

2007; Warne et al., 2008; Jaakola et al., 2008; Shimamura et al., 2011). One common motif observed 

in the primary sequence of helix 8 in family A GPCRs is the F[R/K]xx[F/L]xxx[L/F] motif. This 

conserved motif is important in stabilizing the helix by forming various interactions with other 

structural elements within the receptor. Very recently, the structure of the human smoothened (SMO) 

receptor was deposited to the protein data bank (PDB) (Wang et al., 2013). This receptor, which 

belongs to the frizzled family GPCRs and the first non-class A GPCR with its structure solved, also 

has a helix 8 parallel to the membrane bilayer (Wang et al., 2013).     

Conversely, helix 8 has been reported absent or unstructured in the human CXCR4 chemokine 

receptor, proteinase-activated receptor (PAR1) and rat neurotensin receptor (NTSR1) (Wu et al., 

2010; Zhang et al., 2012; White et al., 2012; Venkatakrishnan et al., 2013). What is rather surprising 

but interesting is that while helix 8 is reportedly absent in CXCR4, it is present in the closely related 

human chemokine CXCR1 receptor (Park et al., 2012). This however is not without debates. Firstly, 

CXCR1 structure was solved using solid state NMR in liquid crystalline phospholipid bilayers and in 

physiological conditions unlike the CXCR4 structure developed by X-ray crystallography and, like 

many other GPCR structures, with amino acid modifications. Moreover, the CXCR4-T4L does not 

bind G-protein (Wu et al., 2010). Considering these, it is therefore possible that the absence of helix 8 

in the CXCR4 structure is due to the experimental method used in generating this structure. It is also 

possible, as suggested by the authors (of CXCR4 crystal structure), that this helix is formed under 

certain (physiological) conditions which was not met under the experimental method employed (Wu 

et al., 2010). On the other hand, the F[R/K]xx[F/L]xxx[L/F] motif is partially conserved in CXCR4, 

in which case it has an FKxxAxxxL motif where the Phe/Leu (at the mid-region of the motif) 

important for stabilizing the helix has been replaced by an Ala (Wu et al., 2010). So, it cannot be 

ruled out that this receptor lacks the tendency to form helix 8 in vivo.  

In the case of PAR1, based on phylogenetic analysis, this receptor is more distant, from other family 

A GPCRs with solved crystal structures. For instance, the NP
7.50

xxY motif is DP
7.50

xxY in PAR1 

(Zhang et al., 2012). This distance in relationship probably accounts for the absence of helix 8 in this 
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receptor. Moreover, the highly conserved phenylalanine residue at the proximal end of helix 8 is not 

conserved in this receptor. The equivalent of this is a cysteine residue and has been found to play a 

different, less important role, to that of F313 in rhodopsin in Gt activation (see Fritze et al., 2003). 

The rat NTSR1 which reportedly also lack the 8
th
 helix has its TM7 helix extended by 3 helical turns 

further down into the cytoplasmic face in a virtually perpendicular (not parallel) orientation to the 

membrane bilayer (Fig 1.7) (White et al., 2012). Interestingly, this receptor has the 

F[R/K]xx[F/L]xxx[L/F] sequence (F
376

RxxFxxxL in PAR1) at a similar position (i.e. just under 2 

helical turns beyond the NPxxY motif) as found in rhodopsin and β2-AR. In agreement with the 

authors, it is therefore possible that this variation from other receptors is due to crystallization artefact 

(White et al., 2012). 
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Fig 1.7: Structural alignment of bovine rhodopsin (Orange), human PAR1 (Green), human CXCR4 (Blue) and 

rat NTSR1 (Grey) showing the different structural variations at H8 relative to rhodopsin. Alignment was done 

using SPDB viewer bioinformatics software. H8 and C-terminus of rhodopsin and CXCR4 respectively are 

indicated. PDB codes: rhodopsin – 1F88; PAR1 – 3VW7; CXCR4 – 3ODU; NTSR1 – 4GRV. 

 

The major form of stabilizing/functional interaction made by helix 8 is that involving the ICL1 and 

this is the most common among GPCRs with solved structures to date (Palczewski et al., 2000; 

Venkatakrishnan et al., 2013). In the bovine rhodopsin structure for instance, helix 8 interacts with 

ICL1 at H65. Similar interactions between helix 8 and ICL1 have also been observed for several other 

GPCRs with solved structure like the human adenosine A2A, Histamine H1 and spingosine-1 

phosphate (S1P1) receptors (Jaakola et al., 2008; Shimamura et al., 2011; Hanson et al., 2012). 

However, there are variations to these in few other receptors. In squid rhodopsin, H8 interacts with a 

9
th
 helix beyond helix 8 in the C-terminus and are joined by a loop structure with a short 310 helix 

buried in the hydrophobic membrane region. This interaction stabilizes H8 and in turn helps to restrict 

H 8 

C-terminus 
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the motional freedom of H9 (Murakami and Kouyama, 2008). Also in CXCR1, H8 is orientated at an 

angle different form that observed in most other receptors and does not appear to interact with ICL1 

(Park et al., 2012). In the recent human smoothened receptor structure, helix 8 has an interface with 

helix I that is dissimilar from that observed in the rhodopsin family (Wang et al., 2013). 

In addition, there are conformational changes reportedly observed for H8 important for arrestin 

coupling (Kirchberg et al., 2011) and this helix is partially unwound in the active β2-AR (Hulme, 

2013). In the κ-OR receptor, H8-H8 interaction was a major interaction in receptor dimerization, 

although it is not known if this dimerization is obtainable in vivo (Wu et al., 2012). Overall, while 

there might appear to be some consistency in the characteristic features observed for helix 8 across 

receptors with solved structures, there is also a long list of variations; and with many more structures 

yet to be deposited, there could be more to be known than have been known about the diverse 

structural and functional roles of helix 8.   

 

1.3 The secretin family receptors  

1.3.1 Structural theme  

The secretin-like (family B) receptors, like the rhodopsin-like (or family A) GPCRs, are believed to 

exhibit the 7TM architecture (Sheikh et al., 1999; Kirkpatrick et al., 2012) and they share over 30% 

sequence homology among one another within the same family. Despite their overall similar 

architecture with family A, signature sequences found in family A GPCRs are largely thought to be 

absent in family B (Hamar, 2001; Wheatley et al., 2011; Miller et al., 2011). While a complete 

knowledge of their full structure is limited due to the lack of a crystal structure for an intact receptor 

within this family, the huge successes recorded within the past decade in obtaining crystal/NMR 

structures (Grace et al., 2004, 2007; Parthier et al., 2007; Sun et al., 2007; Pioszak and Xu, 2008; 

Runge et al., 2008; ter Haar et al., 2010; Underwood et al., 2010; Kumar et al., 2011)  for the N-

terminal extracellular domains (ECDs) for several of these family members have provided good 

understanding of this part of the receptor structure.  
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         ><><><><><><><><><><><    

     .              .         .     

CLR       ---------ELEESPEDSIQLG-----VTRNKIMTAQYECYQKIMQDPIQ-------------------- 

CTR       -------LPAFSNQTYPTIEPKPFLYVVGRKKMMDAQYKCYDRMQQLPAY-------------------- 

PTHR1     -------YALVDADDVMTKEEQ-------IFLLHRAQAQCEKRLKEVLQRPASIMESDKGWTSASTSGKP 

PTHR2     --------AQLDSDGTITIEEQ-------IVLVLKAKVQCELNITAQLQ--------------------- 

CRFR1     --------------VSASLQDQ----------------HCES-LSLASNISGL----------------- 

CRFR2     QYAAGQS—QMPKDQPLWALLEQ----------------YCHT-IMTLTNLSGPYS--------------- 

GIPR      --------AETGSKGQT-AGELYQ-------RWERYRRECQETLAAAEPP-------------------- 

GLR       --------QPQVPSAQV-MDFLFE-------KWKLYGDQCHHNLSLLPPP-------------------- 

GLPR1     --------GPRPQGATVSLWETVQ-------KWREYRRQCQRSLTEDPPPA------------------- 

GLPR2     ----------IKQVTGSLLEETTR-------KWAQYKQACLRDLLKEPSG-------------------- 

VIPR1     LGPAGGQAARLQEECDYVQMIEV------------QHKQCLEEAQ-LENETI------------------ 

GHRHR     LG-------HMHPECDFITQLRE------------DESACLQAAEEMPNTTL------------------ 

VIPR2     --------NSIHPECRFHLEIQE------------EETKCAELLRSQTEKHK------------------ 

PAC1R     -----------APAMHSDCIFKK------------EQAMCLEKIQRANELMGFND--------------- 

SCTR      ----AHSTGALPRLCDVLQVLWE------------EQDQCLQELSREQTGDLGT---------------- 

             *    

   

                                                                           

 

                      .                     .          .         .                    

CLR       -----------QAEGV------------YCNRTWDGW-LCWNDVAAGTESMQLCPDYFQ--D-------- 

CTR       -----------QGEGP------------YCNRTWDGW-LCWDDTPAGVLSYQFCPDYFP--D-------- 

PTHR1     RKDKASGKLYPESEEDKEAPTGSRYRGRPCLPEWDHI-LCWPLGAPGEVVAVPCPDYIY--D-------- 

PTHR2     -----------EGEGN-------------CFPEWDGL-ICWPRGTVGKISAVPCPPYIY--D-------- 

CRFR1     ----------------------------QCNASVDLIGTCWPRSPAGQLVVRPCPAFFYGVR-------- 

CRFR2     ----------------------------YCNTTLDQIGTCWPRSAAGALVERPCPEYFNGVK-------- 

GIPR      -------------------------SGLACNGSFDMY-VCWDYAAPNATARASCPWYLPWHH-------- 

GLR       -------------------------TELVCNRTFDKY-SCWPDTPANTTANISCPWYLPWHH-------- 

GLPR1     -------------------------TDLFCNRTFDEY-ACWPDGEPGSFVNVSCPWYLPWAS-------- 

GLPR2     ---------------------------IFCNGTFDQY-VCWPHSSPG-NVSVPCPSYLPWWS-------- 

VIPR1     ----------------------------GCSKMWDNL-TCWPATPRGQVVVLACPLIFKLFS-------- 

GHRHR     ----------------------------GCPATWDGL-LCWPTAGSGEWVTLPCPDFFSHFS-------- 

VIPR2     ----------------------------ACSGVWDNI-TCWRPANVGETVTVPCPKVFSNFY-------- 

PAC1R     -------------------------SSPGCPGMWDNI-TCWKPAHVGEMVLVSCPELFRIFNPDQVWETE 

SCTR      -----------------------EQPVPGCEGMWDNI-SCWPSSVPGRMVEVECPRFLRMLT-------- 

                                       *    *    **     .      **  :   

     

 

          ><><><  
                             .         .         .         .         . 

CLR       --------------FDPSEKVTKICDQDGNWFRHPASNRTWTNYTQCNVNTHEKVKTALN-- 

CTR       --------------FDPSEKVTKYCDEKGVWFKHPENNRTWSNYTMCNAFTPEKLKNAYV-- 

PTHR1     --------------FNHKGHAYRRCDRNGSWELVPGHNRTWANYSECVKFLTNET--RERE- 

PTHR2     --------------FNHKGVAFRHCNPNGTWDFMHSLNKTWANYSDCLRFLQPDISIGKQE- 

CRFR1     --------------YNTTNNGYRECLANGSWAAR-------VNYSECQEILNE-EKKSKV-- 

CRFR2     --------------YNTTRNAYRECLENGTWASK-------INYSQCEPILDDKQRKYDL-- 

GIPR      --------------HVAAGFVLRQCGSDGQWG-------LWRDHTQCENP-EKNEAFLDQRL 

GLR       --------------KVQHRFVFKRCGPDGQWVR-GPRGQPWRDASQCQMDGEEIEVQKEVAK 

GLPR1     --------------SVPQGHVYRFCTAEGLWLQKDNSSLPWRDLSECEESKRGERSSPEEQ- 

GLPR2     --------------EESSGRAYRHCLAQGTWQTIENATDIWQDDSECSENHSFKQNVDRYA- 

VIPR1     --------------SIQGRNVSRSCTDEG-WTHLEPG----PYPIACGLDDKAASLDEQQTM 

GHRHR     --------------SESG-AVKRDCTITG-WSEPFP-----PYPVACPVP--LELLAEEES- 

VIPR2     ---------------SKAGNISKNCTSDG-WSETFP-----DFVDACGYSDPEDESKIT--- 

PAC1R     TIGESDFGDSNSLDLSDMGVVSRNCTEDG-WSEPFP-----HYFDACGFDEYESETGDQDY- 

SCTR      ---------------SRNGSLFRNCTQDG-WSETFP-----RPNLACGVNVNDSSNEKRHS- 

                              : : *   * *               *                   

 

Fig 1.8: Sequence alignment and structural features of the N-terminal ECD of human family B GPCRs. 

Invariantly conserved residues are marked with asterisk (*), conserved residues with similar side-chain 

properties are marked with colon (:) while partially conserved residues are marked with dot (.). Disulphide-

forming cysteine residues are highlighted yellow while residues of the WDG motif are highlighted in red. 
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The large and structurally-conserved N-terminus ECD of these receptors share the “secretin receptor 

recognition fold” which comprises two antiparallel β-sheets, 3 disulphide bonds, an α-helix at the 

extreme N-terminal (Fig 1.9) which varies in length and some loop regions predominantly stabilized 

by the disulphide bonds (Parthier et al., 2009). This domain also contains a highly conserved 

hydrophobic ligand-binding groove localized between the α-helix and conserved loop region (Parthier 

et al., 2009). Although some of these structures have their endogenous peptide ligands bound (Grace 

et al., 2007; Parthier et al., 2007; Runge et al., 2008), there are still concerns over the correct 

orientation of loop regions because of the absence of the TM domain (Miller et al., 2012). The role(s) 

of this region in ligand binding and receptor activation is discussed in section 1.3.4.1. 

 

Fig 1.9: A rough sketch of the common structural fold of family B GPCRs. The N-terminal α-helix is shown in 

red, β strands β1 - β4 in green and loop regions in grey (numbered L1 – L5). Disulphide bridges which stabilize 

the structure are shown in yellow.  

 

There is minimal information about the TM domain and associated loops orientation of this receptor 

family as a structure of this region for any of the family member is yet to be deposited to protein data 

bank (PDB). However, using various alignment and predictive techniques, there have been several 



53 
 

attempts to understanding the arrangement and orientation of the TM helices and associated loop 

structures (Donnelly, 1997; Scheikh et al., 1999; Chungunov et al., 2010; Dong et al., 2011; 

Kirkpatrick et al., 2012; Vohra et al., 2013). One emerging proposition in recent structural models of 

receptors in this family is the presence of the TM3-TM6 ionic lock which has been observed for 

rhodopsin and some other family A GPCRs where they are believed to maintain receptor structure in 

the inactive state (Topiol and Sabio, 2009). The lock is formed by an ionic interaction between R
3.50 

of 

the DRY motif at the base of TM3 and E
6.30 

at the cytoplasmic face of TM6 (Ballesteros et al., 2001). 

A similar interaction has been proposed in GLP1R, VPAC1R and CLR model structures; although it 

is suggested they might play a slightly different role in structure and function compared to the 

rhodopsin family (Kirkpatrick et al., 2012; Chumgunov et al., 2010; Vohra et al., 2013). While this 

proposition in 3 different family B receptors suggests some consistency and plausibility of this in 

other family members, same cannot yet be said of the residues involved in forming this lock. Despite 

the suggestion of the YLH motif as being the family B equivalent of the family A DRY motif, the 

former does not appear to directly contribute to the formation of this proposed ionic interaction. 

Rather, the highly conserved R173, H177 and E233 (a turn  above the YLH motif; numbering 

according to CLR) have been suggested to directly contribute to the formation of this lock which 

possibly involves contribution from another highly conserved residue T338 and believed to help 

stabilize the receptors in their inactive conformation (Vohra et al., 2013). There is further evidence 

supporting similar roles for corresponding residues in other family B GPCRs. In the PTHR1 for 

instance, natural H223R and T410P mutations in patients with Jansen’s metaphysealchondrodysplasia 

– an uncommon type of short-limbed dwarfism – resulted in constitutively active receptors (Schipani 

et al., 1996). Moreover, mutagenesis studies on equivalent residues in GIPR and VPAC1R also 

significantly caused constitutive activity (Tseng and Lin, 1997; Gaudin et al., 1998) suggesting that 

these residues likely play a role in maintaining receptors inactive conformation. Also, the basic 

residues R188 and R190 (equivalent of R173 in CLR) in GLP1R and VPAC1R respectively have 

been indicated in a putative TM2-TM3-TM6 interaction suggested to be crucial in Secretin-like 

family structure and function (Kirkpatrick et al., 2012; Chungunov et al., 2010). This region of the 

receptor will further be discussed for their role in receptor activation in section 1.3.4.2. 



54 
 

1.3.2 Peptides of the secretin family 

The secretin family peptides comprise endogenous ligand peptides usually 27 – 52 amino acid in 

length (Insel, 2007). They commonly share a helix-loop-helix architecture and usually have an α 

helical backbone with which they normally bind the N-terminal ECD of their receptors (Mierke and 

Pellegrini, 1999; Jin et al., 2000; Parthier et al., 2009; Watkins et al., 2012). Their various receptors, 

which make up the secretin family GPCRs, and physiological roles are summarised in Table 1.2.  

 

Table 1.2: A summary of the receptors, major physiological roles and sequence sizes of secretin family 

peptides. Adapted from Hoare (2005). CGRP, calcitonin gene-related peptide; CLR, calcitonin receptor like 

receptor; RAMP, receptor activity modifying protein; CRF, corticotropin-releasing factor; GHRH, growth 

hormone-releasing hormone; GIP, glucose-dependent insulinotropic peptide; GLP, glucagon-like peptide; PTH, 

parathyroid hormone; TIP39, Tuberoinfundibular peptide of 39 residues; VIP, vasoactive intestinal peptide; 

PACAP, pituitary adenylate cyclase-activating polypeptide; CTR, calcitonin receptor. 

Ligand Size 

(a.a) 

Principal receptor Major physiological roles 

CGRP 37 CLR + RAMP1 Vasodilation 

Adrenomedullin 52 CLR + RAMP2 

CLR + RAMP3 

Vasodilation 

CRF 41 CRF receptor 1 Adrenocorticotropin hormone (ACTH) release, 

central stress responses 

Urocortin (UCN) 40 CRF receptor 2 Central stress responses (UCN1); cardiac 

contractility (UCN2); hearing (UCN3) 

GHRH 44 GHRH receptor Stimulation of growth hormone release 

GIP 42 GIP receptor Secretion of insulin 

Glucagon 29 Glucagon receptor Regulation of blood glucose 

GLP-1 36/37 GLP-1 receptor Regulation of insulin and glucagon secretion 

GLP-2 33 GLP-2 receptor Gut mucosal growth 

PTH1 84 PTH receptor 1 Ca
2+

 homeostasis 

TIP39 39 PTH receptor 2 Hypothalamic secretions, nociception 

Secretin 27 Secretin receptor Pancreas secretions 

VIP 28 VPAC1R; VPAC2R Vasodilation, vascular and neuroendocrine 

functions 

PACAP 38 PACAPR1 

VPAC1R; VPAC2R 

Neurotransmission, neuronal modulation and 

regulation 

Calcitonin 32 Calcitonin receptor Ca
2+

 homeostasis 

Amylin 37 CTR + RAMP1 

CTR + RAMP3 

Reduces feeding by slowing gastric emptying. 

Partly in bone metabolism 
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The secretin peptides family also possess a characteristic helix N-cap which, in principle, helps 

protect against helix unwinding of peptide helix thereby stabilizing the peptide ligands. This N-

capping motif is thought to represent a specific fold that aids interaction of the ligand N-terminus with 

the receptor juxta-membrane domain (the two-domain model, discussed below) and helps initiate 

receptor activation (Neumann et al., 2008). This motif however is absent in the calcitonin subfamily 

of peptides. Here, the equivalent of this motif is a disulphide bridge between the invariantly conserved 

C1 and C7 (numbered for calcitonin) and is believed to perform a similar function to the N-capping 

motif of other peptides of the secretin family (Neumann et al., 2008).  

 

1.3.3 Mechanism of ligand binding and activation of secretin family receptors: the ‘two-

domain’ model 

The “two-domain” model describes ligand binding and activation of family B GPCRs as process 

involving two steps. The first involves an affinity binding of the C-terminal region of the peptide 

ligand to the N-terminus of the receptor. The second step, involves the interaction between the N-

terminus of the ligand and the juxta-membrane (J) domain of the receptor (Hoare et al., 2005). While 

the former is significant for affinity-driven, specific ligand recognition, the latter interaction is 

primarily responsible for receptor activation. Even though no structure currently exists for an intact 

family B receptor, studies employing mutagenesis, photoaffinity labelling, molecular modelling  and, 

on receptor N-terminal fragments, NMR and X-ray crystallography have all provided substantial 

evidence supporting this model. Early studies in this respect include those of Stroop et al. (1995), 

Holtman et al. (1995) and Bergwitz et al. (1996) where hybrid peptide ligands and receptor chimeras 

were generated to test ligand-receptor interaction within the family B ligands and receptors. 

In the study by Bergwitz et al. for instance, peptide ligand hybrids made up of the N-terminal portion 

of salmon CT and C-terminal portion of bovine PTH and vice versa (i.e. sCT/bPTH and bPTH/sCT); 

and receptor chimeras formed by N-terminus of rat PTH and J-domain plus C-terminus of porcine 

CTR and vice versa (i.e. rPTH/pCTR and pCTR/rPTH) were generated. The CT/PTH and PTH/CT 
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hybrids respectively activated the PTH/CTR and CTR/PTH receptors, but not the wild type (Bergwitz 

et al., 1996). The study showed that the two composite ligands, notwithstanding their widely varying 

primary sequence, displayed an identical pattern of ligand-receptor interaction. It also indicated that 

both CT and PTH exhibit similar architecture involving two functional receptor-specific domains 

(Bergwitz et al., 1996).  

Today, NMR and X-ray crystal structures of ligand-free and agonist-bound N-terminal extracellular 

domains of several family GPCRs have shown that the C-terminus together with the mid-region of 

ligands in this family recognise and bind to the N-terminus of their corresponding receptors (Parthier 

et al., 2009). This pattern of interaction, which sees the predominantly-helical ligand within a 

conserved hydrophobic core of the ECD, has been tagged the “hot-dog-in-a-bun” mode of ligand 

binding (Pioszak and Xu, 2008). 

Although available evidence supporting the interaction of the ligand N-terminus with the receptor J-

domain are only predictive (e.g. Runge et al., 2003; Dong et al., 2011, Coopman et al., 2011; 

Kirkpatrick et al., 2012), there is more concrete evidence indicating the J-domain as being primarily 

responsible for receptor activation. In a study by Shimizu et al. (2001), N-terminally truncated PTH 

receptor was activated with a maximum response similar to wild type following agonist treatment, 

although this was unsurprisingly with significantly reduced potency (Shimizu et al., 2001). Also, 

mutation to the J-domain could result in constitutive activation of receptors (Hjorth et al., 1998). As 

earlier mentioned, the helix N-capping of secretin family peptides, and the C1-C7 disulphide bridge in 

the calcitonin peptides subfamily, is thought to be the primary signature that initiates receptor 

activation further supporting this model (Neumann et al., 2008). 
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1.3.4 The receptor regions in ligand binding and activation 

1.3.4.1 N-terminal extracellular domain (ECD) 

One fact that has been gathered over the years about the N-terminus of secretin family receptors is 

their ability to bind endogenous peptide agonists even in the absence of the TM bundle, albeit with 

low affinity (Perrin et al., 2003; Koth et al., 2010). Available ECD structures revealed that this 

domain binds a large portion (the α-helical mid region and C-terminus) of their peptide ligands 

(Parthier et al., 2009), showing that they play a crucial role in ligand binding. The ligand helix lies 

along a binding core formed by a hydrophobic cluster of amino acids. This cluster is made of residues 

of the WDG motif within the highly conserved β-hair pin structure and the conserved large loop 

structure between the second antiparallel β-sheets as well as residues form the N-terminal α-helix. 

There is evidence from both structural and mutagenesis studies supporting the importance of these 

residues in ligand binding and receptor signalling (Parthieret al., 2007; Pioszak and Xu, 2008; Pioszak 

et al., 2009; Barwell et al., 2010; Kusano et al., 2011; Kumar et al., 2011). While the role of the ECD 

in ligand binding cannot be disputed, it is not clear what role they play in receptor activation. As will 

be discussed in subsequent sections, it is widely believed that the activation of this family of receptors 

involves, though is not restricted to, the TM bundle and extracellular loops (Dong et al., 2011; 

Kirkpatrick et al., 2012; Wheatley et al., 2011).   

 

1.3.4.2 The transmembrane (TM) domain 

The conformational changes that accompany the activation of family B GPCRs cannot yet be 

ascertained due to a lack of a crystal/NMR structure for any member of this family. However, there 

are some findings based on predictive studies which, with the knowledge of the well-studied family A 

GPCRs, could in part plausibly explain the activation mechanism. Overall, the TM helices 3 and 6 

appear to play a central role in the inactive-active interchange of these receptors. The latter seems to 

be more structurally designed to be pivotal in these movements that drive receptor activation. A major 

characteristic feature is the proposed kink which is suggested to be caused by the highly conserved 
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proline in the mid region of TM6. This has been shown to be crucial for G-protein coupling (Conner 

et al., 2005; Bailey and Hay, 2007) and in maintaining receptor structure (Knudsen et al., 2001). 

Inactive-active movement observed for TM6 in β2AR (family A) is also believed to be present in 

PTH1R of family B (Sheikh et al., 1999). As earlier mentioned, highly conserved Arg and His around 

the cytoplasmic face of TM2 and a Glu at the base of adjacent TM3 have been suggested to form the 

family B equivalent of the TM3-TM6 ionic lock in family A. What is not clear however is if there is a 

corresponding TM6 residue in family B that is directly involved in this interaction as suggested by 

Kirkpatrick et al. (2012) and Vohra et al. (2013). It is believed that upon ligand binding, this ionic 

lock breaks to create a binding pocket for Gsα. Other networks of interactions like the TM2-TM3-

TM7 have also been proposed in the GLP1 and VPAC1 receptors (Kirkpatrick et al., 2012; 

Chungunov et al., 2010). The interaction network between N229 (TM3) and Q380 (TM7) in VPAC1R 

for instance seems to maintain TM7 in conformation required for G-protein activation (Chungunov et 

al., 2010). 

There is a large network of polar interactions in the rhodopsin family GPCRs which are believed to be 

important for maintaining receptor conformation in the inactive and active states (Gether et al., 2002). 

Although the conserved polar residues in family A receptors are absent in family B, they have their 

own distinct polar residues within the TM region which could play similar role as those in family A 

(Wooten et al., 2013). Kirkpatrick et al. (2012) have reported that a good number of these polar 

residues may form hydrogen bonds and salt bridges that keeps receptor in either an active or inactive 

conformation and plays a role in conformational switches accompanying receptor activation. The TM 

bundle also plays a role in ligand binding and receptor activation by forming a binding pocket at its 

extracellular end for the N-terminus of the peptide according to the two state model (Hoare, 2005) and 

as observed, for instance, in the GLP1 receptor-ligand model structure (Coopman et al., 2011). This 

role is normally played together with the extracellular (EC) loops which are discussed below.  
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1.3.4.3 Extracellular loop (ECL) region 

One bane of successful crystallization of membrane proteins, including GPCRs, is the constant 

movement of loop structures (Bill et al., 2011). Even when successfully crystallized, the correct 

positioning/orientation of loop structures still remains in question. Modelling the loop structures 

therefore from family A crystal structure is very challenging and it is difficult to draw conclusions 

from structures obtained in this respect. One interesting thing however is that there have been studies 

on structural modelling where the role of loop structures have been supported by mutagenesis and 

photo affinity cross-linking data on intact receptors (see Wheatley et al., 2011). There are a few 

conserved residues within the three ECL 1-3 of the family B GPCRs. ECL2 has the highest number of 

conserved residues. Although the exact boundaries of the ECLs cannot be currently ascertained, ECL2 

probably starts with conserved basic residue (R/K) and it is possible that these residues interact with 

membrane phospholipids as suggested in family A GPCRs (Hawtin et al., 2006). A conserved Cys 

also exists in the mid-region of ECL2. There are results from mutagenesis studies supporting the 

presence of a disulphide bond between Cys residues in ECL2 and at the top of TM3 in GLP1R (Mann 

et al., 2010; Koole et al., 2012). This locus is suggested to contribute to the ligand binding pocket 

within the juxtamembrane domain. Also, residues Met and Tyr at positions 204 and 205 respectively 

in ECL1 of rGLP1R have been suggested to be important in the formation of binding site for ligand 

N-termini following a double mutation of these residues to Ala (Lopez de Maturana et al., 2004). 

These residues did not affect receptor signalling when individually mutated to Ala in the same study 

and it is consistent with that obtained for equivalent residues of CLR (Barwell et al., 2011), although 

the equivalent of M204 in the glucagon receptor (an Arg) has been proposed as required in glucagon 

binding and receptor activation (Unson et al., 2002) and Y205 has been reported as a point of 

interaction for a photoactive analogue of GLP1 (Chen et al., 2010).  It is not particularly clear whether 

these residues might contribute to ligand binding and/or receptor activation in other family members. 

Following several attempts to predict the exact mode of interactions of seretin famly peptides to their 

receptors (e.g. Monaghan et al., 2008; Dong et al., 2011, Coopman et al., 2011; Kirkpatrick et al., 

2012), two forms of interaction between the ligand N-terminus and receptor juxta-domain have been 
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postulated. The N-terminus either penetrates the TM bundle in a perpendicular orientation or lies in a 

parallel manner across this domain. This might explain the different outcomes in the studies by Lopez 

de Maturana et al. (2004) and Barwell et al. (2011) on ECL1 of GLP1 and CGRP receptors 

respectively. While only a double Ala mutation of M204 and Y205 significantly affected ligand 

binding and receptor activation in the former, up to 9 residues affected ligand binding and/or receptor 

activation in the latter. Moreover, the ECL3 of CLR appears to be highly involved in the activation of 

the adrenomedulin (AM) 1 and 2 receptors but shows less involvement in the CGRP receptor 

(Kuwasako et al., 2012; Barwell et al., 2011). This in addition suggests that the ECLs might be a key 

definer of receptor activation following ligand binding. While the exact mechanism involved in the 

EC loops’ contribution to ligand binding and receptor activation is not particularly known, at least it is 

certain that they play a crucial role.   

 

1.3.4.4 Intracellular loops (ICLs)  

ICL1 and 2, the membrane associated regions of ICL3 and the proximal segment of the C-terminus 

has variously been reported to participate in G-protein recognition and binding (Nabhan et al., 1995; 

Wess, 1997; Conklin and Bourne, 1993; Rasmussen et al., 2011). For instance, alternative splicing in 

ICL1 of CRF1 and calcitonin receptors have been shown to influence G-protein coupling (Nabhan et 

al., 1995; Nussenzueig et al., 1994). The highly conserved KL dipeptide, part of the RKLH motif in 

ICL1 of family B GPCRs, has been reported as crucial for G-protein coupling in human GLP1, 

VPAC2, secretin and CGRP receptors (Mathi et al., 1997; Hilairet et al., 2001; Chan et al., 2001; 

Conner et al., 2006b); although in the CGRP receptor, where the equivalent dipepetide is SL (in 

CLR), only the L was investigated. Moreover, K167 of the KSLS (equivalent of RKLH) motif in CLR 

was observed to interact with Gβ in the CLR/G-protein complex model by Vohra et al. (2013). 

Overall, considering earlier discussions involving this loop, the mechanism underlining the role 

played by ICL1 in receptor activation appears to revolve around its interaction with helix 8 and the 
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interactions suggested for the invariantly conserved Arg (R173 in CLR) as mentioned in previous 

sections. 

It has been suggested that the movement of ICL2 may create a binding pocket for G-protein binding 

in CLR (Conner et al. 2006). This may be related to the observation made for this loop in the β2AR-

Gsα complex where ICL2 assumes an α-helical conformation in contrast to the extended loop 

structure of this loop in the inactive form (Rasmussen et al., 2011); although the authors noted that 

this might not be a feature peculiar to the active receptor as the former conformation is observed in 

the inactive avian β1AR. Moreover, F139 at the beginning of ICL2 helix was observed to sit in a 

pocket formed by a network of mostly hydrophobic residues in β1, β3 and α5-helix of G-protein 

(Rasmussen et al. 2011). This residue is said to be conserved in GPCRs that couple to Gs but are 

variable in other non-Gs-coupling receptors. However, it is not known whether this is extended to 

other non-family A. So even though CLR for instance, which also couple to Gs, has a Phe close to the 

mid-region of ICL2, it is not clear whether they play a similar role. 

ICL3 is thought to contain the major determinants for specific G-protein coupling in family B GPCRs 

as in family A (Pisegna et al., 1996; Christopoulus et al., 2003). This is probably owing to its 

structural association with the TM6, so that it is in a good position to interact with the G-protein. A 

study using splice variants in the rPACAP receptor has indicated ICL3 as important for PACAP-

dependent cAMP stimulation (Pisegna and Wank, 1996). One important motif in this loop is the 

KxxK motif which is shared by both families A and B (Vohra et al., 2013). The two (first and last) 

basic residues in this motif have been investigated in human secretin (Chan et al., 2001; Garcia et al., 

2012), VPAC1 & 2 (Langer and Robberecht, 2005; Langer et al., 2005), CRF1 (Pun et al., 2012) and 

rat GLP1 receptors, and all have generated varying results. In CLR where the second basic residue is 

an Arg (R314 precisely), R314 (but not K311 of the same motif) at the ICL3-TM6 junction disrupts 

G-protein coupling when mutated to an Ala and has been suggested to stabilize ICL3/TM6 association 

by possibly interacting with phosphate head groups of membrane phospholipids (Conner et al., 

2006b). Whereas in hVPAC2 receptor, individual Ala mutation of these basic residues (i.e. R325A 

and R328A) both significantly reduced receptor potency and cAMP levels (Langer et al., 2005); only 
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R341A (but not R338A) significantly reduced IP3 levels in the closely related hVPAC1. On the other 

hand, in hCRF1R, both K311A and K314A individually showed significant increase in Gs coupling 

with coupling to Gq significantly impaired (Pun et al., 2012). These, among other things, suggest that 

while the second basic residue (of the KxxK motif) appears to be of higher importance probably 

owing to its localisation at the ICL3-TM6 junction, the importance (and plausibly the role) of both 

residues vary from receptor to receptor and could be designed for specific interaction with G-protein 

isoforms.  

Overall, the intracellular loops have not been extensively studied across family B GPCRs especially in 

relation to structure. So while a good amount of evidence exists to show they are important, there is 

not enough evidence to highlight the specific structural mechanism underlining their roles in receptor 

signalling.  

 

1.4 Calcitonin family of peptides 

The calcitonin family of peptides majorly comprises calcitonin (CT), calcitonin gene-related peptide 

(CGRP), adrenomedulin (AM) and Amylin (Amy). While these peptide ligands show low sequence 

homology, they exhibit more similarity in their structures (Watkins et al., 2012). 

CT is a 32 amino acid peptide and the shortest in length among the family. It is secreted by thyroid C 

cells. It plays a crucial role in the modulation of calcium homeostasis through the inhibition of 

osteoclast-mediated bone resorption (Sexton et al., 1999). This peptide is found in humans and many 

other vertebrates. It is interesting to note that the salmon CT is a more potent agonist of the human 

calcitonin receptor (hCTR) than the human CT (Dong et al., 2004). Owning to its prominent role in 

calcium homeostasis and bone formation, this peptide is a well explored therapeutic target. The drug 

Miacalcin, for instance, is an sCT and it used in the treatment of bone disorders like Paget’s disease. 

AM is a 52 amino acid peptide and the longest within the family (Kitamura et al., 1993). It is located 

on chromosome 11 (Hinson et al., 2000). It has a homologue, AM2 (47 amino acid long), in human 
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(Roh et al., 2004). In fish, 5 forms are present namely; AM1, AM2, AM3, AM4 and AM5 (Ogoshi e 

al., 2006). AM is a potent vasodilator and have been suggested to be involved in the process of 

homeostasis and regulation of blood pressure (Nishio et al., 1997). It has also recently been suggested 

to play a role in cancer as high levels have been observed in many cancer cells (see Hay et al., 2011).   

Amy is a 37 amino acid peptide secreted by β-cells of the pancreas usually together with insulin. It 

was first isolated in the pancreas of patients with type 2 diabetes (Cooper et al., 1987). It mainly helps 

control feeding by inhibiting gastric emptying, gastric acid secretion and post-prandial glucagon 

secretion (Höppener et al., 2000). 

CGRP is also a 37 amino acid peptide and is a potent vasodilator that acts near its site of release. It 

mediates effects mainly through a complex of the calcitonin receptor-like receptor (CLR) and the 

receptor activity modifying protein 1 (RAMP1) (Poyner et al., 2002, Taylor et al., 2006). CGRP is 

further discussed in section 1.4.1 below. 

 

αCGRP           --------------ACD-TATCVTHRLAGLLSRSGG-VVKNNFVPTN-VGSKAF 37 

βCGRP           --------------ACN-TATCVTHRLAGLLSRSGG-MVKSNFVPTN-VGSKAF 37 

Amy             --------------KCN-TATCATQRLANFLVHSSN-NFGAILSSTN-VGSNTY 37 

AM              YRQSMNNFQGLRSFGCR-FGTCTVQKLAHQIYQFTD-KDKDNVAPRSKISPQGY 52 

AM2             -----TQAQLLR-VGCV-LGTCQVQNLSHRLWQLMGPAGRQDSAPVDPSSPHSY 47 

CT              ---------------CGNLSTCMLGTYTQDFNKFHT-------FPQTAIGVGAP 32 

                               *   .**     :  : :           .    .     

 

 

Fig 1.10: Sequence alignment of human calcitonin family peptides. Invariantly conserved residues are marked 

with asterisk (*), residues with similar side-chain properties are marked with colon (:) while residues with 

similar shape are marked with dot (.). Disulphide-forming cysteine residues are highlighted yellow while 

residues distinguishing αCGRP from βCGRP are highlighted in red. Alignment was conducted using ClustalW2. 

The number of residues for each peptide is indicated at the end of the respective sequence.  

 

The receptors for the calcitonin family of peptides come from the secretin family of GPCRs. These 

are the calcitonin receptor (CTR) or calcitonin receptor like receptor (CLR). These receptors function 

either as a monomer (in the case of CTR) or in complex with the RAMPs (CTR and CLR). The 

pharmacological profiles of these receptors are presented in Table 1.3.  
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Table 1.3: Pharmacological profile of receptors for the human calcitonin family of peptides. (Hay et al., 2006) 

 

1.4.1 CGRP 

1.4.1.1 Tissue distribution and Physiological role 

CGRP is a 37 amino acid peptide with its gene located on chromosome 11. It comprises two 

homologues (α and β) which differ by three amino acids in humans (Fig 1.10) and they share a much 

pharmacological similarity (Barwell et al., 2010; Moore et al., 2010). It is produced as a result of 

differential splicing of RNA transcripts from the CT gene (Amara et al., 1982). This splicing is tissue-

specific and therefore plays a significant role in distribution of CGRP, especially αCGRP. For 

instance, while the CT mRNA is predominant in the thyroid, that of αCGRP predominates the 

hypothalamus (Lou and Gagel, 1998).  This peptide is widely distributed throughout the nervous 

system and in the cardiovascular system.  

CGRP has been suggested to be actively involved in the control of blood flow. In knockout models 

where αCGRP or both αCGRP and CT were deleted, an increase in blood pressure was observed 

(Kurihara et al., 2003; Li et al., 2004). Its over-secretion therefore causes facial flushing, oedema and 

inflammation. Plasma high levels of CGRP have been associated with vascular diseases such as 

Raynaud’s disease (characterized by the discolouration of the fingers, toes and occasionally other 
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areas) as a result of vasoconstriction in the extremities. It has also been suggested to play a role in 

bone formation (Wedemeyer et al., 2007). Increased levels of CGRP has also been observed in 

migraine attack (Nichols et al., 2010), a chronic neurovascular disorder that affects about 12% of the 

general population (Durham, 2004). Evidence supporting the involvement of this peptide in migraine 

was reported by Lassen et al. (2008) where the intravenous (IV) infusion of αCGRP caused migraine 

in patients (Lassen et al., 2008). Targeting drugs at the CGRP receptor to curtail CGRP’s excesses has 

therefore been suggested as effective therapy for migraine (Durham, 2004; Zhang et al., 2007; 

Nichols et al., 2010). 

A recent review by Hay et al. (2011) has presented evidence supporting a link between CGRP and 

cancer progression, but not initiation. Several studies have observed an increased level of CGRP in 

both plasma and tumours from certain cancers (see Hay et al., 2011). Although this requires further 

investigations, there are already suggestive opinions making a case for CGRP receptor antagonists 

(especially those that simultaneously block the AM1 and AM2 receptors) in cancer therapy.  

Antagonists binding to the CGRP receptor have been developed with the aim of treating disease 

conditions, especially migraine. The first CGRP antagonist was the CGRP8-37, i.e. CGRP devoid of the 

first 7 amino acid residues (Chiba et al., 1989). This truncated peptide binds CGRP with high affinity 

but unfortunately, it was of no pharmacological use due to its short half-life in vivo. It has however 

been useful in the characterization of the CGRP receptor. Doods et al. (2000) developed a high 

affinity and highly selective antagonist, BIBN4096BS with about 150x higher affinity than CGRP8-37. 

This compound was efficacious in the treatment of acute migraine (Olesen et al., 2004). Moreover, an 

orally active antagonist, MK-074 has also been developed for this receptor for the treatment of 

migraine (Salvatore et al., 2007) and this made it to phase 3 clinical trials.  

 

1.4.1.2 Structure of CGRP 

Although no crystal/NMR structure has been deposited for CGRP in the protein data bank, its 

structure has been investigated by NMR and molecular modelling techniques (Lynch and Kaiser, 
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1988; Breeze et al., 1991; Conner et al., 2002). The first of four domains of the CGRP structure 

comprises the first 7 amino acid residues, the absence of which produces an antagonist (CGRP8-37). A 

disulphide bridge between residues 2 and 7 is crucial for activation of the receptor by this peptide 

(Conner et al., 2002; Barwell et al., 2010). Affinity of this peptide is conferred in part by the second 

domain made up of an amphipathic α-helix between 8
th
 and 18

th
 residues. This characteristic is 

specifically driven by Arg residues on positions 11 and 18 sitting on the hydrophilic face of the helix. 

Residues 19-27 make up the third domain beginning with a β or γ turn and act as a hinge with no 

stringent constraint on its composition. The last ten residues make up the C-terminal domain with two 

turn regions (centred on Pro-28 and Gly-33). This is thought to be crucial in high-affinity binding 

(Conner et al., 2002). A more recent review of this peptide has given more insight into the roles 

played by various residues making the different regions of the peptide (Watkins et al., 2012).   

 

Fig 1.11: Structure of CGRP showing the distribution of structural features across the peptide sequence. The 

residues implicated in making receptor contact are shaded grey (Conner et al., 2002; Watkins et al., 2012) 

 

1.5 The CGRP receptor complex 

1.5.1 CLR 

The calcitonin receptor-like receptor (CLR) is a 7 transmembrane (TM) receptor protein of the family 

B which is approximately 460 amino acids in length. Earlier reports (e.g. Conner et al., 2007) on the 

presumptive structure of the CLR N-terminal region were made based on the published NMR 
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structure of the mouse corticotropin-releasing factor receptor type 2 (CRF-R2β) N-terminal 

extracellular domain (Grace et al., 2004) – a prototype of the family B GPCRs. An accurate structure 

became possible following the release of the crystal structure of the ECD of the CGRP receptor (ter 

Haar et al., 2010). The structure reveals an N-terminal α-helix (spanning residues Gly35 to Met53) 

that packs against a core of two antiparallel β-sheets. The length of the helix is similar to those of 

PTH and GIP receptors. The helix is followed by a long loop of irregular structure between residues 

Asp55 and Tyr64, leading to a long ‘finger-like motif’ from Cys65 to Gly81 which is highly 

conserved in all ectodomain structures. The N-terminus is stabilised by three disulphide bonds (Cys48 

– Cys74; Cys65 – Cys105; and Cys88 – Cys127), each performing distinctive stabilising function. 

The configuration observed by the two β sheets, linked by the second disulphide bond, resembles the 

‘short consensus repeats’ (SCR) revealed in the CRF-R2β N-terminus (Parthier et al., 2009) between 

residues 39 and 133 (Grace et al., 2004). Sequence homology has clearly revealed that residues 

involved in intramolecular interactions that contribute to structural stability, in addition to the 

disulphide bond system, are conserved in many other family members. For instance, Trp75 and 

Trp111, the aromatic indol ring systems of which sandwich the basic residue Arg-103, are highly 

conserved (ter Haar et al., 2010). 
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Fig 1.12: Crystal structure of CLR ECD (ter Haar et al., 2010) showing the architecture of the common secretin 

family fold. Disulphide bridges stabilizing the ECD are shown as yellow sticks. Residues making the WDG 

motif are shown in red.  

 

There have been molecular structural models proposed for the TM bundle of this receptor (Vohra et 

al., 2007; 2013; Conner et al., 2005). CLR, like other family B GPCRs, is believed to exhibit the 

conventional 7 TM helical fold already shown for family A GPCRs. Existing model structures of CLR 

suggest that this receptor also has a kink within TM6, caused by P343, as commonly observed in 

family A GPCR structures, although it is thought to be roughly 2 turns above the position of the 

equivalent Pro residue (P
6.50

) in family A (Vohra et al., 2013). Mutagenesis studies have shown that 

this residue is important for receptor activation and the kink introduced by it may drive structural 

activation as in family A GPCRs (reviewed in Barwell et al., 2013). The most recent of the CLR 

model structures, Vohra et al. (2013), was based on structural homology using an intermediate GPCR, 

GCR1 – the most studied plant GPCR which shares homology with both families A and B GPCRs. In 

this modelling, key molecular signatures of the CLR (as a representative family B GPCR) were 
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associated with family A (Table 2, Vohra et al., 2013). While some of these motifs appear to play 

similar roles to their family A counterparts, the same does not look plausible for others. (see Vohra et 

al., 2013).  

A putative 8
th
 helix, anchored via a palmitoylation motif to the membrane in rhodopsin, has also been 

suggested for family B GPCRs but this currently remains postulative (Conner et al., 2008; Vohra et 

al., 2013). Although the palmitoylation motif is said to be absent in the CLR, a biophysical study 

(Conner et al., 2008) on a synthetic CLR C-terminus reported that there is a possibility for the 

formation of a lipid anchor on this region. This has been attributed to Trp399 of the CLR at the distal 

end of H8. The EFxxxL
8.54

 motif in H8 of family A is also believed to be exhibited by CLR where it is 

present as EVxxxL
8.54

.       

 

1.5.2 RAMP1 

1.5.2.1 Physiological and pharmacological roles 

RAMP1 is the first member of a 3-member small (148 – 175 amino acids) family of proteins that 

serve as accessory proteins for some family B GPCRs. They were first identified as partners of the 

CLR (McLathie et al., 1998). Each member possesses a single transmembrane α-helix, an 

extracellular amino terminus, and a short intracellular C-terminus. They have different tissue 

distribution (Hay et al., 2006) and share less than 30% sequence identity with one another (Kusano et 

al., 2008). The human RAMP1 gene is present on chromosome 2 (CLR is also present on 

chromosome 2 but not particularly close to RAMP1) at 2q36 (Poyner et al., 2002). RAMP1, together 

with RAMP2 and 3, are relatively ubiquitously distributed with at least 1 RAMP expressed in every 

tissue (Sexton et al., 2001). RAMP1 is specifically found in many body tissues including brain, uterus 

and pancreas, among others (see Hay et al., 2006). 

RAMP1 associates with the CLR to form the receptor for CGRP in a 1:1 stoichiometry (Hay et al., 

2006; Kunaso et al., 2008; ter Haar et al., 2010). This stoichiometric ratio is however under debate as 
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there are reports suggesting a monomer of RAMP1 interacting with a CLR dimer (Heroux et al., 

2007). A clearer insight into the structure of RAMP1 and the stoichiometry of its interaction with 

CLR was boosted by the emergence of the crystal structure of the human RAMP1 ECD I association 

with CLR ECD (ter Haar et al., 2010). The most notable role of RAMP1 comes from its relation with 

CLR and this involves its (RAMP1) role in regulating the transport (i.e. acting as a chaperone) and 

pharmacological phenotype of CLR (McLathie et al., 1998). RAMP1 is required for the translocation 

of CLR from the endoplasmic reticulum (ER) to the cell surface as CLR expressed in the absence of 

RAMP1 (and other RAMPs) is retained intracellular (McLathie et al., 1998). The N-terminus appears 

to be most crucial in CLR/RAMP1 interaction. The importance of this domain has been reported in 

several studies (Fraser et al., 1999; Udawela et al., 2006b). Studies involving the use of chimeras have 

suggested the TM and C-terminus to be less crucial for receptor function (Udawela et al., 2006a), but 

the TM is important for the formation of functional receptor at the cell surface (Fitzsimmons et al., 

2003). The C-terminus of RAMP1 contains an ER retention motif (QSKRT) adjacent to the plasma 

membrane (Steiner et al., 2002). This probably plays a role in the overall regulation of receptor 

function as its deletion causes RAMP1 to be translocated to the cell surface, although this was only 

tested in COS 7 cells. 

RAMP1 tends to modulate the pharmacology of CLR directly/indirectly altering its (CLR) structure or 

by contributing to an interface for binding agonists or antagonists. Mutagenesis studies and 

information from the crystal structures of the ECD of RAMPs 1 and 2 (in complex with CLR ECD)  

have shown that while two or more residues may show similar effect on receptor pharmacology, their 

mechanism may differ. For instance, while F93A and F101A both reduced CGRP receptor cell 

surface expression in an earlier mutagenesis study (Kuwasako et al., 2003), a later structural study 

showed that they are unlikely to act via the same mechanism (Kusano et al., 2008). While F101 is 

believed to contribute to the CLR binding interface, it was unlikely that F93 does the same 

(Kuwasako et al., 2003; Kusano et al., 2008). The contribution of RAMP1 to an interface for binding 

agonists and antagonists in the CGRP receptor is a feature of this protein in CGRP receptor 

pharmacology. One very important residue that has been implicated in this respect is W84, mutation 
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of which significantly reduced CGRP potency and to a lesser extent CGRP receptor cell surface 

expression (Moore et al., 2010). This residue has been indicated in peptide and non-peptide binding 

(Moore et al., 2010).      

 

1.5.2.2 Structure of RAMP1 

The structure of RAMP1 was first predicted by an ab initio model designed by Simms et al. (2006). 

The secondary structure was predicted from two prediction routines. Their model predicted RAMP1 

to be composed of an N-terminal region of three alpha helices (helices 1, 2 and 3) and a relatively 

short TM domain spanning residues 118 – 139. The disulphide forming cysteine residues were tested 

using site directed mutagenesis (Simms et al., 2006). 

Today, a crystal structure of RAMP1 ECD exists in the protein data bank in its monomeric state (PDB 

code: 2YX8) as well as in complex with the CLR ECD (PDB code: 3N7S). The overall architecture of 

this structure agrees with that already predicted by Simms et al. (2006). The ECD RAMP1 is a three-

helix bundle – α1, α2 and α3 - stabilized by three disulphide bonds (Cys40 – Cys72; Cys27 – Cys82; 

Cys57 – Cys104). There is also a short helical structure between the α1 and α2 helices. The α2 helix is 

aligned in an antiparallel position to the α1 and α3, and the α1 is has a kink on Leu-39 (Kunaso et al., 

2008). This released structure has appreciable similarity with that earlier predicted for an ab-initio 

model of RAMP1 (Simms et al., 2006) especially in the helical composition. However, there are clear 

significant differences especially in the predicted residues marking the helices and those involved in 

certain intramolecular interactions. This thus emphasizes an importance of obtaining crystal structures 

for these proteins. The biochemical roles of RAMP1 can be summarized as cell-surface targeting, 

direct ligand binding and indirect modulation of the CLR conformation (Mallee et al., 2002). 
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Fig 1.13: Ribbon representation of RAMP1 structure. The three disulphide bonds are shown in yellow. α1, α2 

and α3 are respectively the first, second and third helices and are shown in red. Protein Sci. 17(11):1907-14 

 

1.5.2.3 RAMP1 analogues: RAMP2 and RAMP3 

RAMP2 and RAMP3, the two homologues of RAMP1, are present on chromosome 17 at 17q12-21.2 

and chromosome 7 at 7p13-12 respectively in human (Derst et al., 2000). The associations of RAMP2 

and RAMP3 with the CLR form receptors for adrenomedullin (AM) with distinct affinities (Table 1.3) 

(McLatchie et al., 1998; Poyner et al., 2002). Despite their low sequence identity, sequence alignment 

shows that key residues involved in intramolecular hydrophobic interaction and disulphide linkages in 

the RAMP1 are also contained in the RAMP2 and RAMP3 isoforms (Fig 1.15). One main exception 

is the absence of the disulphide bond corresponding to Cys27 – Cys82 in RAMP2, leaving it with two 

disulphide bonds compared to three observed for RAMP1 and predicted RAMP3. The disulphide 

bonds in RAMP2 however have been reported to be more crucial in receptor cell surface expression 

compared to the other two RAMPs (Kuwasako et al., 2003). Unlike in RAMP1, RAMP2 and RAMP3 

possess N-glycosylation sites which, for instance in the case of RAMP2, has been implicated as 

influential in receptor trafficking (Flahaut et al., 2002). While RAMP3 has four potential N-

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=An%20external%20file%20that%20holds%20a%20picture,%20illustration,%20etc.Object%20name%20is%201907fig1.jpg%20%5bObject%20name%20is%201907fig1.jpg%5d&p=PMC3&id=2578806_1907fig1.jpg
javascript:AL_get(this,%20'jour',%20'Protein%20Sci.');
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glycosylation sites (N29, N58, N71 and N104 in human), there is only one (N103) present in human 

RAMP2 (Flahaut et al., 2002; Kusano et al., 2012).  

 

             

         .  .         .         .         .         .         .  

RAMP1       CQEANYGALLRELCLTQFQVDMEAVGETLWCDWGRTIRSYRELADCTWHMAEKLGCFWPNAEVD  

RAMP2       GTVKNYETAV-QFCWNHYKDQMDPIEK-DWCDWAMISRPYSTLRDCLEHFAELFDLGFPNPLAE  

RAMP3       CNETGMLERL-PLCGKAFADMMGKVDVWKWCNLSEFIVYYESFTNCTEMEANVVGCYWPNPLAQ  

               .        :* . :   *  :    **: .     *  : :*    *: ..  :**. .: 

 

               .         .         .         .         .                

RAMP1       RFFLAVHGRYFRSCPISGRAVRDPPGSILYPFIVVPITVTLLVTALVVWQSKRTEGIV  

RAMP2       RIIFETHQIHFANCSLVQPTFSDPPEDVLLAMIIAPICLIPFLITLVVWRSKDSEAQA  

RAMP3       GFITGIHRQFFSNCTVDRVHLEDPPDEVLIPLIVIPVVLTVAMAGLVVWRSKRTDTLL  

             ::   *  .* .*.:    . *** .:* .:*: *: :   :  ****:** ::  

 

 

Fig 1.14: Sequence alignmment of human RAMPs. Disuphide-forming Cys residues are shown in yellow boxes. 

Regions implicated in ligand binding (as highlighted in Hay et al. (2006a)) are highlighted in magenta. . 

Invariantly conserved residues are marked with asterisk (*), residues with similar side-chain properties are 

marked with colon (:) while residues with similar shape are marked with dot (.).  

 

The N-terminus of RAMP2, like RAMP1, is most crucial for receptor pharmacology. A study using 

chimeras has specifically identified residues in the region spanning 77-101 as the primary determining 

factor for receptor pharmacology (Kuwasako et al., 2001). Some other group of residues within this 

region were also identified as crucial for receptor cell surface expression or ligand binding. The 

knowledge of RAMP2 structure has been boosted by the release of the crystal structure of the 

complex between CLR and RAMP2 within the N-terminal ECD (Kusano et al., 2012). RAMP2 shares 

a similar 3-helix bundle fold (helix α1, α2 and α3), which are connected by two loops (loop 1 and 

loop2) as observed for RAMP1 (Kusano et al., 2008). The second and third helices (α2 and α3 

respectively) of RAMP2 interact with helix α1 of CLR. This CLR/RAMP2 interaction creates and 

hydrophobic interface about 924 Å
2
 which primarily binds agonists and antagonists (Kusano et al., 

2012).   
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Fig 1.15: Crystal structure of the ECD of RAMP2 (Kusano et al., 2012). The disulphide bridges stabilizing this 

domain are shown in yellow. Alpha helices 1, 2 and 3 are labelled α1, α2 and α3 respectively. 

 

RAMP3 appears to be very closely related to RAMP1 especially from sequence homology (see Fig 

1.14) and possibly in functional mechanism. The RAMP3 equivalent of the highly important W74 in 

RAMP1 (E74 in RAMP3), for instance, has been mutated have been found to play a similarly crucial 

role as RAMP1 (Hay et al., 2006b). The little information available for the RAMP3 structure is 

extrapolated from RAMP1 and is therefore predictive. Bailey et al (2010) constructed a homology 

model for RAMP3 from its closest associate, RAMP1. The structure is predicted to be stabilized by 

disulphide bonds formed by Cys residues equivalent to the disulphide-forming Cys residues in 

RAMP1. Also in this structure, helix 1 is slightly unwound and the C-terminus is orientated in a 

slightly different manner, as a result of the presence of a kink, when compared to RAMP1.     
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1.5.3 RCP 

Another addition to the complexity of the CGRP system is the receptor component protein (RCP) 

discovered during expression systems targeting the CGRP receptor. It is a 148-amino acid 

cytoplasmic protein found to co-immunoprecipitate with CLR in cell culture and tissues. It has been 

found to be involved in the activation of the CGRP receptor (Tolun et al., 2007). An earlier study has 

strongly suggested that direct interaction between RCP and CLR is required for CGRP receptor 

activation and signalling.  In the study, signalling of endogenous CLR was inhibited in cells from 

which RCP has been co-immunoprecipitated with an interacting intracellular CLR domain expressed 

as soluble fusion protein. CLR trafficking was however not inhibited, suggesting that RCP may not 

play a chaperone role for CLR (reviewed in Egea and Dickerson, 2012).   

 

Fig 1.16: Representative model for the CGRP system. AC is adenylate cyclase. Protein Expr Purif 52: 167-174 

 

1.6 Expression Systems for Recombinant Protein Production 

The use of proteins for scientific research requires that they are present in considerably large amount. 

This is paramount when they are required for most biophysical studies. Isolating proteins from their 

native source, or their synthetic production, is cost intensive and sometimes raises ethical issues, 

especially when a human source is required. The emergence of recombinant DNA technology, in the 

early 1970s (Jackson et al., 1972), has been a very useful tool in overcoming this hurdle. The 
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recombinant DNA technology involves the splicing of relatively short DNA molecule which can be 

replicated in a host cell. The basic steps in recombinant DNA technology, as reported by Reddi et al. 

(2000), are summarized as; 

- Isolation and specific cleavage of DNA 

- Ligation of DNA fragment into a cloning vehicle, called a vector   

- Transformation and selection 

- Physical mapping and DNA sequencing to confirm cloned gene 

- Expression of the cloned gene.  

Since proteins are made from DNA, recombinant proteins are therefore proteins produced from 

recombinant DNA. The last of these steps, the gene expression, requires a host cell into which the 

cloned DNA-harbouring vector is introduced and the protein purified. 

A number of host cells are used to obtain recombinant proteins. This could either be a prokaryote or 

eukaryote. The most commonly used are the Escherichia coli (E. coli - a prokaryote), yeast, insect and 

mammalian cells (all eukaryotes). They have all been reported in the isolation of various GPCRs 

(Fraser, 2006). These systems differ in different ways with each having their advantages and 

disadvantages. The E. coli and yeast expression systems both have the advantages of rapid cell 

growth, minimal complexity and cost effectiveness. These are not attributed to the insect and 

mammalian cell lines. However, the insect and mammalian cell lines have a special advantage of 

posttranslational modification (e.g. folding of the protein) - a feature absent in the E. coli cells but 

present in the yeast cells (Higgins and Cregg, 1998). These features form the major criteria used to 

descriptively classify these expression systems. Of these systems, the yeast expression system is most 

favourable as it shares the desirable features of the prokaryotic and eukaryotic expression system. 

The yeast expression system consists of two major cell types – Saccharomyces cerevisiae and Pichia 

pastoris. S. cerevisiae was the first to be discovered and has been widely studied with its entire 

genome sequenced (Higgins and Gregg, 1998). P. pastoris, though less characterized compared to the 

former, has out-shone the S. cerevisiae in its use for recombinant protein production. One main 
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advantage it has over the S. cerevisiae is its preference for respiratory growth which facilitates its 

culturing resulting in higher cell density compared with the fermentative S. cerevisiae (Higgins and 

Cregg, 1998; Burrowes et al., 2005). The P. pastoris expression system, employed in this study, will 

further be discussed in some details. 

 

Table 1.4: Comparison of expression systems for recombinant protein production. Adapted from GenWay 

Biotech Inc. (2013).  

Characteristics  E. coli Yeats Insect cell Mammalian 

cell 

Cell growth Fast Fast Slow Slow 

Level of expression High Low – High Low – High Low – 

Moderate 

Yield (mg/L culture) 50 – 500 10 – 200 10 – 200 0.1 – 100 

Extracellular expression Secretion to 

Periplasm 

Secretion to 

medium 

Secretion to 

medium 

Secretion to 

medium 

Protein folding Folding usually 

required 

Folding may be 

required 

Proper folding Proper folding 

N-linked glycosylation  None High mannose Simple, No 

Sialic acid 

Complex 

O-linked glycosylation No Yes Yes Yes 

Phosphorylation, 

Acetylation and Acylation 

No Yes Yes Yes 

Cost Low Low Mid-way High 

 

 

1.6.1 The Pichia pastoris Expression system 

Pichia pastoris is an ascomycetous budding yeast that most commonly exist in a vegetative state 

(Higgins and Cregg, 1998). It is methylotropic with the ability to utilize methanol as a sole carbon 

source. The methanol is usually required in low concentration to prevent toxicity to the cells. 

Although methanol metabolism (illustrated in Fig 1.17) by this organism produces hydrogen peroxide 

(a toxic compound) as by-product, this is detoxified to water and oxygen by endogenous hydrogen 

peroxidase. This happens within the peroxosome – another feature that protects the organism from the 

reach of this toxic compound (Burrowes et al., 2005). One striking feature that makes P. pastoris a 
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very productive expression system is the presence of the alcohol oxidase 1 (AOX 1) gene that encodes 

the alcohol oxidase enzyme required for the utilization of methanol for growth and also for the 

overexpression of heterologous genes introduced downstream in a Pichia expression vector. This 

allows for up to 100-fold recombinant protein production in this organism compared to the 

traditionally used Saccharomyces (Higgins and Cregg, 1998; Burrowes et al., 2005).  

 

 

 

Fig 1.17: Methanol metabolism in P. pastoris. Adapted from Lin-Cereghino and Cregg (2000). AOX, alcohol 

oxidase; DHA, dihydroxyacetone; GAP, glyceraldehyde 3-phosphate. 

 

Moreover, certain features give Pichia an edge over other expression systems in its use for the 

production of GPCRs. These are its characteristic easy manipulation and relative cost effectiveness, in 

addition to its ability to glycosylate the protein produced (Singh et al., 2008). An addition to this is its 

adaptability to large-scale culture in bioreactors (Singh et al., 2008) and this is much more productive 
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compared to the conventional shake flask system (Burrowes et al., 2005). Bioreactors allow a defined 

regulation of growth parameters, mainly air, pH and carbon source, and this gives room for growth to 

an ultra-high density therefore maximising recombinant protein production (Singh et al., 2008). It is 

important to note that this organism also allow for the secretion of proteins into the growth media, a 

feature which favours its choice for this research work. This property is conferred by the presence of a 

S. cerevisiae α-factor signal peptide gene in some of its vectors. This is coupled with the fact that this 

organism secretes a rather negligible amount of endogenous protein into the culture media, making 

the secreted recombinant protein the vast majority of total protein in the media (Aoki et al., 2003). 

The soluble recombinant protein(s) secreted in this way do not require solubilisation by detergents, 

making it more suitable for biophysical characterization. 

The Pichia vector used in cloning the receptor genes of interest is the pPIC9K-MepNet modified by 

Andre et al. (2006) from the invitrogen pPIC9K vector. The expression cassette is made up of an N-

terminal α-factor signal sequence followed by a Flag-tag and a decahistidine-tag. Two tobacco etch 

virus (TEV) protease sites flank the multiple cloning site and a biotinylation-tag from 

Propionibacterium shermanii follows the second TEV site at the C-terminal end of the protein to be 

expressed (Andre et al., 2006). This vector, specifically designed by this group in the Membrane 

Protein Network (MepNet) to increase GPCR production in Pichia, has been reported to have added 

advantage over the original vector (Andre et al., 2006; Zeder-Lutz et al., 2006). The host strains 

employed for the expression of these receptor proteins are the wild type X33, and the mutant strains, 

GS115 and SMD1168. The GS115, like the wild type, has a methanol utilization plus (Mut
+
) 

phenotype but has a mutation in the his4 (histidinol dehydrogenase) gene making transformants 

selective on a minimal (histidine-deficient) media plate. This is an added selectivity to the antibiotic 

resistance. The SMD1168 strain (his4 pep4) has both features described for GS115 but in addition is 

deficient in the proteinase A encoded by the pep4 gene. Although this strain has the proteinase B, the 

latter requires proteinase A for activation. The proteinase B has half of the activated proteinase 

activity prior to activation, this is however considerably reduced (Higgins and Cregg, 1998). These 
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features described form the basis for the rationale for choosing these strains, from which the best 

expression strain would be chosen following screening. 

 

1.7 Mutagenesis 

The technique of site-directed mutagenesis (a form of mutagenesis) was first invented by Michael 

Smith in 1978 (Hutschison et al., 1978). It is now widely employed, especially in pharmacology, for 

molecular receptor-ligand interaction mechanisms, which in turn provides a good knowledge of 

designing drugs for these receptors. In a simpler term, this technique helps determine the role of 

amino acid residues in the binding of ligands and activation of the receptor. In a broader perspective, 

it is also employed in introducing a desired residue(s) into a peptide/protein for several intentions. The 

most common of this is alanine mutagenesis. In principle, it involves making a point-substitution 

mutation by substituting an amino acid moiety with alanine (for alanine mutagenesis) at a specific site 

on known sequence (Hulme et al., 1999). The effects of such mutation(s) can be interpreted based on 

four basic outcomes and these include changes in expression, basal activity, agonist affinity binding 

and signalling efficacy (see Hulme et al., 1999). This mutation is usually incorporated by designing 

an oligonucleotide primer (containing the new nucleotide base around the centre of the primer) 

complementary to the sequence base pairs around the site of mutation. The primer is then used to 

synthesize a new plasmid vector (from a template vector harbouring the gene of interest) which now 

contains the mutated gene. The template gene is eliminated by restriction enzyme that targets 

methylated sites on DNA, which is not found in the newly synthesized DNA. This is transformed into 

E. coli competent cells to repair nicks and isolated for DNA sequencing to confirm the mutation 

(Campbell and Farell, 2006). The mutated construct can now be transfected into the host cell for 

direct functional studies of the protein or could be isolated for onward biophysical studies.  

In this study, the mutagenesis technique would mainly be employed in the in vivo study of the 

activation mechanism of the CGRP receptor using parameters such as cAMP production and cell 

surface expression levels. The host cell lines to be employed would be the mammalian cell line COS-
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7, derived from kidney cells of African green monkey. The mammalian cells are used in this wise 

because of the evolutionary differences and distribution of the G-proteins required in GPCR signalling 

among organisms.  

 

1.8 Aims and Objectives 

Understanding the molecular mechanism/basis of the CGRP receptor-ligand interaction, hence, 

designing exogenous molecule targeting this receptor for therapeutic purpose has been hampered by 

the absence of crystal structures for this receptor and accompanying accessory proteins. This research 

work is aimed at using mutagenesis to investigate several residues at the N- and C-termini of the CLR 

for their role in receptor signalling. The former, involving the N-terminus, is in the quest to determine 

and investigate certain residues within a putative ligand-binding core of CLR that are crucial for 

CGRP binding and hence, receptor activation. The sites have been predicted following information 

from the crystal structures of CLR and some family B GPCR ectodomains - the CRFR, PTHR and 

GIPR. The latter involves using alanine scanning mutagenesis to investigate several residues spanning 

H8 of CLR as well as the associated C-terminal region.  

This research project is also aimed at expressing, purifying and characterizing soluble ectodomains of 

CLR and the RAMPs (i.e. RAMP1, RAMP2 and RAMP3). The purpose of this is to produce receptor 

proteins with the plausibility of studying their interactions (i.e. CLR/RAMP interaction) using surface 

plasmon resonance (SPR). The ultimate goal of this is to develop a system that could be a tool in 

determining novel partners for RAMP proteins.  

 

 

 

 



82 
 

Chapter 2 Materials and Methods 

2.1 Generation and analysis of CLR site-directed mutants 

2.1.1 Materials 

2.1.1.1 Equipment 

Invitrogen Countess
TM 

Automated Cell Counter (Life Technologies, UK) 

Microflow Advanced BioSafety Cabinet Family B  

Thermo Scientific Multiskan GO Plate Reader (Thermo Scientific, UK) 

Sigma 2-6E bench centrifuge (Sigma-Aldrich, UK)  

 

2.1.1.2 Media and stock solution 

2.1.1.2.1 Cell culture media 

500 ml DMEM 4.5g/L Glucose with L-Glutamine (Lonza, UK) was supplemented with 50 ml heat-

inactivated fetal calf serum (PAA, UK) and 5 ml penicillin/streptomycin. The media solution was 

stored at 4°C. The fetal calf serum was stored as 50 ml aliquots in 50 ml universal tubes at -20°C.   

2.1.1.2.2 cAMP assay media 

40 µl of 500 mM IBMX in DMSO and 20 mg BSA were added to 20 ml serum-free DMEM or 1x 

HBSS (Hank's Balanced Salt Solution; Life Technologies, UK) and mixed properly. This was 

prepared freshly before each assay. This volume is designed for one 48 well plate. Stock solution of 

500 mM IBMX in DMSO was made by dissolving 100 mg IBMX in 900 µl DMSO. This was stored 

as 80 µl aliquots in 0.5 ml Eppendorf at -20°C. 
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2.1.1.2.3 cAMP assay buffer 

This was composed of 20 mM HEPES pH 7.5 and 5 mM EDTA. To prepare, 2.38 g HEPES acid (or 

2.6 g HEPES Na salt) and 0.93 disodium EDTA were dissolved in 500 ml ddH2O and the pH adjusted 

to 7.5 with NaOH (or HCl). This was stored at 4°C. 

2.1.1.2.4 Binding protein  

This was composed of 0.02% w/v cAMP-dependent protein kinase A (PKA) in 1 mM sodium citrate 

pH 6.5 with 2 mM dithithreitol (DTT). To make, 10.5 mg citric acid and 15.42 mg DTT were 

dissolved in 50 ml ddH2O. This was allowed to cool on ice after which 10 mg 3’5’-cyclic AMP-

dependent protein kinase (Sigma-Aldrich, UK) was added. This was stored as 2.5 ml aliquots at -

20°C. 

2.1.1.2.5 Activated charcoal 

The activated charcoal stock solution was made up of 5% w/v activated charcoal and 0.2% w/v BSA 

in cAMP assay buffer. The solution was prepared by dissolving 400mg BSA in 200 ml assay buffer 

with gentle stirring. 10 g activated charcoal (100-400 mesh) was slowly added and allowed to stir a 

little longer. The solution was kept at 4°C overnight to allow for equilibration before the first use. 

 

2.1.1.3 Reagents 

2.1.1.3.1 Human αCGRP 

264 µl of 1 mM acetic acid was directly added to 1 mg human αCGRP (Merk4Biosciences, UK) in 

the original container to give a 1 mM stock concentration. This was stored as 5 µl aliquots at -20°C.  
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2.1.1.3.2 Antibodies 

The antibodies used in this section were employed to probe for the HA tag on the CLR. The primary 

antibody used is mouse anti-HA antibody (Sigma-Aldrich, UK) while the secondary is anti-mouse 

horseradish peroxidase conjugated antibody (Cell signalling Tchnology, UK). 

2.1.1.3.3 Trypsin EDTA 

Trypsin EDTA was employed to dissociate the adherent COS 7 cells from their culture vessel surface 

(trypsinization). This is required for passaging of plating the cells. Trpsin EDTA was purchased as 

100 ml stock solution from PAA, UK. These were stored in original container at 20°C. Once thawed 

however and in constant use, the working solution was stored at 4°C. 

 

2.1.2 Methods 

The methods employed here for generation and analysis of the mutants have been previously 

published (e.g. Conner et al., 2006; Barwell et al., 2011). 

2.1.2.1 Identifying targeted sites for mutation 

Various residues of the CLR were selected for investigation by site-directed mutagenesis. The 

residues were selected on the presumption that they play a role in receptor function. This was 

adjudged based on the CLR N-terminal and transmembrane structures using the Swiss-PDB viewer. 

The regions from which the residues were selected included the ligand-binding N-terminal region, the 

intracellular loop 1 (ICL1) and its associated transmembrane region as well as the helix 8 (H8) and its 

associated C-terminal region. The regions were defined as specified on UniProt/Swiss-Prot and were 

compared to the literature. Sequence alignments were performed using ClustalW
TM 

alignment tool. 

2.1.2.2 Expression constructs 

The human CLR and RAMP1 constructs were kindly provided by Dr James Barwell (LHS, Aston 

University). The CLR cDNA was in pcDNA3.1- mammalian vector with a T8 signal peptide and an 
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N-terminal heamagglutinin (H8) tag. The RAMP1 cDNA was also incorporated pcDNA3.1- vector 

with a CD33 signal peptide and N-terminal myc epitope tag. The introduction of the tags has been 

shown not to affect the pharmacology of the receptor (McLatchie et al., 1998, Fraser et al., 1999). The 

translated sequence of the T8-HA CLR and CD33-myc RAMP1 used for all site-directed mutagensis 

investigations are given in the appendix section.  

2.1.2.3 Primer design 

Mutagenesis primers were designed with the aid of a primer designing tool, PrimerX
TM

. The forward 

and reverse oligonucleotide primers were designed to incorporate an alanine (or another amino acid as 

desired) as a point mutation in to the wild type receptor. Primers were synthesized desalted by Life 

Technologies, UK. 

2.1.2.4 Site-directed mutagenesis 

Site directed mutagenesis was carried out on selected regions of the full length CLR subcloned in the 

mammalian vector pcDNA3.1(-). Mutations were generated using the QuikChange II Site-Directed 

mutagenesis kit (Agilent Technologies, UK) according to manufacturer’s instructions. 

2.1.2.5 Mutant DNA sequencing 

Mutant plasmids were sequenced at the Functional Genomics Laboratory (University of Birmingham, 

UK) to confirm mutation. Sequencing reaction was set up according to the laboratory’s 

recommendation. The T7, TM2, TM4 and BGH oligonucleotide primers (see appendix section for 

details) for the pcDNA3.1(-) plasmid were used in sequencing the CLR-coding region of the plasmid 

construct.   

2.1.2.6 Cell culture and transfection 

COS 7 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 

10% (v/v) fetal calf serum and 1% (v/v) penicillin/streptomycin in a tissue culture treated 75 cm
2
 cell 
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culture flask and incubated at 37˚C with 5% CO2. Cells were allowed to grow to 70-90% confluency 

before plating them for transfection.  

To transfect, cells were plated in a 96- or 48-well plate or seeded in a 10 mm petri dish depending on 

the intended assay. 30,000 cells in 200 µl volume were seeded per well of a 48-well plate and this was 

used as standard to calculate the number of cells seeded in a 96-well plate or 10 mm petri dish as a 

function of their surface areas. Cells were transiently transfected 24 h after plating with equal amounts 

of the HA CLR (wild type or mutant) and myc RAMP1 vectors. For a 48-well plate, 1 µg total DNA 

(for instance, 0.5 µg HA CLR and 0.5 µg myc RAMP1) was used per well. For a well of 96-well plate 

and a petri dish, 0.5 µg and 10 µg total DNA were used respectively. For a negative control (Fig 2.1), 

cells were also transfected with HA pcDNA3.1(-) (i.e. empty vector without CLR) and myc RAMP1. 

This was to check for any CGRP receptor activity in cells not transfected with HA CLR. The 

transfection mix contained 4.5 μl of 10 mM polyethyleneimine (PEI), 1 μg of DNA, 40 μl of 5% 

glucose and DMEM to a total volume of 200 µl per well of a 48-well plate (100 µl per well and 8ml 

for 96-well plate and 10 mm petri dish respectively). The volume was scaled up to accommodate the 

required number of wells. The transfection mix was set up as follows:  CLR and RAMP1 vectors were 

added to appropriate amount of 5% glucose, mixed and incubated for 10 mins. Corresponding volume 

of PEI was then added, mixed and incubated for 20-30 mins, after which the volume was made up 

with DMEM. The plates were brought out of the incubator and old growth media replaced with the 

transfection mix, the plates were agitated and returned to the incubator.  Cells were assayed ~48 h 

after transfection.  

2.1.2.7 cAMP standard curve 

A typical cAMP competition curve was generated using a cAMP standard, which was assessed by the 

radio receptor assay (a competition assay between cAMP and [
3
H]cAMP) described in section 2.1.2.8 

below. This was important in order to determine the linear protion of the cAMP stimulation curve. 

cAMP standard were diluted to concentrations ranging from 100 nM to 10 pM. Here, the cAMP 

standards replaced the cell extracts under the competition assay step described in section 2.1.2.8. The 



87 
 

radioactivity counts per min were plotted against log concentration of cAMP using GraphPad Prism 4 

(GraphPad Software Inc., San Diego, USA). 

 

Fig 2.1: Standard cAMP curve. Standard curve was generated from a cAMP/[
3
H]cAMP competition assay. 

cAMP standard was diluted to conetrations of 100 nM – 10 pM. Sigmoidal curves were fitted using GraphPad 

prism 4. 

2.1.2.8 Assessment of cAMP production 

Following ~48 hr incubation post transfection from above, the growth media (or transfection mix) was 

replaced by 100 µl assay media and the cells were incubated at 37°C for 30 mins for stimulation. 

During the incubation, a 10 µl aliquot of 1 mM αCGRP stock (already thawed on ice) was diluted in 

assay media to concentrations ranging from 300 nM to 30 pM. 50 µl αCGRP from each dilution was 

added to the assay media in each well (i.e. each well corresponding to a particular αCGRP 

concentration and represents an assay point) to make the final concentrations 100 nM to 10 pM. The 

control assay point contained 50 µl assay media instead of αCGRP. Each assay point was made in 

duplicate for each condition (wild type or mutant). Cells were then incubated at 37°C for 15 mins 

after which the media were thoroughly aspirated and 100 µl of ice cold ethanol added to each well. 

The plates were stored at -20°C for at least 15 mins. 
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To measure cAMP production, the ethanol was allowed to evaporate by placing plates in a fume hood. 

The binding protein was allowed to thaw and an equal volume of assay buffer added. 100 µl of assay 

buffer was added to each well and the plate gently shaken for ~5 mins to re-suspend sample. 50 µl of 

cell extracts were transferred to 1.5 ml Eppendorf tubes. 2 µl 
3
H cAMP (74kBq) was diluted in 4 ml 

assay buffer and 50 µl added to each Eppendorf tube. 100 µl of the diluted binding protein was then 

added to each tube and mixed thoroughly by inverting 4 - 6 times. The tubes were incubated for 2 – 

24 hrs.       

Following incubation, the activated charcoal was stirred gently for few mins and 100 µl was added to 

each tube and mixed. The tubes were centrifuged (14000g, 4°C, 5 mins) for charcoal pellet to form. 

185 µl of supernatant was carefully transferred to a scintillation vial and 4 ml of high performance 

ScintiSafe 2 scintillation fluid was added. The vial was capped and shaken to mix content. The 

samples were counted using the Packard 1600TR liquid scintillation analyser.  

Raw cAMP data generated were fitted to non-linear regression concentration-response curves using 

GraphPad Prism 4. Below is the sigmoidal concentration-response equation with which the raw 

cAMP data were fitted: 

Y = Bottom + (Top – Bottom)/(1+10^((logEC50 – X))) 

where Y is the response running from the bottom through to the top of the sigmoidal curve. Bottom 

and Top represent the lowest and highest plateau values respectively on the Y axis. The Hill slope was 

assumed to be 1.  
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Fig 2.2: Dose-response curve of mock transfected COS7 cells. Following 48 h incubation after transfection, 

mock (HA pcDNA3.1(-) and myc RAMP1) transfected cells were challenged with 100nM – 10pM αCGRP with 

a control assay point containing no αCGRP. Sigmoidal curves were fitted using GraphPad prism 4. Each curve 

is representative of one of at least three independent experiments. Each point on the curve represents duplicate 

assay data with standard error bars. 

2.1.2.9 Enzyme-linked immunosorbent assay (ELISA) 

This assay probes for the HA-tagged CLR to determine the cell surface expression of wild type and 

mutant CGRP receptor. COS 7 cells in a 48-well plate were transiently transfected (with wild type HA 

CLR/myc RAMP1, mutant HA CLR/myc RAMP1 and empty pcDNA3.1(-)/myc RAMP1) to give 

three different conditions in each experiment. The empty pcDNA3.1(-)/myc RAMP1-transfected cells 

(negative control) controlled for non-specific antibody binding. Assay points for each condition were 

in triplicates or more and at least three independent experiments were performed. Following 

transfection and ~48 hr incubation period, the growth media was aspirated and cells fixed with 150 µl 

3.7% formaldehyde for 15 min after which the cells were washed three times with 250µl PBS. The 

cells were blocked with 200 µl 2% BSA in PBS for 45 min and were then treated with 150 µl of 

primary antibody diluted 1:2000 in 1% BSA in PBS for 1 h. The cells were washed three times with 

PBS and treated with 150 µl secondary antibody diluted 1:2000 in 1% BSA in PBS for another 1 h. 

The cells were washed again three times with PBS and then developed with 150 µl SIGMAFAST™ 
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OPD tablets dissolved in water according to manufacturer’s instructions. The reaction was terminated 

with 100 µl 1M H2SO4. The reaction product was measured at 490 nm using the Thermo Scientific 

Multiskan GO plate reader.     

2.1.2.10   CGRP receptor cell surface expression after αCGRP-dependent internalization 

The procedure followed here is as described above except that the cells were treated with 100 nM 

αCGRP in full medium for 1 h at 37°C before fixing with 3.7% formaldehyde. 

2.1.2.11 Total CLR expression 

This was conducted for mutants with significantly different cell surface expression values to that of 

the wild type. The procedure again is as described for the assessment of cell surface expression by 

ELISA except that after fixing with 3.7% formaldehyde, the cells were permeabilized by treating with 

0.1% Triton-X 100 in PBS for 1 h.  

2.1.2.12 Crude membrane preparation 

COS 7 cells were seeded into 10 cm tissue culture dishes and was transfected after ~24 hr. Following 

~48 hr incubation post-transfection, each culture dish was washed with 3 ml ice cold PBS. 2 ml ice 

cold homogenization buffer (20 mM HEPES, 1 mM EGTA, 10 mM MgCl2 and SIGMAFAST
TM 

Protease Inhibitor cocktail tablet EDTA-free, pH 7.5) was then added and the cells were scrapped into 

a sterile 50 ml falcon tube on ice. The cells were subjected to three 15 sec burst with an Ultra-Turrax 

T25 tissue homogenizer at maximum capacity, with the cell suspension placed on ice for 45 sec 

between burst. The homogenate was centrifuged at 20,000 g for 25 min at 4°C. The pellet was 

resuspended in 2 ml binding buffer (20 mM HEPES, 2 mM MgCl2 pH 7.5). 20 µl aliquot of the 

resuspension was transferred into 0.5 ml eppendorf tube for Western blot analysis. The remainder was 

stored at -20°C.    
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2.2 eCLR and eRAMPs production 

2.2.1 Materials 

All reagents/chemicals, unless otherwise stated, were supplied by Sigma-Aldrich, Fisher Scientific or 

Invitrogen (UK). Enzymes and primers were purchased from New England Biolabs, and Invitrogen 

respectively. The supplier of each equipment used is stated in parenthesis as it is first mentioned in the 

course of this report. The reagents used were certified at analytical grade for scientific research 

purpose. 

2.2.1.1 Equipment 

ÄKTA purifier (GE Healthcare Life Sciences, UK) 

Bio-Rad Power Pac 1000 and Power Pac 300 (Bio-Rad, UK) 

Centrifuges: AccuSpin
TM

 Micro R (Fisher Scientific, UK), Beckman Coulter Avanti
TM 

J-20 XP and 

Allegra
TM

 25R (Beckman Coulter Inc., UK)   

GeneAmp
® 

PCR System 9700 (Applied Biosystems, UK)
  

Jenway Genova Spectrophotometer (Bibby Scientific, UK) 

Uvitec CCD Camera (Uvitec, UK) 

 

2.2.1.2 Media and stock solution 

2.2.1.2.1 Luria-Bertani (LB) broth 

10 g of LB powder was dissolved in 500 ml distilled H2O. 10 g agar granules were added if making 

up agar plates. The solution was sterilised by autoclaving at 121°C for 20 min and was allowed to 

cool to room temperature. LB broth was stored at room temperature while agar plates were stored at 

4°C. 
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2.2.1.2.2 BMGY (Buffered glycerol-complex medium) 

10 g yeast extract and 20 g peptone were dissolved in 700 ml dH2O. It was autoclaved at 121°C for 20 

min and allowed to cool to room temperature. 100 ml 1 M potassium phosphate pH 6.0, 100 ml 10x 

yeast nitrogen base (YNB), 2 ml 500x biotin and 100 ml 10x glycerol (all sterile; see below) were 

added to make a final volume of 1 L. The media was stored at 4°C for at most 2 months. 

2.2.1.2.3 BMMY (Buffered methanol-complex medium) 

10 g yeast extract and 20 g peptone were dissolved in 700 ml dH2O. It was autoclaved at 121°C for 20 

min and allowed to cool to room temperature. 100 ml 1 M potassium phosphate pH 6.0, 100 ml 10x 

YNB, 2 ml 500x biotin and 100 ml 10x methanol were added to make a final volume of 1 L. The 

media was stored at 4°C for at most 2 months. 

2.2.1.2.4 YPD (Yeast peptone dextrose)  

10 g yeast extract and 20 g peptone were dissolved in 900 ml dH2O. 20 g of agar granules were added 

if making agar YPD agar plates. This was autoclaved and 100 ml of sterile 10x glucose (dextrose) 

added after cooling. The media was stored at 4°C.  

2.2.1.2.5 YPDS (Yeast peptone dextrose with sorbitol) Geneticin
®
/Zeocin

 
plates 

10 g yeast extract, 20 g peptone and 182 g sorbitol were dissolved in 900 ml dH2O. 20 g agar granules 

were then added and the solution made sterile by autoclaving. It was allowed to cool to around 55°C 

with constant gentle stirring after which 100 ml 10x glucose was added. Appropriate amount of 

Geneticin or Zeocin was added to give the desired final antibiotic concentration. The solution was 

poured into sterile 10 cm polystyrene petri dish to about two-third of dish volume and allowed to 

solidify. The plates were stored at 4°C.  
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2.2.1.2.6 10x Yeast nitrogen base (YNB) 

134 g of yeast nitrogen base (with ammonium sulphate and without amino acids) was dissolved in 

ddH2O to a total volume of 1 L. Solution was heated slightly to allow YNB dissolve. This was filter-

sterilised and stored at 4°C.   

2.2.1.2.7 500x Biotin (0.02%) 

20 mg biotin was dissolved in 100 ml dH2O and filter-sterilized and was stored at 4°C. 

2.2.1.2.8 10x Glucose (20%) 

200 g D-glucose was dissolved in 1 L ddH2O and was autoclaved at 121°C for 20 min. This was 

stored at 4°C after cooling to room temperature. 

2.2.1.2.9 10x Methanol (5%) 

5 ml absolute methanol was mixed with 95 ml ddH2O and was filter-sterilized. This was stored at 4°C 

for no later than 6 weeks. 

2.2.1.2.10 10x Glycerol (10%) 

100 ml of glycerol was mixed 900 ml ddH2O. The solution was filter-sterilized and stored at room 

temperature. 

2.2.1.2.11 1M Potassium phosphate buffer, pH 6.0  

132 ml 1 M K2HPO4 was mixed with 868 ml 1 M KH2PO4 and the pH adjusted to 6.0 with phosphoric 

acid. The buffer was sterilized by autoclaving and stored at room temperature. To make 1 M K2HPO4, 

174.2 g of this salt was dissolved in ddH2O to a total volume of 1 L. 1 M KH2PO4 was made by 

dissolving the salt in ddH2O to 1 L total volume. 
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2.2.1.2.12 1x Tris-buffered saline with Tween 20 (TBST) pH 7.4 

10 ml 1 M Tris base pH 7.3 was mixed with 40 ml 2.5 M NaCl and the volume made up to 1 L. 1-2 

ml Tween-20 was then added and mixed thoroughly. The solution was stored at room temperature. To 

make 1 M Tris base stock solution, 121.1 g Tris base was dissolved in 700 ml ddH2O and pH adjusted 

to 7.3 with concentrated HCl. The volume was made up to 1 L. 2.5 M NaCl was made by dissolving 

146.1 g of NaCl in 1 L ddH2O. These were stored at room temperature. 

 

2.2.1.3 Reagents 

2.2.1.3.1 Restriction enzymes4 

The restriction enzymes (restriction endonucleases) used in this project were BamHI, SpeI and PmeI 

(New England BioLabs UK Ltd). Reaction conditions were set up as recommended by the 

manufacturer. Details of these enzymes can be sought from supplier’s website 

(http://www.neb.uk.com/tools/index.aspx?req=enzymefinder).  

2.2.1.3.2 Ligation enzyme 

T4 DNA ligase, an enzyme which catalyses the formation of a phosphodiester bond between DNA 

strands, was employed to ligate digested plasmid vectors and PCR products. It was used according to 

supplier’s instructions. It was purchased from New England BioLabs UK Ltd. 

2.2.1.3.3 SDS polyacrylamide gels 

The resolving gels used included 10%, 12% and 15% gels and are appropriately indicated where used. 

The stacking gel was usually 4%. The composition of these gels is presented in Table 2.1. 

 

 

 

http://www.neb.uk.com/tools/index.aspx?req=enzymefinder
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Table 2.1: Composition of the polyacrylamide gels used in this project. 

 

Reagents 

Volume per gel (ml) 

Stacking gel Resolving gel 

4% 10% 12% 15% 

Polyacrylamide 30% 0.3 1.9 2.3 2.9 

ddH2O 1.5 2.2 1.8 1.2 

1.5M Tris pH 8.8 - 1.5 1.5 1.5 

1M Tris pH 6.8 0.6 - - - 

10% SDS 0.02 0.06 0.06 0.06 

10% Ammonium persulfate (APS) 0.01 0.02 0.02 0.02 

TEMED 0.0025 0.0045 0.0045 0.0045 

 

2.2.1.3.4 Antibiotics 

Antibiotics were added to agar plates and media for selectivity in the growth of transformed cells. The 

vectors contain sequences that confer antibiotic resistance on transformed cells (i.e. cells that have 

taken up the plasmid DNA). 

Ampicillin: 500 mg ampicillin was dissolved in 10 ml sterile distilled water to give a 50 mg/ml stock 

and was stored as 1 ml aliquots in Eppendorf tubes at -20°C. 

Kanamycin: Kanamycin was purchased as a 50 mg/ml solution from Sigma-Aldrich, UK (catalogue 

No: K0254). It was stored at 4°C. 

Geneticin (G418): 250 mg G418 was dissolved in 5 ml distilled water to give a 50 mg/ml working 

stock. This was filter-sterilised using a microfilter. This was prepared freshly when required.  

Zeocin: 500 mg zeocin was dissolved in 10 ml sterile distilled water to give a 50 mg/ml stock and was 

stored as 1 ml aliquots at -20°C. The tubes were wrapped with foil to avoid light as zeocin is light-

sensitive. 
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2.2.1.3.5 Antibodies 

The antibodies were employed in Western blot to probe the 10x His tag on the eCLR and eRAMPs. 

The primary antibody used is the albumin-free 6x His Monoclonal antibody (Clontech, UK. Cat No: 

631212) and the secondary antibody is Goat Anti-mouse IgG (Fab Specific) peroxidase conjugate 

(Sigma-Aldrich, UK. Cat No: A3682).  

2.2.1.3.6 DNA and Protein markers 

The DNA marker used for all agarose electrophoresis was the 1 Kb Plus DNA Ladder (100bp – 12Kb) 

(Life Technologies, UK. Cat. No: 10787-018). The protein markers were PageRuler™ Prestained 

Protein Ladder (10-170 kDa) (Fermentas, UK. Cat. No: SM0671) and ProtoMetrics - Recombinant 

Protein Markers (10-225 kDa) (Geneflow, UK. Cat. No: L1-0100). The latter of the protein markers 

was detectable on Western blot.  

 

2.2.2 Methods 

2.2.2.1 Molecular biology 

2.2.2.1.1 CLR and RAMPs gene amplification by PCR 

The genes encoding the n-terminal extracellular domains of human CLR, RAMP1, RAMP2 and 

RAMP3, excluding the signal peptide, were amplified by polymerase chain reaction (PCR) using the 

GoTaq
®
 (Promega, UK). The forward and reverse primers (Table 2.2) were designed to incorporate 

the BamHI and SpeI restriction sites respectively into the constructs. 
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Table 2.2: Table showing the PCR primers. The BamHI and SpeI recognition sequence in the forward and 

reverse primers respectively are highlighted bold. 

CLR Forward: 5’ GGGGGGGATCCGAAT TAGAAGAGAGTCCT 3’ 

Reverse: 5’ GGGGGACTAGTTTACTCGTGGGTGTTAACATT 3’ 

RAMP1 Forward: 5’ CTGGATCCGCCTGCCAGGAGGCTAAC 3’ 

Reverse: 5’ CCACTAGTTTAGCTGCCGGGCGGGTCCCG 3’   

RAMP2 Forward: 5’ GGGGGGGATCCGAATTAGAAGAGAGAC  3’ 

Reverse: 5’ GGGGGACTAGTTTACTCGTGGGTGTTAATG 3’ 

RAMP3 Forward: 5’ GGGGGGGATCCGGCTGCAACGAGACAGGC 3’ 

Reverse: 5’ GGGGGACTAGTTTAGAACCTCGTCTGGGGGGT 3’ 

 

The reaction was set up in sterile PCR tubes on ice as follows: 

 10 μl 5x GoTaq polymerase buffer  

 1 μl forward primer (10 pmoles) 

 1 μl reverse primer (10 pmoles) 

 1 μl DNA template (100 ng) – not included in negative control  

 1 μl dNTPs (10 mM) 

 35 µl sterile dH2O 

 1 μl GoTaq polymerase   

Total reaction volume = 50 µl.  

The PCR programme was set up as follows:  

1. 95°C for 2 min  

2. 95°C for 30 sec  

3. 55°C for 30 sec             30 cycles 

4. 72°C for 2 min   

5. 72°C for 5 min  

6. 4°C until reaction tubes are collected. 
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The template genes, harboured in pcDNA3.1, were kindly provided by Dr James Barwell. The PCR 

products were analysed on 1% agarose gel with the TrackIt™ 1 Kb Plus DNA Ladder (Invitrogen 

UK). Gels were run at 85V for 1h 30mins.  

2.2.2.1.2 Cloning  

The amplified gene products were subcloned into a modified Pichia pastoris expression vector named 

pPICK9K_MepNet (Fig 2.2) from the Membrane Protein Consortium (kindly provided by Dr Sarah 

Routledge, Aston University). The amplified gene products and the vector were sequentially digested 

with the BamHI and SpeI restriction endonucleases, according to supplier’s instructions, generating 

sticky ends. The digested products were ligated with T4 DNA ligase for 16 hr at room temperature. 

The ligated products were transformed  with E. coli competent cells (described in section 2.2.2.1.4) 

followed by isolation of positive clones by selecting on Luria broth (LB) agar plates containing a 

50μg/ml final concentration of kanamycin. The clones were grown overnight at 37˚C with shaking at 

200 rpm. Plasmid isolation was performed using Plasmid Miniprep Kit (Sigma-Aldrich, UK). Isolated 

plasmids were sequenced using the α-Factor and 3’AOX1 sequencing primers to confirm insertion.  
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Fig 2.3: Vector map of the P. pastoris vector employed in this study. AOX1: alcohol oxidase 1. Courtesy of Dr 

Mohammed Jamshad (University of Birmingham).   

2.2.2.1.3 DNA sequencing 

The cloned genes were sequenced at the Functional Genomics laboratory, University of Birmingham. 

The primers used were the α-factor and 3’AOX1 sequencing primers. The sequencing reaction mix 

was set up according to the laboratory’s instruction.   

2.2.2.1.4 E. coli transformation 

E. coli cells to be transformed were brought out of the -80ºC freezer and allowed to thaw on ice. 

Sterile 1.5 ml eppendorf tubes and pipette tips to be used were pre-chilled in a -20ºC freezer. While 

placed on ice, 40 µl of the E. coli cells was aliquoted into each tube, each for individual construct 

plasmid. 1-5 µg of the plasmid to be transformed was added to the respective labelled tube and 

allowed to incubate on ice for 30 min. The reaction mix was heat-shocked by incubating it at 42°C for 

exactly 45 sec. The cells were immediately transferred back on ice to recover for 2 min after which 

0.5 ml LB was added and the cells incubated at 37°C for 1 h. A 150 µl aliquot of the cells were plated 

on an antibiotic (kanamycin or ampicillin)-treated LB plate and incubated at 37°C for 12 to 16 h. 
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Depending on the purpose of the transformation, colonies were picked and grown in a 1-2 ml 

(miniprep) or 200-250 ml (maxiprep) LB culture overnight. 

2.2.2.1.5 Miniprep and Maxiprep 

Overnight cultures from earlier described were harvested for extraction of plasmid DNA by minipep 

or maxiprep as required. The miniprep and maxiprep were perfomed using GenElute™ Plasmid 

Miniprep Kit (Sigma-Aldrich, UK) and Marligen PowerPrep™ HP Plasmid Purification Kit (Insight 

Biotechnology Limited, UK) respectively according to manufacturer’s instruction. While the miniprep 

is performed to extract plasmid DNA of up to 15 µg, the maxiprep is carried out to yield a desired 

amount of up to 500 µg plasmid DNA. Final elutions for miniprep extractions were done with 30 µl of 

sterile distilled H2O. Dilution of DNA pellets form maxiprep extraction was done with varying 

volume of sterile distilled H2O depending on the desired concentration.  

2.2.2.2 Making P. pastoris competent cells 

1 µl of stock P. pastoris (X33 or SMD1163) cells was streaked on a YPD plate and incubated at 30°C 

until colonies were seen. 5 ml of YPD was inoculated with a colony from the plate and grown 

overnight at 37°C with shaking at 200 rpm. The overnight culture was diluted to an OD600 of 0.15 – 

0.20 in 50 ml YPD in a 250-ml shake flask. The cells were grown at 30°C with shaking at 200 rpm to 

an OD600 of 1.0 – 1.2. The culture was centrifuged at 5000 rpm for 5 min and the supernatant taken 

off. The pellet was re-suspended in 9 ml BEDS solution (10 mM bicine-NaOH pH 8.3, 5% v/v 

dimethyl sulphoxide (DMSO), 3% v/v ethylene glycol and 1M sorbitol) supplemented with 1 ml 0.1 

M dithiothreitol (DTT) and was incubated for 5 min at 30°C with shaking at 100 rpm. The culture was 

again centrifuged at 5000 rpm for 5 min at room temperature and re-suspended in 250 µl of BEDS 

solution without DTT. Aliquots of 40 µl were transferred to cell storage vials and stored at -80°C for 

up to 6 months. 
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2.2.2.3 P. pastoris transformation 

Isolated individual plasmids containing the genes for the ectodomains of the CLR, RAMPs 1, 2 and 

3further referred to in this report as eCLR, eRAMP1, eRAMP2 and eRAMP3 respectively) were 

linearized with PmeI restriction endonuclease at 37˚C for 16hrs to ensure maximum linearization. The 

linearized plasmids were analysed on 0.8% agarose gel to confirm linearization. This was followed by 

transformation with P. pastoris wild type (X33) or protease-deficient (SMD1163) host strain by 

electroporation (at 1800v) using an electroporation device according to manufacturer’s instruction. 

The cells were quickly revived with 500μl of ice cold 1M sorbitol and 500μl ice cold YPD (1% yeast 

extract, 2% peptone, 2% dextrose) and the cell pellets were resuspended. The resuspended cells 

representing each construct were spread on YPDS (1% yeast extract, 2% peptone, 2% dextrose, 2% 

agar, 1M sorbitol) plates with varying final concentrations of G418 (0, 0.1, 0.5, 1.0 and 2.0 mg/ml) 

and incubated at 30˚C for 96 hr with the plates checked after every 24hrs. After the 96-hr incubation 

period, a few colonies from the 1.0mg/ml G418 plates were restreaked on fresh 0.1 and 0.5mg/ml 

G418 plates and incubated to obtain bigger, more resistant colonies. 

2.2.2.4 Gene expression 

2.2.2.4.1 24-well plate (screening) format 

This was performed to check for protein-producing clones. Selected clones form the G418-YPDS 

plates were cultured in BMGY (1% yeast extract, 2% peptone, 1.34% yeast nitrogen base without 

amino acids, 0.4μg/ml biotin, 1% glycerol, 0.1 M potassium-phosphate buffer pH 6) at 30˚C for 24hrs 

with shaking at 250 rpm. 3 ml aliquots of BMMY (same as BMGY with 5% methanol replacing 

glycerol) medium in a 24-well plate were inoculated with the 24-hr cultures to a starting OD600 of 1. 

This was incubated at 30˚C, 250 rpm. The AOX1 promoter was induced 24hrs after inoculation by the 

addition of methanol (1% final concentration) to each culture well. Prior to induction, a 100 μl aliquot 

was collected from each well and centrifuged at 10,000g for 10mins. The pellets and supernatants 

were separated and both stored at -80˚C for SDS PAGE and Western blot analyses. A 100 µl aliquot 
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of cells were harvested from each culture well 24 and 48 hr post-induction. Harvested cells were 

cooled on ice and stored at -80˚C for further analyses.    

2.2.2.4.2 Shake flask method 

Here, the actual protein production was carried out in contrast to the 24-well expression format which 

was specifically performed to determine expressing clones. The clones found to best express the 

proteins of interest were cultured in 25 ml BMGY in a 250 ml shake flask for 24 hr to grow a 

biomass. All incubations were performed at 30ºC and 250 rpm. The 25 ml cell culture was harvested 

by centrifuging at 5000g and the supernatant discarded. The cell pellets were resuspended in 100 ml 

BMMY in a 500 ml shake flask and incubated for 72 hr. Inductions (addition of 5% methanol to a 1% 

final concentration) were carried out 24 and 48 hr post-inoculation. The cells were then harvested 24 

hr after the second induction by centrifuging at 5000 rpm for 25 min at 4°C in a sterile 50 ml falcon 

tube. The supernatant were analysed for the presence of desired proteins by Western blot before 

purification. 

2.2.2.5 Protein identification 

2.2.2.5.1 SDS PAGE 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) lower (or resolving) and 

upper (or stacking) gels were prepared as shown in Table 2.1. Each gel was set using a 10-well comb 

and the number of gels prepared was dependent on the number of samples to be analysed at the time 

of experiment. Samples to be analysed were treated with 1x sample loading buffer (50 mM Tris-HCl 

pH 6.8, 2% SDS, 10% glycerol, 1% β-mercaptoethanol and 0.02% bromophenol blue) and incubated 

at 85 - 90ºC for 5 – 10 min. 5 - 20 µl of protein samples were loaded onto each well depending on the 

concentration of the protein. The gel plates were set up in an electrophoretic tank, samples loaded in 

the presence of 1x running buffer (3.03g Tris, 18.8g glycine and 1g SDS in 1L ddH2O) and run at 200 

volts for 1 hr using the Bio-Rad Power Pac 1000 or Power Pac 300 as power source. The gels were 

collected and prepared for silver staining or western blotting. 
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2.2.2.5.2 Silver staining 

Silver staining was performed using the SilverQuest™ Silver Staining Kit (Life Technologies, UK) 

according to manufacturer’s instruction. 

2.2.2.5.3 Western blot 

The gel from SDS-PAGE was placed in the transfer buffer (3.03g Tris, 14.4g glycine and 200 ml 

methanol in 1L ddH2O). For each gel, four filter papers and one Whatman nitrocellulose paper were 

cut to rectangles approximately 10 x 7 cm and 9 x 6 cm in sizes respectively. These papers were 

placed in the transfer buffer to equilibrate for 15 – 20 min. The transfer sandwich was set up in the 

following order in the direction of transfer from cathode to anode:  

o fibre pad 

o two chromatography (filter) papers 

o the SDS PAGE gel 

o nitrocellulose transfer membrane 

o another two chromatography (filter) papers, and 

o the fibre pad. 

The set-up was performed carefully in a bowl containing transfer buffer to avoid air bubbles. The 

cassette was then closed and fixed into the transfer cell alongside an ice cooling unit and the transfer 

buffer (25 mM Tris, 192 mM glycine, 20% methanol) introduced to fill the cell. Transfer was 

conducted at 150 volts for 45 min. 

After the transfer, the nitrocellulose membrane, which now contained the protein, was blocked with 

5% Marvel dried skimmed milk in TBST (1 M Tris pH 7.3, 2.5 M NaCl, 0.1-0.2% Tween-20) for 1 hr 

at room temperature or for 24 hrs at 4 °C. This is to prevent unspecific interaction between the 

membrane and the antibody used for the detection of the protein. The blocking solution was then 

replaced by a solution of primary antibody in 5% milk/TBS (1:5000) and was incubated for 1 hr at 

room temperature with gentle shaking. This antibody, in principle, binds to the “unblocked” protein of 
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target and could then be probed by a secondary antibody (from same animal origin), which is in turn 

detected by chemiluminescence. The membrane was washed with TBST for 5 min thrice to remove 

unbound primary antibody and was treated with a solution of secondary antibody in 5% milk/TBS 

(1:5000) for 1 hr at room temperature with gentle shaking. The membrane was washed again, thrice 

for 5 min each with TBST. Protein was detected using EZ-ECL™ chemiluminescence solution 

(Geneflow, UK. Cat. No: 20-500-120) according to manufacturer’s instruction.  

2.2.2.6 Purification 

The receptor proteins were aimed to be purified by selectively targeting the N-terminal 10x His tag on 

the proteins. Ni-NTA agarose resin was used. 2 ml of 25% Ni-NTA agarose resin was added to 30 ml 

supernatant and incubated at 4°C for 1 hr or overnight with constant gentle shaking. The mixture was 

loaded unto 5 ml Qiagen gravity flow column. The resin was allowed to settle after which the column 

bottom cap was removed to allow flow under gravity. The column was washed at least twice with 4 

ml wash buffer (50 mM NaH2PO4, 300 mM NaCl and 20 mM imidazole, pH 8) and the protein eluted 

thrice with 4 ml elution buffer (50 mM NaH2PO4, 300 mM NaCl and 250 mM imidazole, pH 8). All 

fractions were collected on ice. 50 µl aliquots were collected from each fraction for silver stain and 

Western bot analyses. The collected fractions were stored at 4°C. 

2.2.2.7 Protein quantification 

Protein concentration was determined using 1 mg/ml BSA as standard in a flat bottom 96 well plate. 

A standard curve was generated by plating BSA standard in triplicate wells at concentrations of 0.0.2, 

0.4, 0.6, 0.8 and 1.0 mg/ml in a 10 µl total volume with PBS [8.0 g/l sodium chloride, 0.2 g/l 

potassium chloride, 1.15 g/l di-sodium hydrogen phosphate (Na2HPO4), 0.2 g/l potassium dihydorgen 

orthophosphate (Fisher Scientific, UK)]. Samples were diluted 20- and 40-fold to a total volume of 10 

µl and were plated in triplicate. 200 µl BCA reagent (50:1 (v/v) mixture of BCA solution and 4% 

(w/v) copper II sulphate solution) was added to all triplicate wells of standards and samples. The plate 

was incubated at 37°C for 30 min and the absorbance values measured at 570 nm using a Biotel 

EL800 microplate reader. A typical standard curve generated is shown in Fig 2.3. 
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Fig 2.4: A representation of the BSA standard curve. Graph of BSA concentration against absorbance at 570 

nm.  

2.2.2.8 Protein dialysis 

The purified receptor protein was dialysed into dialysis buffer (50 mM sodium phosphate and 150 

mM NaCl, pH 7.4). Dialysis membrane was cut to a length enough to accommodate sample volume. 

It was folded twice and clipped tightly at one end and the protein sample introduced. The other end 

was then folded and clipped tightly allowing a little free space within the membrane. The membrane 

end to be folded was briefly dipped in the buffer to soften it for easy folding. The membrane was put in a 

beaker with one end taped to the beam of the beaker and the dialysis buffer was poured in to cover all 

part of membrane containing the sample. The dialysis system was first incubated for 4 hrs at room 

temperature with the dialysis buffer replaced after every two hrs. After the second buffer replacement, 

the system was left to incubate for 24hrs at 4ºC. The buffer was gently stirred using a magnetic stirrer 

during the entire incubation period with enough space allowed between the clip and magnetic stirrer 

to avoid any contact as this could cause high agitation which might rupture the membrane. The 

dialysed sample was concentrated using vivaspin 20 (Sartorius Ltd, UK. Cat. No: VS2011), quantified 

and stored at 4 °C. 

y = 0.441x + 0.0908 
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2.2.2.9 Gel filtration 

This was performed to analyse the homogeneity of the eCLR and eRAMP3 protein samples. The 

Superdex
TM

 200 column was used while connected to an ÄKTA purifier. The column was washed 

with 2x column volumes dH2O which has been filter-sterilized and degassed (dissolved air removed) 

using Millipore
®
 Stericup

TM 
vacuum filter units and a vacuum pump. The column was equilibrated 

with 1.5 column volumes of 50 mM sodium phosphate buffer pH 7.5 containing 150 mM NaCl (filter-

sterilized and degassed). 0.5 ml of protein sample (0.08 – 1.2 mg/ml concentration range) was injected 

into the purification system and the phosphate buffer run through at 0.5 ml per min to elute the 

protein. 2 ml elution fractions were collected. The elution profile was determined by plotting the 

elution volume against UV absorbance (mAU). The fractions were analysed on SDS PAGE an 

detected by silver staining. 

2.2.2.10   Deglycosylation of proteins 

Removal of high mannose N-glycans from CLR and RAMP receptor protein samples was performed 

using Endoglycosidase H (Endo H; New England Biolabs, UK. Cat No: P0702S). Following dialysis 

and concentration of protein samples as earlier described above, 10 µg of protein sample was 

denatured by adding 1 x Glycoprotein denaturing buffer (0.5% SDS, 40 mM DTT) and incubating at 

100°C for 10mins. 1 x G5 reaction buffer (50 mM sodium citrate pH 5.5 at 25°C) was added and 2 µl 

Endo H then introduced into the reaction mix. The reaction was incubated for 1 h at 37°C. The 

enzyme was heat-inactivated at 75°C for 10 min. The reaction products were analysed by SDS-PAGE. 
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2.3 Biophysical characterization 

2.3.1 Materials 

2.3.1.1 Equipment 

Jasco J-715 Spectropolarimeter (School of Biosciences, University of Birmingham) 

Beckman Optima
TM

 XL-I Analytical Ultracentrifuge (School of Biosciences, University of 

Birmingham) 

Reichert SR7000DC Dual Channel SPR Instrument (ARCHA Advanced Research Facility Unit, 

Aston University) 

 

2.3.2 Methods 

2.3.2.1 Circular dichroism (CD) 

CLR and RAMPs samples that have been dialysed and concentrated were diluted to within 0.5 – 0.7 

mg/ml with 50 mM sodium phosphate buffer pH 8.0. The CD spectra were read using the Jasco J715 

spectropolarimeter with the parameters set as follow; 

 Semsitivity -   100 mdeg 

 Data pitch -  0.5nm 

 Scanning mode - continuous 

 Response -  1 sec 

 Band width -  2.0 nm 

 No of scans -  8 

1mm cuvvettes (Starna/Optiglass , Hainault, U.K.) were used and the spectra were recorded form 260 

nm to 180 nm. The CD spctra were then buffered corrected against 50 mM sodium phosphate buffer 

pH 8.0. The spectra were truncated at low wavelength where the high voltage of the detector indicated 
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no linear correlation between the signal and protein concnettration. The data were platted using 

Microsoft Excel spreadsheet.  

2.3.2.2 Analytical ultracentrifugation (AUC) 

The samples to be used for AUC were diluted to an OD at 280 nm of 0.3 – 0.5. The analysis was 

carried out using the Beckman Optima
TM

 XL-I Analytical Ultracentrifuge at the University of 

Birmingham (Birmingham, UK). The equipment was allowed to cool to 4ºC. The cells were carefully 

loaded with 500µl of protein sample and one was loaded with an equal volume of 50 mM sodium 

phosphate buffer as referenc. The cells were weighted to ensure their weights were virtually the same. 

The cells were loaded on to the ultacentrifuge and the samples were run overnight at maximum speed. 

The wavelength range was between 220 and 310 nm. The flow rate was set 2ml/min. The data were 

analysed using the Sedfit and Sednterp analytical programmes with the help of Mrs Rosemary 

Parslow (University of Birmingham).     

2.3.2.3 CLR/RAMP interaction by SPR 

CLR/RAMP interaction was investigated by surface plasmon resonance (SPR), using the SR7000DC 

Dual Channel Surface Plasmon Resonance System. Prior to the experiment, C-terminally biotinylated 

CLR (to be immobilized) was dialysed onto 10 mM Sodium acetate buffer (pH 5.2) and was 

concentrated to 0.1-0.2 mg/ml (~1 ml final volume) using the Vivaspin column. RAMP1, 2 and 3 (the 

analytes) were diluted into HBS running buffer (10mM Hepes pH 7.4, 150 mM NaCl, 0.005% Tween 

20). All buffers were filtered through 0.2 µm filters and degassed by filtering under vacuum. Samples 

were degassed using a syringe and parafilm. These were done at room temperature. CLR was 

immobilised onto Streptavidin/NeutrAvidin sensorchip (Reichert Technologies, USA) resulting in 

around 300 response units (RU). 100 µl of a RAMP was injected for ~4mins. Experiments were 

performed at 25°C and at a flow rate of 20 µl/min. The binding profiles of these proteins were 

monitored on a sensogram. 
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Chapter 3: Identification of residues within the CLR N-terminus required for CGRP receptor 

signalling 

3.1. Introduction  

A review of various models proposed for the binding of peptide and non-peptide ligands to the class B 

GPCRs has indicated the importance of the N-terminus in these interactions (Hoare, 2005; Parthier et 

al., 2009). The C-terminal region of αCGRP has been reported to interact with the amino terminal 

domain of the CLR (Koller et al., 2002; Banerjee et al., 2006), further emphasizing the role of this 

domain in the receptor activation and signalling. More evidence is drawn from Barwell et al (2010) 

where important sites of ligand interaction were identified at the extreme N-terminus (residues 23 – 

60) of CLR. In order to further investigate the roles played by some other residues within this 

pharmacologically significant N-terminal region, a number of residues were selected based on the 

crystal structure released by ter Haar et al (2010). According to the structure, these residues were 

situated around and/or pointing towards the putative binding pocket for the receptor ligand and could 

possibly be involved in αCGRP binding. The final list of residues (see Fig 3.1) was also aided by the 

availability of the crystal structures of some family B GPCR N-terminal domains with bound 

endogenous ligands. These N-terminal ECD structures included those of GIPR (Parthier et al., 2007), 

PTH1R (Pioszak and Xu, 2008), GLP-1R (Runge et al., 2008) and CRFR1 (Pioszak et al., 2008). The 

selected residues are shown in Fig 3.1 and 3.2. 

So far, there has been a great deal of consistency in the general structural architecture of the deposited 

crystal structures of the ECD for family B GPCRs (see Chapter 1). Most of these receptor ECDs, 

excluding the CGRP and AM receptors, are bound to endogenous ligands in their deposited structures. 

Despite their particular common fold, there is inconsistency in the way they bind their endogenous 

ligands (Miller et al., 2012). This probably explains the basis of their ligand specificity, hence a 

reason to study individual receptor for their specific ligand binding and activation mechanism. 
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Fig 3.1: Representation of residues investigated in this chapter. (a) Schematic representation of CLR showing 

the amino acid sequence of the N-terminus. The residues investigated in this chapter are coloured yellow. The 

WDG motif is underlined. NB:  only the N-terminus amino acid sequence is shown for the purpose of this 

figure. Amino acid sequence of the full receptor is shown in chapter 1. (b) Crystal structures of the N-terminal 

ECD of CLR showing selected residues investigated in this study for CLR-CGRP interaction. (i) Residues 

Trp(W)69, Tyr(Y)91, Phe(F)92, Lys(K)103, Arg(R)119 and Tyr(Y)124. (ii) Residues Asp(D)70, Trp(W)72, 

Asp(D)90 and Phe(F)95 

i ii 

a 

b 
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Although the work of ter Haar and co-workers (2010) has provided a better understanding of the 

mechanism of CGRP receptor activation, a good number of questions are still left unanswered. The 

association of the receptor ECD with the antagonists in this structure cannot be considered a clear 

representation of the receptor conformation when bound to its endogenous ligands. Moreover, it does 

not serve as a tool to affirmatively define important residues required for the receptor pharmacology. 

Also, this particular structure is devoid of the TM and associated EC loops, which are required to bind 

the N-terminus of the ligand (see chapter 1 and Wheatley et al., 2011) and  have been shown to be 

important for receptor activation (see Barwell et al., 2013). So it is not known what influence this 

region has on specific residue interactions of the ligand with receptor N-terminus, even though the 

CGRP receptor ECD, like other family B GPCRs, is capable of binding its endogenous ligand without 

the TM domain, albeit with lower affinity when compared to the full receptor (Koth et al., 2010). The 

screening of the selected residues by alanine scan in this chapter was therefore designed to provide 

answers to some of these questions.       

The residues selected (in Fig 3.2) were mutated to alanine and the effect of the mutation on receptor 

function analysed by assessing cAMP production, cell surface expression and αCGRP-induced 

receptor internalization. 

Overall, the aim was to select and investigate putative residues within/around the ligand-binding cleft 

of the CLR (in the CGRP receptor ECD complex) required for CGRP binding. This would be useful 

in predicting the binding pattern of CGRP to its receptor. Also, this would help to better understand 

the receptor activation mechanism, and could be a useful tool in developing drug candidates targeted 

at this receptor. The results obtained are presented and discussed in this chapter.  

 

3.2 Method 

The general methods employed in this chapter are as described in Chapter 2. The method employed 

specifically in this chapter and not described under the general methods, in this case in silico 

mutagenesis, is however described below.  
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3.2.1 In silico alanine mutagenesis 

Residues investigated in this chapter were also mutated to alanine in silico to check of the effect (of 

mutation) on CLR stability and CLR/RAMP1 interaction using the protein design program FoldX 

(Van Durme et al., 2011) as a plug in for the YASARA (Yet Another Scientific Artificial Reality 

Application) molecular visualization programme (Krieger et al., 2002). Briefly, FoldX is a computer 

algorithm primarily developed to evaluate the effect of mutations on the interactions contributing to 

the stability of proteins and protein complexes (Guerois et al.,  2002). This has now been modified for 

easier usability as a plug in for YASARA and estimates free energy difference between the WT and 

mutated protein (ΔΔG) and the change in interaction energy where the protein interacts with another 

in a complex, both in kcal/mol, (Van Durme et al., 2011). The FoldX and YASARA (view) are both 

available for free download for non-commercial use (see Van Durme et al., 2011). FoldX uses the 

following equation to calculate free energy in kcal/mol; 

ΔG =   q(ΔGvdw) + r(ΔGsolvH) + s(ΔGsolvP) + t(ΔGwb) + u(ΔGhbond) + v(ΔGel) + w(ΔGkon) + 

x(TΔSmc) + y(TΔSsc) + z(ΔGclash) 

where ΔGvdw is total van der Waals forces from all atoms. GsolvH and GsolvP are respectively the 

difference in energy of solvation for non-polar and polar groups, when moving from unfolded to 

folded state. Gwb is the extra stabilising free energy obtained from a water molecule that makes more 

than one H-bond with protein. Ghbond is the difference in free energy of formation of H-bonds. Gel is 

the electrostatic contribution from interaction between charged groups while Gkon is the additional 

electrostatic contribution from interactions between atoms of different polypeptide chains. Smc and Ssc 

are the entropy costs of fixing the backbone and a side chain respectively in a particular conformation. 

Gclash is the steric overlaps between atoms in the structure. T is temperature and q - z represent relative 

weights of the different energy terms used in the calculation (Schymkowitz et al., 2005; Guerois et 

al., 2002). While a positive ΔG value implies disruption to structure stability or interaction between 

structures, a negative value implies the opposite.   

The analysis was conducted using the crystal structure of the CGRP receptor (CLR/RAMP1) 

ectodomain complex in PDB (PDB code: 3N7S) as template. Residues were analysed one at a time. 
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Each residue to be mutated was selected and the ‘mutate residue’ command selected under the FoldX 

drop down menu. All boxes in the subsequent checkbox menu were checked to enable repair of 

template structure (i.e. ‘RepairPDB’ function, which energetically optimizes the PDB structure by 

eliminating small van der Waals clashes), calculate stability change and interaction energy change 

after which Ala was selected for the residue options menu as the desired substitution residue. Analysis 

parameter were as follows; temperature = 298K, pH = 7.0, ionic strength = 50 mM, van der Waals 

design = 2 and number of runs = 3. These are the default settings of the programme. 

A difference in free energy (ΔΔG) value of around ±0.8 kcal/mol is often considered FoldX error and 

thus insignificant while the threshold value above which difference in free energy values are 

considered significant is around ±1.6 kcal/mol (Guerois et al., 2002; Alibes et al., 2010). In this 

current analysis therefore, average ΔΔG values obtained from the 3 runs that are ≥ 2 kcal/mol or ≤ -2 

kcal/mol are considered as potentially important while values between -2 and 2 (exclusive) are 

considered insignificant. 

 

3.3 Results  

3.3.1 Stimulation of cAMP production  

Each mutant residue was assayed for level of cAMP production in comparison to the wild type. The 

resulting data were fitted with sigmoidal dose-response curves and pEC50 values generated (Table 3.1; 

Figs 3.2, 3.3 and 3.4). W69A, D70A and D94A produced no measurable cAMP response even at 

100nM αCGRP. The dose-response cAMP data generated did not fit into a sigmoidal dose-response 

curve like the WT, but instead produced a straight line (Fig 3.2) similar to that obtained for the mock 

receptor (i.e. HA-pcDNA3.1-/mycRAMP1; Fig 2.1). Due to the unmeasurable response observed for 

these mutants, the basal activity and maximum response were therefore undeterminable. 
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Table 3.1: Mean pEC50 of WT and mutant receptors including percentage fold difference between WT and 

mutants. Values are presented as mean ± SEM. * and ** represent p < 0.05 and p < 0.01 respectively. WT and 

mutant values were compared using unpaired t-test (two-tailed). Hyphen (-) indicates no measurable response. N 

= no of independent experiments 

Mutant pEC50 WT pEC50 Mutant 

Fold decrease in αCGRP 

potency 

N 

W69A 9.44 ± 0.18 - - 7 

D70A 9.55 ± 0.18 - - 7 

W72A 9.93 ± 0.19 8.29 ± 0.29* 44 fold 6 

D90A 10.01 ± 0.04 9.59 ± 0.70* 3 fold 4 

Y91A 9.94 ± 0.09 8.30 ± 0.17* 44 fold 4 

F92A 9.88 ± 0.10 8.28 ± 0.07** 40 fold 5 

D94A 9.80 ± 0.10 - - 5 

F95A 9.86 ± 0.17 7.59 ± 0.29* 186 fold 5 

K103A 9.91 ± 0.14 8.11 ± 0.19* 63 fold 4 

R119A 9.91 ± 0.14 8.16 ± 0.20* 56 fold 4 

Y124A 9.76 ± 0.09 7.85 ± 0.09** 81 fold 5 
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Table 3.2: Mean Emax and basal activity values of WT and mutant receptors. Values are presented as mean ± 

SEM. * and ** represent p < 0.05 and p < 0.01 respectively. WT and mutant values were compared using one 

way ANOVA. Hyphen (-) indicates no measurable response. N = no of independent experiments 

Mutant Mean Emax (% WT) Mean basal activity (%WT) N 

W69A - - 7 

D70A - - 7 

W72A 76.55 ± 3.58** 1.76 ± 5.87 6 

D90A 116.20 ± 4.12 6.47 ± 3.10 4 

Y91A 101.80 ± 9.86 2.42 ± 1.88 4 

F92A 94.87 ± 9.16 0.03 ± 2.99 5 

D94A - - 5 

F95A 69.80 ± 8.56* 2.39 ± 6.40 5 

K103A 97.62 ± 11.10 1.12 ± 3.47 4 

R119A 95.01 ± 6.76 12.93 ± 8.24 4 

Y124A 79.62 ± 2.50* -2.69 ± 9.17 5 
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Fig 3.2: Representative dose-response curves of mutant receptors showing no measurable response to 100nM 

αCGRP. WT and mutant receptors were challenged with 100nM – 10pM αCGRP with a control assay point 

containing no αCGRP. Sigmoidal curves were fitted using GraphPad prism 4. Each curve is representative of 

one of at least three independent experiments that best represents the mean pEC50, Emax or basal activity values. 

Each point on the curve represents duplicate assay data with standard error bars. 

 

All other mutants showed significant decrease in αCGRP potency as a measure of their pEC50 values 

compared to WT. F95A showed the largest fold decrease (186 fold) in potency while the least fold 

decrease (3 fold) was observed for D90A. The pEC50 values, with fold difference when compared to 

WT, are summarized in Table 3.1 above. 
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W72A, F95A and Y124A showed significant decrease in maximum cAMP levels (Table 3.2 and Fig 

3.4), with the largest decrease (30%) observed for F95A. W72A and Y124A showed significant 24% 

and 20% decrease in mean Emax respectively (Table 3.2). No significant shift in mean basal activity 

was observed for any of the mutants. The mean maximum and minimum responses are presented as 

percentage of WT in Table 3.2 above.   
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Fig 3.3: Representative dose-response curve of mutant receptors that showed significant decrease in αCGRP 

potency compared to WT. WT and mutant receptors were challenged with 100nM – 10pM αCGRP with a 

control assay point containing no αCGRP. Sigmoidal curve was fitted using GraphPad prism 4. The curve is 

representative of one of at least three independent experiments that best represents the mean pEC50, Emax or 

basal activity values. Each point on the curve represents duplicate assay data with standard error bars. 
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Fig 3.4: Representative dose-response curves of the mutant receptors with significant decrease in both αCGRP 

potency and mean Emax compared to WT. WT and mutant receptors were challenged with 100nM – 10pM 

αCGRP with a control assay point containing no αCGRP. Sigmoidal curves were fitted using GraphPad prism 4. 

Each curve is representative of one of at least three independent experiments that best represents the mean 

pEC50, Emax or basal activity values. Each point on the curve represents duplicate assay data with standard error 

bars. 

 

3.3.2 Cell surface expression 

Cell surface expression of the mutant receptors as well as wild type was performed to determine the 

importance mutated residues in receptor cell surface expression. This was measured using cell-surface 
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ELISA. Resulting data were normalized and expressed as percentage of wild type (%WT) with the 

WT representing 100% cell surface expression. Reduction in cell surface expression was observed 

only for W69A (83.98 ± 6.06) and D70A (83.57 ± 5.07), both showing modest approximately 16% 

reduction. On the other hand, F95A (111.40 ± 2.30) caused a very subtle (11%) increase in cell 

surface expression. Y124A also resulted in a very mild increase in receptor cell surface expression as 

observed for F95A, although this was non-significant. Mutations to the other residues did not 

significantly affect cell surface expression. The cell surface expression data are graphically 

represented in Fig 3.5.    
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Fig 3.5: Cell surface expression of wild type and mutant receptors. The presence of the HA tag on WT and 

mutant receptors (HA-CLR/myc-RAMP1) was detected by ELISA. The negative control was HA-empty vector 

(pcDNA3.1-)/myc-RAMP1. Values were normalized and expressed as %WT. The WT and negative control 

represents 100% and 0% cell surface expression respectively. At least 3 independent experiments were 

performed and assay points were in triplicates or quadruplicates. Values were plotted on column graph using 

GraphPad prism 4 and each column represents mean ± SEM. Mutant cell surface expression were compared to 

100% using one way ANOVA. * represents p < 0.05.   

 

* 

* 

* 
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3.3.3 αCGRP-mediated receptor internalization 

The mutants were analysed for their influence on αCGRP-induced receptor internalization. The 

resulting values were compared to WT. The WT showed 75.98 ± 6.19% internalization. Of all 

mutants investigated, 9 significantly reduced receptor internalization by varying degrees. 5 of these 

mutants reduced receptor internalization by 50% or more and they included D94A (16.03 ± 4.79), 

R119A (19.16 ± 3.54%), Y124A (20.75 ± 5.25%), W69A (23.56 ± 5.66%) and Y91A (25.85 ± 

2.53%) representing approximately 60%, 57%, 55%, 52% and 50% reduction respectively when 

compared to the WT. Others reduced internalization by less than 50%. These included F95A (29.34 ± 

5.48%), F92A (40.45 ± 5.21%), W72A (49.40 ± 8.20%) and D70A (49.95 ± 8.55%) with 

approximately 47%, 36%, 27% and 26% reduction respectively in comparison to WT. 

Other mutants had no significant effect on αCGRP-mediated receptor internalization. The values 

obtained for the WT and all mutants are represented in Fig 3.6.   
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Fig 3.6: Graph of αCGRP-mediated receptor internalization of wild type and mutant receptors. The presence of 

the HA tag on WT and mutant receptors (HA-CLR/myc-RAMP1) was detected by ELISA following 1hr 

incubation with 100nM αCGRP. Cell surface expression for the αCGRP-treated mutant and WT receptors were 

expressed as percentage of the unstimulated WT receptor. % internalization was determined by subtracting the 

resulting values from 100. The WT and negative control represented 100% and 0% cell surface expression 

respectively. At least 3 independent experiments were performed and assay points were in triplicates or 

quadruplicates. Values were plotted on column graph using GraphPad prism 4 and each column represents mean 

± SEM. Mutant % internalization were compared to WT using Dunnett’s multiple comparison test .* and ** 

represent p < 0.05 and p < 0.01 respectively.   

 

3.3.4 Inhibition of 
125

I-hCGRP radioligand binding assay 

Radioligand binding assay was performed for WT and mutant receptors from membrane preparations 

as earlier described (see chapter 2) to test for the role of mutants in ligand binding. However, it was 

not possible to obtain three successful independent experimental data as at the time of compiling this 

report due to technical issues and time constraints. 

 

* 
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3.3.5  Summary of the N-terminal mutations 

All mutants tested in this chapter that showed significant influence on at least one of the parameters, 

i.e. ability to stimulate cAMP, cell surface expression and agonist-induced internalization, are 

presented in Table 3.3. 

Table 3.3: Summary of the criteria employed in probing the N-terminal mutant receptors. All values are 

approximate to the nearest whole number. NS = not significantly different to WT; NMR = no measurable 

response. 

 Mutant Fold shift in 

αCGRP 

potency 

Mean Emax 

(% WT) 

Cell surface  

expression 

(%WT) 

αCGRP-induced 

internalization 

(%WT) 

W69A NMR NMR 16% reduction 52% reduction 

D70A NMR NMR 16% reduction 26% reduction 

W72A 44 fold 

reduction 

24% reduction NS 27% reduction 

D90A 3 fold 

reduction 

NS NS NS 

Y91A 44 fold 

reduction 

NS NS 50% reduction 

F92A 40 fold 

reduction 

NS NS 36% reduction 

D94A NMR NMR NS 60% reduction 

F95A 186 fold 

reduction 

30% reduction 11% increase 36% reduction 

K103A 63 fold 

reduction 

NS NS NS 

R119A 56 fold 

reduction 

NS NS 57% reduction 

Y124A 81 fold 

reduction 

20% reduction NS 55% reduction 

 

 

The result summary shows that virtually all the selected mutants show very significant variation from 

WT in the receptor’s ability to stimulate cAMP and agonist-induced receptor internalization. It is 

interesting to note that some of these mutants (W69A, D70A and D94A) completely render the 
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receptor inactive at the maximum αCGRP dose tested. Of all mutants investigated, only W69A, D70A 

and F95A appeared to significantly influence all the parameters tested. 

Residues investigated here were also tested by in silico alanine mutagenesis to see the effect of 

mutations on both the stability of CLR and the interaction between CLR and RAMP1 in the CGRP 

receptor ectodomain complex; and more importantly, to compare these results to the ones earlier 

experimentally generated. The results are reported below.    

 

3.3.6 In silico alanine mutation of residues 

The average values for the difference in free energy of formation of the CLR structure (ΔΔGf), which 

represents its stability, and the difference in energy of interaction between CLR and RAMP1 (ΔΔGi) 

for the WT and mutant structures were recorded for the 3 runs (Table 3.4). From the result, D70A 

caused the most instability to the CLR structure with a ΔΔGf value of 6.02 kcal/mol while R119A 

showed the least, insignificant effect with ΔΔGf of -0.24 kcal/mol. Other mutants which markedly 

affected CLR structure stability, in decreasing order of their ΔΔGf values, are Y124A (5.47 kcal/mol), 

W69A (4.84 kcal/mol), Y91A (4.56 kcal/mol), F95A (3.68 kcal/mol), F92A (2.70 kcal/mol) and 

W72A (2.34 kcal/mol). Interestingly, on the other hand, none of the mutants significantly affected the 

interaction between CLR and RAMP1 with their ΔΔGi values ranging only between -0.02 and 0.67 

kcal/mol. W69A and R119A returned the two highest ΔΔGi values, although these were not 

considered important. These values are presented in Table 3.4. 
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Table 3.4: The difference in free energy of formation (ΔΔGf) of CLR structure and energy of interaction 

between CLR and RAMP1 following in silico alanine mutagenesis. The CGRP receptor ectodomain crystal 

structure (PDB code: 3N7S; resolution 2.10 Å) was used as template. Values are average values from 3 runs.# 

indicates values considered important because they are ≥ 2 kcal/mol. 

 Mutant Average ΔΔGf 

(kcal/mol) 

Average ΔΔGi 

(kcal/mol) 

W69A 4.84# 0.67 

D70A 6.02# 0.02 

W72A 2.34# -0.02 

D90A 0.23 0.01 

Y91A 4.56# 0.19 

F92A 2.70# 0.27 

D94A -0.18 0.0 

F95A 3.68# 0.0 

K103A 1.93 0.17 

R119A -0.24 0.31 

Y124A 5.47# -0.02 

 

Overall, the results from the in silico mutagenesis show great deal of consistency with the 

experimental in vitro mutagenesis especially considering the non-pronounced effects  these mutants 

had on CLR and RAMP1 interaction which is in agreement with the cell surface expression data. 

Plausible reasons for these observations and possible ligand-receptor interaction mechanism are 

discussed below. 
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3.4 Discussion  

A clear mechanism of CGRP binding to its receptor is still unknown, and even though a structure 

exists for the receptor ECD, a structure for the CGRP is yet to be deposited in the protein data bank. 

In this chapter, some residues appearing to play very crucial role in CGRP binding to its receptor have 

been identified. These residues are present as part of different structural elements within the receptor 

ECD and would be interesting to understand the roles they play in the binding of CGRP to its 

receptor. 

W69 and D70 are part of the WDG motif in family B GPCRs with D (D70 in CLR) invariantly 

conserved in all members. Both displayed a high level of importance in receptor signalling in that 

their mutation renders the receptor inactive. They have been thought to play a role in receptor 

stabilization (Kumar et al., 2011). W69 forms a hydrogen bond with Q45 on the CLR α-helix 1 (Cα1; 

Fig 3.7a). W69 together with Q45, I41 and A44 forms a hydrophobic cluster (Fig 3.13a) that stabilizes 

the orientation of the Cα1 towards the core of the CLR ECD in contribution to the stabilizing effect of 

the disulphide bond-forming residues C48 and C74 (ter Haar et al., 2010). More importantly, this 

hydrophobic cluster is one of the few clusters that form the basis of ligand interaction within the 

putative binding cleft of this receptor and has been implicated for some other secretin family GPCRs 

where residues in corresponding positions, though less conserved, play a similar role (Parthier et al., 

2007; Pioszak and Xu, 2008; Pioszak et al., 2009). These partner residues of W69 have been shown to 

significantly reduce αCGRP potency and/or binding affinity (Barwell et al., 2010) further 

substantiating the importance of this interaction, hence the importance of W69A. D70 on the other 

hand helps to stabilize the receptor structure by making backbone H-bonds with G71, W72 and L73. 

Its side chain also makes H-bonds with the side chains of T122 and Y124 (Fig 3.7b). This residue is a 

major stabilizing force of the β-hairpin structure in the CLR, like other family B GPCRs, which forms 

an integral part of the ligand binding cleft. The stability of this hairpin structure, which is structurally 

conserved in all family members with solved structures, is believed to be highly important for 

strengthening the hydrophobic cluster (involving W69) that holds the Cα1 in place (Pioszak et al., 

2007). This helix, as earlier discussed (in Chapter 1), is crucial for ligand binding. Moreover, the turn 
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between the short antiparallel β-strands of this same β-hairpin appears to play a crucial role in holding 

and maintaining the orientation of W72 (Fig 3.1bii) which, in this chapter (from the results above and 

later discussed below), has been indicated to be very important in ligand binding. D70 mutation has 

been extensively explored in mouse CLR (equivalent residue is D69) where it has been mutated to 

Ala, Glu and Asn and also deleted as part of a WDGN (Δ68 – 71) deletion mutant (see Ittner et al., 

2004). Interestingly, as observed for D70A in this chapter, the mouse CLR D69A mutant was inactive 

even at 1µM αCGRP and co-immunoprecipitation with RAMP1 was significantly reduced when 

compared to WT receptor. D69E was only partially responsive at ≥100nM while D69N did not affect 

receptor potency but reduced Emax by more than 70% when compared to WT (Ittner et al., 2004). This 

further emphasizes the very important role of this residue in receptor stabilization and perhaps, in 

ligand binding.    

 

Fig 3.7: Crystal structure of CLR ECD (PDB 3N7S) showing some interacting residues. (a) H-bond interaction 

between W69 (red) in the β-hairpin and Q45 (yellow) on CLR α-helix 1 (Cα1). (b) D70 (purple) interacts with 

Y124 (yellow) and T122 (green). NB: the structure of RAMP1 has been omitted for clarity and this is same for 

subsequent Figures.   

Although it seems very likely that W69 and D70 are involved in the stabilization of the ligand-binding 

groove, there is a possibility that they could work by disrupting signal transduction. The knowledge of 

this is limited by the absence of CGRP binding data for these mutant receptors. However, these 

a b 

W69 

T122 

D70 

Q45 
Y124 
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residues have been implicated in direct ligand interaction in some other family B GPCRs. In GIP-

bound GIPR ECD structure (Parthier et al., 2007) for instance, a Leu in position 26/27 was reported to 

participate in hydrogen bonding involving D66 (the equivalent of D70 in the GIP receptor) but it is 

not known whether this is a direct bond interaction or mediated by surrounding water molecules. 

Although the ligand-binding architecture observed for the agonist-bound ECDs of GIPR and PTH1R, 

when compared with those of the CRF1R and PAC1R, are thought to be closely related to the pattern 

proposed for the calcitonin peptide family (Parthier et al., 2009), it is still difficult to extrapolate this 

to the CGRP receptor. In a model of amylin (AMY) bound to the calcitonin receptor, by Dr James 

Barwell (http://www.pA2online.org/abstracts/Vol10Issue4abst026P.pdf), a CGRP-binding role was 

observed for W69. This structure was first designed based on mutagenesis data from the lab of Dr 

Debbie Hay (University of Auckland, New Zealand) on the calcitonin receptor as well as AMY 

receptor and was modified based on additional data from this chapter. In this structure, W76 (W69 in 

CLR) interacts with N22* (* indicates residue of a ligand and hereafter is used for same purpose) of 

AMY (Fig 3.8b), which also interacts with Q52 (Q45 in CLR). Although W69 and Q45, as earlier 

mentioned above, are interaction partners within the ligand binding cleft, it is not certain whether they 

make similar interaction with the CGRP. AMY, for which solution NMR structures exist (Patil et al., 

2009; Nanga et al., 2011), shares an appreciable 37% sequence identity (55% along the first 20 

residues) with the CGRP (Fig 3.8a) and is considered the most relevant structure to this peptide 

(reviewed in Watkins et al., 2012). It is therefore possible that W69 is involved in a similar interaction 

with V22
*
/23

*
 of CGRP.  
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Fig 3.8: (a) Sequence alignment of human αCGRP and AMY. Alignment was performed using CustalW2. “*” 

indicates strictly conserved residues. “:” indicates residues with similar side-chain property and “.” indicates 

residues with similar shapes. The disulphide bond-forming Cys residues are highlighted in yellow. Both 

peptides are 37 amino acids in length. (b) A view of the CTR/AMY model showing interacting partners W76 of 

CTR and N22
*
 of AMY. The AMY structure is coloured blue. Model was courtesy of Dr James Barwell 

 

It is important to note that the total loss of response observed for W69A and D70A are most likely a 

cumulative effect of their role in stabilization of receptor ligand-binding pocket, ligand binding and 

reduced cell surface expression.   

W72A caused significant 44 fold reduction in CGRP potency as seen in its decreased pEC50 value 

when compared to WT. This is most likely a reflection of its central position in the antagonist-binding 

a

)
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groove where it is thought to interact with CGRP. Apart from this residue being indicated as making 

important interactions in the published structures of agonist-bound family B GPCR ECDs, it was also 

observed to be central in the binding of the antagonists, telcagepant and olcegepant, to CGRP receptor 

ECD (ter Haar et al., 2010). These antagonists, in binding the ECD, lie across the ligand-binding cleft 

in such a way that they block the ligand binding groove and preventing CGRP binding. Considering 

the manner of binding of these antagonists and their interaction with W72, it strongly suggests that 

this residue is contained in a central position within the ligand-binding core of the receptor ECD and 

would interact with the ligand. This is supported by the effect this residue has on CGRP potency. 

Moreover, in a study by Yokoyama and co-workers on adrenomedulin (AM) receptor (i.e. 

CLR/RAMP2), W72A was found to heavily reduce affinity binding of AM as indicated by a 1,740-

fold increase in KD when compared to WT (Kusano et al., 2011), suggesting that it is involved in 

direct binding of the ligand which also belongs to the calcitonin family of peptides and is expected to 

show appreciable similarities in their mode of binding. Although, in this current study, W72A did not 

affect receptor cell surface expression, its direct involvement in ligand binding cannot be ascertained 

since the KD values for CGRP binding to these mutant receptors were not available and a role in 

signal transduction cannot be formally excluded. 

D90, Y91, F92, D94 and F95 are part of the residues forming loop 4 of the CLR ECD. All of these 

residues significantly reduced CGRP potency, although the effect of D90A is very unpronounced 

compared to the others. Y91, F92, D94 and F95 are particularly important to this loop. Y91 

contributes to the hydrophobic cluster around loop 2 which is important in forming the ligand-binding 

core. This residue is also packed against I41 on Cα1 (Fig 3.9). I41A has been shown to significantly 

reduce CGRP potency and specific binding and is suggested to be directly involved with CGRP 

binding (Barwell et al., 2010). Considering these, and more importantly the loci of the residues in the 

receptor ECD, it is possible that Y91 interacts with CGRP within the putative α-helical region 

(spanning positions 8-18) of CGRP, although its principal role appears to be in stabilizing the 

hydrophobic ligand binding cleft. F92 is another important residue as its mutation significantly 

reduced CGRP potency. It lies just below W72 at the tip of the β-hairpin structure and it is part of the 
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hydrophobic cluster (Fig 3.13b), between the β-turn and loop 2, which forms a huge portion of the 

ligand binding pocket. Like W72, F92 side chain interacts with the terminal pyridyl of olcegepant (see 

ter Haar et al., 2010) suggesting a strong likelihood of CGRP interaction. In the AM receptor, F92 

causes a huge 1,870-fold reduction in AM affinity binding (Kusano et al., 2011). Both Y91 and F92 

are conserved within human family B GPCRs with residues at these two positions coming from a 

small pool of hydrophobic Y, F, L, I and V (see Fig 1.5). 

 

Fig 3.9: CLR ECD structure showing Y91 (purple) on loop 2 packed against I41 (orange) on Cα1.  

 

The loss of response to 100nM αCGRP observed upon Ala substitution of D94 indicates the extreme 

importance of this residue in receptor signalling, perhaps in ligand binding. D94 is not conserved in 

family B GPCRs and, considering its localization within the receptor structure, might be involved in 

conferring specificity in receptor-ligand interaction. However, it is strictly conserved in four (CLR, 

CTR, PTHIR and PTH2R). In PTH1R, D137 (the equivalent of D94) makes a pair of charged 

interactions with R20
*
 of PTH1 as well as hydrogen bonds with D29 and M32 and was said to be of 

high importance in binding affinity and specificity (Pioszak and Xu, 2008). It is therefore possible that 

D94 plays a similar role in the CGRP receptor. Also, the side chain carboxyl of D94 partakes in 

I41 
Y91 
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hydrogen bonding with the terminal pyridyl of olcegepant (ter Haar et al., 2010) suggesting that is 

also localized within the ligand binding groove of the receptor ECD. In the model structure by Dr 

Barwell, D101 (D94 in CLR) interacts with R11
*
 of AMY (Fig 3.10a). The Arg is invariantly 

conserved in CGRPs and AMY in human and across most species (see Fig 1.10 and Watkins et al., 

2012). D94 possibly interacts with same residue (R11
*
) within the α-helical region of CGRP. 

Moreover, Ala substitution of this residue (i.e. R11
*
) has been found to reduce the affinity of CGRP8-

37 by up to 60 fold in SK-N-MC cells endogenously expressing the CGRP receptor (Howitt et al., 

2003). This indicates that this residue is important for affinity binding and hence further supports a 

possible interaction between this residue and D94, although other interaction partners might exist for 

R11
*
 and could be responsible for its effect.  

 

 

Fig 3.10: The CTR/AMY model showing some interacting partners between CTR and AMY.  The AMY 

structure is coloured blue. Residues in CTR and AMY are coloured red and yellow respectively (a) D101 and 

R11
*
. (b) F102 and F15

*
.  

 

 

a b 

R11* 

F15* 
F102 

D101 
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Fig 3.11: Helical wheel plot of CGRP and AMY α-helical region spanning positions 8 – 18. Hydrophilic 

residues are presented as circles, hydrophobic residues as diamonds, potentially negatively charged as triangles, 

and potentially positively charged as pentagons. The most hydrophobic residue is coded green, and the amount 

of green decreases proportionally to the hydrophobicity, with zero hydrophobicity coded as yellow. Hydrophilic 

residues are coded red. The potentially charged residues are coded light blue. Arrows show the direction of the 

hydrophobic moment and so point toward the hydrophobic side of the helix. 

 

F95A showed the largest fold reduction in CGRP potency and highest percentage reduction maximum 

cAMP levels (Table 3.1), albeit not the largest reduction in agonist-mediated receptor internalization. 

F95 is part of the crucial and putative ligand-binding loop 2 of the CLR ECD and forms a part of the 

hydrophobic cluster (Fig 3.13b) around this region important for CGRP binding. It is only partially 

conserved in family B GPCRs as it is present as a Phe in 8 (including CTR, PTHRs and PAC1R but 

not in CRFRs or GIPR) of the 15 human family B GPCRs (see Fig 1.8). This residue has been 

indicated to be involved in ligand binding of PTH1 and PACAP (Pioszak and Xu, 2008; Kumar et al., 

2011) and, although the peptide was docked in the PACAP:PAC1R structure, this was however 

supported by alanine scan where F84 (the PAC1R equivalent of F95) was found to significantly 

reduce maximum cAMP levels. In the CTR/AMY model structure, F102 of CTR interacts with F15
*
 

of AMY (Fig 3.10b). It is plausible that CLR makes a similar interaction with L15
*
 in CGRP, or more 

likely L16
*
. Mutation to L16

*
 caused a 700-fold decrease in CGRP8-37 potency while that of L15

*
 was 

a modest 5-fold decrease (Howitt et al., 2003). 
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In the earlier mentioned study by Dr Hay’s group, alanine mutation of the calcitonin receptor residues 

W79, F99, D101, F102 and Y131 (W72, F92, D94, F95 and Y124 respectively in CLR and the only 

residues in common with those investigated in this chapter) resulted in significant decrease in 

calcitonin (CT) potency (Proceedings of the British Pharmacological Society at 

http://www.pA2online.org/abstracts/Vol10Issue4abst026P.pdf). The same was observed for rAMY in 

presence of RAMP1 (unpublished data). This is in agreement with data obtained in this chapter and 

further supports the importance of these residues in receptor cAMP signalling. In addition to the 

similarities shared by CGRP and AMY, helical wheel plots (Fig. 3.10) show that their residues 

contained within the helical region appear on similar face of the helix. This suggests that they are 

likely to be buried in the binding pocket in the same orientation and it is therefore plausible to make a 

direct extrapolation from the CTR/AMY model. However, it is important to stress that as this is only a 

model, it requires further experimental verifications and inferences based on it are speculative. 

Moreover, there could be significant differences in binding conformation and specific interaction 

displayed by these peptides in binding their receptors.   

It is again important to poimt out that, as earlier mentioned for the W69, D70 and W72 alanine 

mutants, it is difficult to to specifically state whether these CLR residues are directly involved in 

CGRP binding or not, considering the absence of binding data. An alternative interpretation is that the 

residues are involved in linking agonist binding to receptor activation. 

D90, apart from its mild effect on αCGRP potency (Table 3.1; Fig 3.2), behaved like WT in receptor 

cell surface expression and internalization (Fig 3.4 and 3.5). In the CLR ECD structure (ter Haar et 

al., 2010), D90 faces away from the putative binding cavity towards the CLR α-helix 1 (Cα1) and 

does not appear to participate in ligand binding. This is an interesting result as it suggests the 

constitution of this core is confined among certain residues. Although this residue seems to interact 

with K40 on the Cα1, it is not known what importance this offers to receptor signalling or whether it 

is responsible for the effect observed for this residue.   

http://www.pa2online.org/abstracts/Vol10Issue4abst026P.pdf)
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K103A and R119 both showed ~63 and ~56 fold reduction in CGRP potency. Both basic residues lie 

on the same left half of the CLR ECD with each apparently acting in dissimilar manner.  K103 is 

sandwiched between W75 and W111 (Fig 3.12) and serves as a cushion to keep these hydrophobic 

residues in place for structural stability. Its localization makes it very unlikely to make any contact 

with CGRP. Its stabilization role is consistent in other published family B GPCR ECD structures. This 

probably reflects the high conservation of this residue (and its sandwich partners) in all family 

members. In the mouse CRFR2β (Grace et al., 2007) and human PAC1R (Kumar et al., 2011) 

structures, it was shown to form a salt bridge with the invariantly conserved Asp (D70 in CLR) in the 

highly structurally conserved β-hairpin. Although this was not reported for the CLR, the residues 

appear to be in close proximity to make interaction. It is not known however if a salt bridge is formed 

between these residues in vivo during the activation process. K103 might be more involved in receptor 

activation rather than ligand binding, more so that it had no significant effect on receptor 

internalization. R119 has its side chain pointed towards the ligand binding domain and most likely 

interacts with CGRP. In the CTR/AMY model, R126 of CTR (equivalent of R119) interacts with S19
*
 

of AMY. This residue is also conserved in CGRP and it is possible that it makes similar interaction 

with CGRP S19
*
. Unlike K103, R119 is not conserved in family B GPCRs and may be one of the few 

residues that define ligand specificity.   
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Fig 3.12: CLR ECD structure showing K103 (green) sandwiched by W75 (red) and W111 (purple). The 

invariantly conserved Asp70 (yellow) in the β-hairpin, which may also interact with K103, is also shown.  

 

Y124A showed significant reduction in both mean pEC50 and Emax (Table 3.1 and Fig 3.3). This 

residue has been indicated as part of the hydrophobic cluster that stabilizes the receptor ECD as well 

as the ligand-binding groove in, for instance, the CRFR1 (Pioszak et al., 2008), PTH1R (Pioszak and 

Xu, 2008), GIPR (Parthier et al., 2007) and PAC1R (where it reduces maximum cAMP levels by 

more than 30%; Kumar et al., 2011) but hardly in ligand interaction. In the CLR ECD structure (ter 

Haar et al., 2010), this residue contributes to, and probably stabilizes the hydrophobic cluster formed 

between the β-hairpin and loop 2 (Fig 3.13b). Considering its positioning within the ECD, it probably 

makes no direct interaction with CGRP. Its role in stabilisation of the CGRP binding pocket appears 

to be very crucial. It is packed against the pivotal W72 (discussed above) and the conserved V101. In 

addition, its side chain forms a hydrogen bond with the side chain of the very crucial D70 (discussed 

above). This interaction contributes to the orientation of D70 helping it make the necessary 

interactions.   

D70 

W111

111 

W75 

K103 
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Fig 3.13: CLR ECD structure revealing the two hydrophobic clusters that are proposed to form the ligand-

binding groove.  (a) Cluster 1: W69 (yellow), I41 (orange), A44 (green) and Q45 (red). (b) Cluster 2: W72 

(yellow), Y91 (blue), F92 (green), F95 (red) and Y124 (purple). The yellow arrows show the direction of 

RAMP1 interaction.  

 

Although there are currently no available competition ligand-binding data for these residues, there is 

appreciable evidence to show that almost all these residues directly participate in ligand binding. The 

normal cell surface expression of these mutants (except for W69A and D70A), when compared to 

WT, rules out the likelihood of a reduction in potency resulting from a poor availability of the 

receptor at the cell surface. The receptor internalization data are in general agreement with the cAMP 

data and, since receptor internalization is agonist-mediated, further supports the idea of these residues 

involved in ligand binding. It is important to point out however that despite the massive effect on the 

ability of the D70A and F95A mutants to stimulate cAMP when compared to most other mutants, they 

showed much less, but significant effect on agonist-mediated receptor internalization. A mutant like 

Y91A, on the other hand, with much less effect on cAMP stimulation compared to most other mutants 

showed a much higher effect on receptor internalization especially when compared to D70A and 

F95A (Table 3.3). This suggests that some of these residues, apart from their roles in ligand binding, 

b a 

W72 

F95 
F92 

Y124 

Q45 

A44 

I41 

W69 

Y91 
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might influence the coupling of the receptor to β-arrestin. This could possibly be by slightly altering 

the N-terminus conformation, hence effecting the interaction of the N-terminus with the TM domain. 

D90A is internalized as the WT and this further suggests that it has no significant influence on ligand 

binding. Of all the mutants with pronounced reduction in CGRP potency, only K103A does not 

significantly alter receptor internalization. In other words, this residue does not necessarily affect 

receptor-ligand interaction but may play a role in receptor activation following ligand association. The 

highly conserved K103 could therefore be part of a system that dictates/controls Gs protein coupling 

and β-arrestin binding pathways.   

The results from the FoldX alanine mutation analysis was in great deal of agreement with in vivo 

mutagenesis data discussed above. Firstly, as earlier mentioned, there were no pronounced disruptions 

to the CLR/RAMP1 interaction – an interaction important for the trafficking and cell surface 

expression of the CGRP receptor (McLathie et al., 1998). This is consistent with the cell surface 

expression data where no mutant, except W69A and D70A, showed any significant decrease in 

receptor cell surface expression (Fig 3.5). The significant reduction in receptor cell surface expression 

exhibited by W69A and D70A however are mild. Interestingly, residues earlier suggested to exhibit 

their importance in ligand binding by rather playing a role in stabilizing the ligand-binding groove 

(i.e. W69, D70, Y91 and Y124) showed marked and much higher (the four highest) ΔΔGf values 

(D70A = 6.02 kcal/mol, Y124A = 5.47 kcal/mol, W69A = 4.84 kcal/mol and Y91A = 4.56 kcal/mol)) 

when mutated to Ala compared to other mutants with similar effect on cAMP stimulation and receptor 

internalization (see Table 3.3 and 3.4). This however does not rule out the possibility of direct 

involvement of these residues in ligand interaction. The noticeable disruption to the stability of CLR 

N-terminus structure observed for F95A, F92A and W72A, as reflected by their ΔΔGf values (3.68 

kcal/mol, 2.70 kcal/mol and 2.34 kcal/mol respectively), probably suggests these residues contribute, 

albeit to a lesser degree, to the stabilization of the ligand-binding core in addition to their role in 

ligand interaction. It is worth mentioning that despite the highly significant effect D94A had on 

cAMP stimulation and agonist-mediated receptor internalization (Table 3.3), it does not appear to 

affect the stability of CLR N-terminus structure. This plausibly supports the notion that D94 is strictly 
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involved in direct ligand interaction possibly via the putative D94 (CLR) and R11*(CGRP) 

interaction (Fig 3.10a). While the FoldX algorithm has been shown to have an appreciably high 

success rate and in several cases has shown laudable consistency with experimental data (Guerois et 

al., 2002; Schymkowitz et al., 2005; Alibes et al., 2010), it should only be considered a guide as the 

in vivo physiologic conditions cannot be completely imitated. Moreover, the template structure used 

here was the CGRP ectodomain structure which is devoid of the TM bundle and associated loops.   

In conclusion, this study has been able to identify residues that constitute a putative binding cleft of 

CLR in the CGRP receptor. Based on the data obtained in this study and other available published 

data, it is strongly believed that CGRP binds in a somewhat similar overall architecture as observed 

for, most especially, the PTH1R in agreement with the two-domain model (Hoare, 2005). However, 

unlike other known family B ligand-ECD complexes, the CGRP is most likely bent towards the 

RAMP1 at the side of the α-helix 1 via a kink formed by the tri-peptide Ser-Gly-Gly, which has been 

shown to be required for peptide potency (reviewed in Watkins et al., 2012). The involvement of 

RAMP1 in the CGRP receptor makes it more complex compared to other family B GPCRs and even 

members of other families. While the structure of CGRP is still awaited, the major clusters that form 

the ligand-binding groove have here been drawn out (Fig 3.13). This could be helpful in designing 

drug candidates that target this receptor.   
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Chapter 4: CGRP receptor pharmacology: multiple residues within Helix 8 and its associated 

C-terminal region play significant roles in receptor signalling. 

4.1. Introduction  

One of the contributions made by the crystal structures of some family A GPCRs in understanding the 

structural architecture of these receptors is the revelation of an eight helix within the C-terminal 

intracellular domain of the receptors. The GPCR signal transduction cascade involves the interaction 

of intracellular G-proteins with the C-terminal tail of receptor (Wettschureck and Offermans, 2005). 

The C-terminal helix, unlike the transmembrane helices, is orientated in a parallel position to the lipid 

bilayer and perpendicular to the TM bundle axis. This part of the receptor has been shown to be of 

importance in receptor cell surface expression, β-arrestin binding and G-protein coupling. For 

instance, it has been shown to participate in conformational changes accompanying rhodopsin 

activation (Hoersch et al., 2008) as well as β-arrestin-dependent receptor desensitization (Kirchberg et 

al., 2011). It is difficult to make a direct and reliable extrapolation of these findings to family B 

GPCRs as they share little or no sequence similarity with family A GPCRs (Vohra et al., 2013). 

Although no crystal structure currently exists for a family B GPCR, the presence and the importance 

of the helix 8 in some family B GPCRs have been postulated. Conner et al. (2008) showed that the C-

terminal tail of the CLR contained an α-helix at the origin and that it played a role in cell surface 

expression. More recently, Kuwasako et al. (2010) analysed the helix 8 of the CLR as part of the 

adrenomedulin 1 (AM1) receptor (i.e. CLR/RAMP2) and further stressed the importance of this region 

in receptor signalling. The postulated CLR helix 8 is believed to run from E389 to W399 (Conner et 

al., 2008; Kuwasako et al., 2010). Despite the previous work done on the CLR 8
th
 helix, none has 

identified the key residues involved in the signal transduction pathways of the CGRP receptor 

(CLR/RAMP1). While Conner et al (2008) studied the helix as a whole via deletions at specific 

residues, Kuwasako et al (2010) studied individual residues in the AM1 (not CGRP) receptor. In this 

chapter, multiple residues within this helical region of the C-terminal tail were analysed by 

alanine/aspartic acid scan mutagenesis for their role in receptor pharmacology.  
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In addition to the H8 residues investigated in this chapter, a few residues beyond this helix at the C-

terminal end were also investigated. These residues were picked out based on the work of Johnston et 

al (2008) on the association between the C-terminus of the parathyroid hormone receptor and the G-

protein dimer Gβ1γ2 where they identified some residues (Fig. 4.1) in this receptor believed to make 

contact with the Gβγ dimeric subunit of the G-protein, although this paper has now been withdrawn. 

Their interaction was reported to be key in inducing allosteric conformational changes in the βγ 

subunits that characterize GPCR signalling. These identified residues in the C-terminus of the 

parathyroid hormone receptor-1 (PTH1R) – a family B GPCR - that were found to be partially 

conserved in the CLR (Fig 4.1). It was therefore thought that these residues might perform a similar 

role in the CLR. 

 

Fig 4.1: Sequence alignment of helix 8 and associated C-terminal residues in human family B GPCRs. The 

invariantly conserved glutamic acid (E), valine (V) and tryptophan (W) residues are printed bold. The highly 

conserved arginine (R) is highlighted yellow while the less conserved residues in positions 396 and 402 

(numbering according to hCLR) are highlighted grey. The residues of interest are indicated by asterisks (*). 

Highlighted in red are the residues identified in PTHR1 by Johnston et al (2008). 
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Also investigated in this chapter is phenylalanine (F) 163 at the C-terminal end of TM1. The model 

structure of CLR TM bundle and helix 8 constructed by Vohra et al (2013) showed that helix 8 is held 

in close proximity to ICL1 and bottom end of TM1. This is a common feature of GPCRs seen in most 

crystal structures. Interaction between H8 and residues from the KSLS motif in ICL1 has been 

proposed. The KSLS motif is the family B equivalent of the KKLH motif in ICL1 of family A GPCRs 

(Vohra et al., 2013). A close examination of this model structure revealed certain residues putatively 

involved in this interaction. One of these residues, situated at the bottom end of TM1, is F163 but it is 

yet to be investigated. This hydrophobic residue was mutated to alanine and the larger methionine to 

see what effect these have on receptor signalling.  

All residues examined in this chapter, as well as their positions within the receptor are presented in 

Fig. 4.2. These residues’ roles were probed on multiple criteria, which included their ability to 

stimulate cAMP production, cell surface expression and agonist (αCGRP)-mediated receptor 

internalization. 

 

Fig 4.2: Schematic representation of CLR showing the residues (highlighted in bold) investigated in this 

chapter.  

Membrane 

phospholipids 
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Summarily, this chapter was aimed at investigating several residues making up the membrane-parallel 

helix 8 and associated residues at the distal end of this helix, as well as residue F163 at the bottom of 

TM helix 1 of CLR. This is in order to gain further understanding of their role in CGRP receptor 

signalling. The experimental data obtained are presented and discussed below. 

    

4.2. Results  

4.2.1 Stimulation of cAMP production  

Each mutant receptor was assayed for its level of cAMP production in comparison to the wild type 

receptor. The resulting data were fitted with sigmoidal dose-response curves and pEC50 values 

generated. Comparing the mean pEC50 values for CGRP of mutants with wild type (WT) revealed a 

modest but significant decrease in potency for A393D (~2 fold), R397A (~3 fold), W399A (~7 fold) 

and I404A (~3 fold). Of these residues, R397A, W399A and I404A showed decrease in mean Emax by 

approximately 22%, 13% and 33% respectively with no significant shift in mean basal activity. 

A393D on the other hand showed no significant decrease in mean maximum response but significant 

increase (~21%) in mean basal activity (see Table 4.1 and Fig. 4.3). 
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Table 4.1: Mean pEC50, Emax and basal activity values of WT and mutant receptors. Values are presented as 

mean ± SEM. *, ** and *** represent p < 0.05, p < 0.01 and p < 0.001 respectively. WT and mutant pEC50 

values were compared using unpaired t-test (two-tailed) while mutants’ mean Emax and basal activity were 

compared to WT using one way ANOVA 

Mutants 

pEC50 WT (mean 

± SEM) 

pEC50 Mutant 

(mean ± SEM) 

Mean Emax (% 

WT) 

Mean basal activity 

(%WT) 

N 

F163A 9.90 ± 0.13 9.75 ± 0.22 76.15 ± 6.10** 0.88 ± 3.8 4 

F163M 9.71 ± 0.16 10.34 ± 0.12* 107.60 ± 3.48 28.95 ± 7.49* 4 

A393D 9.94 ± 0.08 9.65 ± 0.05* 110.2 ± 6.45 21.11 ± 4.85** 5 

I394A 9.89 ± 0.04 10.04 ± 0.09 100.9 ± 15.1 0.87 ± 3.10 3 

L395A 9.99 ± 0.12 10.12 ± 0.29 82.09 ± 4.56* 0.41 ± 1.88 3 

R396A 9.93 ± 0.06 9.67 ± 0.20 87.11 ± 16.3 1.36 ± 2.54 3 

R397A 9.80 ± 0.10 9.32 ± 0.10* 77.98 ± 10.22* -0.62 ± 3.40 4 

W399A 10.05 ± 0.07 9.22 ± 0.18* 87.07 ± 4.46* 0.18 ± 0.40 4 

N400A 10.05 ± 0.08 9.89 ± 0.29 104.7 ± 5.71 35.50 ± 4.24* 4 

Y402A 10.01 ± 0.08 9.70 ± 0.25 98.42 ± 8.73 26.77 ± 5.17** 4 

K403A 10.24 ± 0.05 9.85 ± 0.25 90.22 ± 12.95 -2.13 ± 8.31 3 

I404A 10.24 ± 0.05 9.82 ± 0.04** 

67.26 ± 

3.80*** 

3.85 ± 2.92 3 

F406A 10.10 ± 0.14 10.03 ± 0.03 89.0 ± 8.89 2.21 ± 0.94 4 
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Fig 4.3: Representative dose-response curves of the mutant residues with significant decrease in αCGRP 

potency as well as decrease in mean Emax or increase in mean basal activity compared to WT. WT and mutant 

receptors were challenged with 100nM – 10pM αCGRP with a control assay point containing no αCGRP. 

Sigmoidal curves were fitted using GraphPad prism 4. Each curve is representative of one of at least three 

independent experiments that best represents the mean pEC50, Emax or basal activity values. Each point on the 

curve represents duplicate assay data with standard error bars.  

 

Of all mutants analysed, only F163M was found to show an increase (~5 fold) in potency for CGRP. 

This was in addition to a significant increase (~29%) in basal activity (Table 4.1). There was however 

no significant increase in mean Emax observed for this mutant. The dose-response curve for this mutant 

is presented in Fig. 4.4. 
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A significant decrease in mean Emax or increase in mean basal activity was observed for F163A, 

L395A, N400A and Y402A. While F163A and L395A showed significant decrease in Emax by 

approximately 24% and 18% respectively, N400A and Y402A respectively showed ~36% and ~27% 

increases in basal activity (see Table 4.1).  

All other mutants behaved like the WT in their response to αCGRP. A summary of the pEC50 values 

as well as the percentage shifts in mean Emax and basal activities are presented in Table 4.1. 
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Fig 4.4: Representative dose-response curve of the mutant residue with significant increase in αCGRP potency 

as well as increase in mean basal activity compared to WT. WT and mutant receptors were challenged with 

100nM – 10pM αCGRP with a control assay point containing no αCGRP. Sigmoidal curve was fitted using 

GraphPad prism 4. The curve is representative of one of at least three independent experiments that best 

represents the mean pEC50, Emax or basal activity values. Each point on the curve represents duplicate assay data 

with standard error bars 
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Fig 4.5: Representative dose-response curve of the mutant residues with (A) significant decrease in mean Emax 

or (B) significant increase in mean basal activity compared to WT. WT and mutant receptors were challenged 

with 100nM – 10pM αCGRP with a control assay point containing no αCGRP. Sigmoidal curves were fitted 

using GraphPad prism 4. Curves are representative of one of at least three independent experiments that best 

represents the mean pEC50, Emax or basal activity values. Each point on the curve represents duplicate assay data 

with standard error bars. 
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4.2.2 Cell surface expression 

Cell surface expression of the mutant receptors as well as wild type was measured employing cell-

surface ELISA. Data were normalized and expressed as %WT while the WT represents 100% cell 

surface expression. When compared to WT, only F163A (77.82 ± 4.19) and W399A (80.15 ± 9.84) 

showed significant reduction in cell surface expression – both showing ~ 22% and ~20% reduction 

respectively. All other mutants behaved like WT in their expression at the cell surface (Fig. 4.6).  

It is noteworthy that mutant residues F163M and R396A showed the highest not significant reduction 

in cell surface expression with each expressed 16% less than WT. 
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Fig 4.6: Cell surface expression of wild type and mutant receptors. The presence of the HA tag on WT and 

mutant receptors (HA-CLR/myc-RAMP1) was detected by ELISA. The negative control was HA-empty vector 

(pcDNA3.1-)/myc-RAMP1. Values were normalized and expressed as %WT. The WT and negative control 

represents 100% and 0% cell surface expression respectively. At least 3 independent experiments were 

performed and assay points were in triplicates or quadruplicates. Values were plotted on column graph using 

GraphPad Prism 4 and each column represents mean ± SEM. Mutant cell surface expression were compared to 

WT using column statistics. * represents p < 0.05.   

* * 
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4.2.3 αCGRP-mediated receptor internalization 

The mutants were analysed for their influence on αCGRP-induced receptor internalization. The 

resulting values were compared to WT and their significant difference statistically tested. Of all 

mutants, A393D showed the largest most significant reduction in receptor internalization with a % 

internalization value of 27.55 ± 8.51 compared to WT (68.09 ± 3.95), which represents a 59.6% 

reduction. Other residues, which showed reduced internalization included F163M (38.64 ± 7.62), 

I394A (38.52 ± 5.15) and I404A (44.24 ± 1.89) representing 43.2%, 43.5% and 35% reduction 

respectively. 

On the other hand, a significant increase in agonist-induced internalization was observed for W399A 

(92.09 ± 4.23) and N400A (87.56 ± 7.59) compared to 68.09 ± 3.95 for WT. These represent ~35% 

and 29% increase in agonist-induced internalization by W399A and N400A. 

Other mutants had no significant influence on receptor internalization. The values obtained for the 

WT and all mutants are presented in Fig. 4.7.   
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Fig 4.7: Graph of αCGRP-mediated receptor internalization of wild type and mutant receptors. The presence of 

the HA tag on WT and mutant receptors (HA-CLR/myc-RAMP1) was detected by ELISA following 1h 

incubation with 100nM αCGRP. Cell surface expression for the αCGRP-treated mutant and WT receptors were 

expressed as percentage of the unstimulated WT receptor. % internalization was determined by subtracting the 

resulting values from 100. The WT and negative control represented 100% and 0% cell surface expression 

respectively. At least 3 independent experiments were performed and assay points were in triplicates or 

quadruplicates. Values were plotted on column graph using GraphPad prism 4 and each column represents mean 

± SEM. Mutant % internalization were compared to WT using Dunnett’s multiple comparison test . *, ** and 

*** represent p < 0.05, p < 0.01 and p < 0.001 respectively.   

 

4.2.5. Summary of these mutations 

All mutants that showed significant influence on at least one of the parameters, i.e. ability to stimulate 

cAMP, cell surface expression and agonist-induced internalization, tested in this chapter are presented 

in Table 4.2. 

 

 

* * * 

* * * * 
* * * 

* * 
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Table 4.2: Summary of the criteria employed in probing the mutant receptors. All values are approximate to the 

nearest whole number. ns = not significantly different to WT. 

Mutants 

Fold shift in 

αCGRP 

potency  

Mean Emax 

(% WT) 

Mean basal 

activity 

(%WT) 

Cell surface 

expression 

(%WT) 

αCGRP-induced 

internalization (% 

WT) 

F163A ns 

24% 

reduction 

ns 22% reduction ns 

F163M 5 fold increase ns 29% increase ns 43% reduction 

A393D 

2 fold 

reduction 

ns 21% increase ns 60% reduction 

I394A ns ns ns ns 44% reduction 

L395A ns 

18% 

reduction 

ns ns ns 

R397A 

3 fold 

reduction 

22% 

reduction 

ns ns ns 

W399A 

7 fold 

reduction 

13% 

reduction 

ns 20% reduction 35% increase 

N400A ns ns 36% increase ns 29% increase 

Y402A ns ns 27% increase ns ns 

I404A 

3 fold 

reduction 

33% 

reduction 

 ns ns 35% reduction 

 

Overall, from the data obtained, mutations to residues F163, A393 and W399 appear to significantly 

influence most parameters tested. In all, the residues investigated also appear to almost evenly 

influence CGRP potency and CGRP-mediated receptor internalization. The least overall effects 

observed were for cell surface expression. These data are discussed below.  
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4.3. Discussion  

The C-terminal domains of GPCRs are essential for receptor signalling as they are mostly responsible 

for interacting with cytoplasmic biomolecules (Bockaert et al., 2004). Since the presence of a helix 8 

in GPCRs was unambiguously revealed in the first GPCR crystal structure (Palczewski et al., 2000), 

this helical region has been reported to play a role in receptor pharmacology in many family A 

GPCRs (Marin et al., 2000; Swift et al., 2006; Yasuda et al., 2009; Parker and Parker, 2010) and also 

in some family B GPCRs (Couvineau et al., 2003; Conner et al., 2008). The residues involved in the 

crucial role of the region have not been well studied especially in the class B GPCRs. Some of these 

residues in the CGRP receptor were examined in this chapter with a few playing important roles. 

Also, F163 of CLR located on the bottom end of TM1 (part of the H8-interacting region postulated by 

Vohra et al. (2013)) was found to be important for receptor function in this chapter.  

The F163A mutant showed significant ~24% and 22% decrease in mean Emax and cell surface 

expression respectively with no significant change in αCGRP potency. Mutating this residue to a 

methionine (i.e. F163M) in contrast showed significant ~5fold increase in αCGRP potency and ~29% 

increase in mean basal activity, implying a constitutive activity for this mutant receptor. These results, 

first of all, show the importance of this residue in receptor signalling. Using the structural model of 

Vohra et al (2013), F163 appears to make hydrophobic interactions with V391, I394 and L395 in the 

inactive state (Fig. 4.8a) whereas in the active state, it is completely separated from these residues and 

points towards the base of TM2 (Fig 4.8b). A closer examination of the structure showed that the 

movement of this residue appears to have resulted from the unwinding of the base of TM1. This 

suggests that F163 might play a role in the maintenance of receptor inactive state as well as the 

structural switch between the inactive & active states of the receptor. Although one might expect 

F163M to foster the hydrophobic interaction, and help maintain the inactive state, the absence of an 

aromatic side chain in Met might explain this. In Fig 4.8a for instance, the aromatic ring of F163 is 

positioned in such a way that it gives room for some form of gliding movement over the putative 

interaction partners i.e. V391, I394 and L395. This sort of movement has been suggested for the 

aromatic ring of Trp residues in receptor activation, where they act to dampen such motions (Hulme, 
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2013). Mutation of F163 to a Met in silico showed that the hydrophobic tail of the Met residue faces 

downwards in-between the three interacting residues earlier stated. Further work is required to 

substantiate the exact mechanism of action of this residue.  

  

Fig 4.8: Model structure of CLR as postulated by Vohra et al (2013). (a) Inactive CLR showing putative 

interaction of F163 (red) in ICL1 with V391 (green), I394 (yellow) and L395 (blue) in H8. (b) Active form of 

CLR showing a change in receptor conformation and resultant prevention of the interaction observed in (a).    

 

On the other hand, the larger size of the hydrophobic side chain of Met, relative to Ala, might explain 

the reduction in Emax and cell surface expression observed for F163A but not for F163M. Met might 

be capable of maintaining the structural integrity in the mutant receptor in activation and cell surface 

expression as in the WT. It is however important to stress that other factors may play a role and that 

this model might not perfectly represent the actual receptor structure. This residue is yet to be 

investigated in any other family B GPCR. 

W399 appears to play crucial role in receptor pharmacology. W399A showed a significant ~7 fold 

decrease in αCGRP potency as well as a significant ~13% decrease in maximum cAMP production 

suggesting a role in G-protein coupling. The small but significant reduction in cell surface expression 

(~20%) for this mutant shows that it is has a minor role in the receptor’s cell surface expression. This 

is in agreement with previous studies on the CLR in the CGRP receptor (Conner et al., 2008) and 

a b 

F163 

I394 

V391 

L395 
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AM1 receptor (Kuwasako et al., 2010). Although the mechanism of action of W399 is still unknown, 

there has been the suggestion it acts as lipid membrane anchor (Conner et al., 2008) performing 

similar role played by Cys in family A GPCRs. The orientation of W399 in the CLR model structure 

suggests it might interact with the phospholipid bilayer (Fig. 4.9), although its side chain would 

probably require some rotation to put it in closer proximity to the membrane as it appears to be 

slightly shifted sideways of the membrane core. A similar rotation has been observed in the crystal 

structure of olcegepant-bound CLR/RAMP1 ECD complex for the side chain of W72 within the N-

terminus of the CLR where it (the W72 side chain) rotates ~70° when compared to unliganded 

complex (ter Haar et al., 2010). This rotation helps to form a ‘‘Trp shelf’’ on which the piperidine 

ring of olcegepant stacks. It is however not known, especially for the CLR helix 8, whether such 

rotation is applicable under normal physiological conditions.  

 

 

Fig 4.9: Model structure of the CLR showing the hydrophobic residues V391 (red), L395 (green), W399 

(yellow) and Y402 (purple) thought to be involved in hydrophobic interactions significant for receptor cell 

surface expression. 

 

V391 
L395 

Y402 

W399 
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From a broader perspective, it is possible that the overall architecture of this helix was wrong since it 

was modelled based on homology with a family A GPCR. This, as earlier discussed (Chapter 1), 

could be very misleading based on variations observed between, and even within, GPCR families. On 

this note, a helical wheel was plotted for the helix 8 of CLR with the assumption that it forms a 

regular helix (Fig. 4.10). This was to have an independent picture of the orientation of residues 

making up the helix and observe them against the results obtained in this chapter. This plot was also 

conducted for rhodopsin (Fig. 4.10) to compare with the available crystal structure of this receptor. 

Comparison indicated that the wheel plot presented residues in virtually similar plane as the crystal 

structure. Worthy of mention, for instance, are residues F313, M317 and L321, which are orientated 

towards the membrane hydrophobic core as in the crystal structure. This comparison was also made 

for the β2-AR (figure not shown). In the CLR, W399 appeared to be in the hydrophobic core 

supporting earlier suggestions of its potential interaction with the membrane bilayer - an interaction 

required for receptor stability and cell surface expression. 

 

      

Fig 4.10: Helical wheel plots of CLR and rhodopsin 8
th

 helices. Hydrophilic residues are presented as circles, 

hydrophobic residues as diamonds, potentially negatively charged as triangles, and potentially positively 

charged as pentagons. The most hydrophobic residue is coded green, and the amount of green is decreases 

proportionally to the hydrophobicity, with zero hydrophobicity coded as yellow. Hydrophilic residues are coded 

red with pure red being the most hydrophilic (uncharged) residue, and the amount of red decreases 

proportionally to the hydrophilicity. The potentially charged residues are coded light blue. Arrows show the 

direction of the hydrophobic moment and so point toward the hydrophobic side of the helix. 
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Y402 in this structure might also play a supportive similar role to W399 as they appear to be 

orientated on a similar plane (Fig. 4.9). Y402A showed a very modest ~13% decrease in receptor cell 

surface expression, although this was insignificant. Since W399A appear not to act alone in its role in 

cell surface expression (see Conner et al., 2008), Y402 might be one of those hydrophobic residues  

(in addition to V391 and L395 suggested by Conner et al., 2008), which may play a collective role in 

the structural and functional stability of this region and in receptor cell surface expression. These 

hydrophobic residues are orientated in the same plane (Fig.4.9, 4.10). Mutations at this region of some 

family A GPCRs have been reported to disrupt membrane trafficking (Tobin and Wheatley, 2004). 

The significant ~27% increase in mean basal activity observed for Y402A supports the idea of its role 

in receptor structure stability  (especially in the inactive state) via hydrophobic interaction with the 

membrane phospholipid bilayer. Moreover, this hydrophobic aromatic amino acid structure (Y/F/W) 

is conserved in 12 of all 15 human GPCRs (see Fig. 4.1). 

R397A showed significant ~3 fold and 22% reductions in αCGRP potency and mean Emax 

respectively. R396A on the other hand showed no significant effect on receptor response to αCGRP. 

This is in agreement with that reported for the AM1 receptor, although R396A was found to modestly 

decrease maximum response (Kuwasako et al., 2010). Despite these two basic residues sitting next to 

each other in helix 8, only R397A appears to play important role in receptor signalling. This probably 

explains their orientation observed in Vohra et al., (2013). While R397 points towards the ICL1, 

R396A points away to intracellular space (Fig. 4.11a). Although it is not clear what R397 exactly 

does, it appears to be in close proximity to F166 and K167 in ICL1, pointing in-between the two 

residues (Fig. 4.11b). According to this structure, it is possible that R397, with its positively charged 

side chain, pushes away the side chain of K167, in turn helping it (K167) to assume a better 

orientation to form ionic interaction with E390 at the proximal end of helix 8. Conversely, it is 

possible that a strong ionic interaction formed between K167 and E390 provides the force that pushes 

R397 into the position it occupies where its side chain might make hydrophobic interaction with that 

of F166. Although this ionic interaction between acidic and basic residues in helix 8 and ICL1 has 
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been reported for some family A GPCRs (e.g. see Swift et al., 2006), and therefore plausible, the 

speculative nature of this model structure however leaves the role of R397 uncertain. 

 

  

Fig 4.11: Model structure of the CLR showing (a) the positional orientation of the neighbour basic residues 

R396 (light green) and R397 (red); and (b) the proximity of R397 (red) to F166 (yellow) and K167 (pink). E390 

(green) is also shown. 

 

Moreover, the helical wheel plot presents a different, but possibly more plausible explanation. 

According to this wheel (Fig. 4.10), assuming that the hydrophobic face of the helix faces the 

membrane, R397 appears to be on cytoplasmic face of the helix; and considering its effect on pEC50 

and mean Emax values, with no significant reduction in cell surface expression, it might be directly 

involved in G-protein coupling. In the helical wheel, R396 also appears to be present at the 

cytoplasmic face. Although these residues are adjacent to each other on a helix, their side chains most 

likely face opposite directions. A charge-charge repulsion might be responsible for these opposing 

directions towards which their side chains face. Since these two residues are completely identical, and 

R396 appeared to play a subtle role in receptor signalling compared to that of R397, it suggests that 

ICL1 

a b 

R397 
R396 

E390 

K167 

F166 

R397 
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their orientations within the helix are of high physiological importance. Although R396 appears to 

play no significant role in CGRP receptor signalling from the results gathered so far, the ~13% 

decrease in Emax observed for this residue is comparable with the significant ~19% reduction in 

maximum response observed for the AM1 receptor by Kuwasako et al (2011). Depending on the true 

orientation of its side chain, it is possible that R396 forms a salt bridge with an Asp/Glu residue 

further down the C-terminal tail as observed in the squid rhodopsin crystal structure (Murakami and 

Kouyama, 2008) where Lys321 of helix 8 (in a roughly similar position as R396) forms a salt bridge 

with Glu351 (in the 9
th
 helix) further down the C-tail.  Unfortunately, no assertions can currently be 

made as to the correct orientation of these residues based on the limited available resources; this 

therefore re-echoes the need for a crystal structure of the full receptor, or even a family B GPCR.   

Neither R396A nor R397A showed significant effect on cell surface expression and receptor 

internalization. This is in contrast to that obtained in AM1 receptor where R397A causes significant 

decrease in cell surface receptor and agonist-induced internalization. The disagreement might be due 

to differences in cell type, transfection, human RAMP form and/or specific agonist (for receptor 

endocytosis). However, double mutation to these neighbour residues (R400A/R401A) in human 

VPAC1 receptor showed no significant effect on receptor cell surface expression and cAMP 

production as well as radioligand binding (Couvineau et al., 2003). It is important to state however 

that this hVPAC1 mutant showed a noticeably modest reduction in potency and agonist binding 

affinity as represented by the EC50 and Kd values respectively (Couvineau et al., 2003). This further 

reflects the importance of these residues, which show a high degree of conservation within the family, 

in family B receptor signalling. 

A393D showed a mild but significant ~2 fold decrease in receptor potency with a significant ~21% 

positive shift in basal activity. The slight reduction in potency observed might be an evidence for a 

possible hydrophobic interaction of L169 in ICL1 with A393 and I394 in helix 8 in the active CLR 

model structure by Vohra and coworkers (Fig. 4.12). L169A has also been reported to cause ~3 fold 

decrease in the pEC50, suggesting this interaction might be important for receptor activation. The 

increased basal activity observed for this receptor apparently is not readily explainable and so must be 
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due to some other factor(s). There is a possibility that the negatively charged side chain of Asp, from 

the A393D mutation, repels the negative charge of the polar head groups of the phospholipid bilayer 

causing a shift in favour of the active state but not capable of increasing αCGRP potency. This sort of 

repulsion has been observed in V1a vasopressin receptor where the substitution of highly conserved 

Arg125 at the extracellular end of TM3 by an Asp was found to be detrimental due to charge-charge 

repulsion between the Asp side chain carboxyl and membrane lipid phosphate head groups. This 

resulted in increased solvent accessibility at the extracellular end of TM3/TM4 and altered local 

conformation (Hawtin et al., 2006). A393 is conserved in 40% of class B GPCRs (Fig 4.1) and no 

charged residue is present at the same locus in other members of the family. This therefore suggests 

that, even though this A393 might not directly make interactions involved in receptor signalling, it 

may be required for maintaining the inactive-active state equilibrium. This, although, is plausible 

assuming the orientation of Ala in the current model is right. At the same time, the effect posed by 

A393D might be as a result of disruption in the integrity of the helix caused by the charged and 

hydrophilic Asp residue. It will therefore be interesting to see what effect a mutation to Leu will have 

on the receptor function.  

 

Fig 4.12: Model structure of the active form of CLR showing residues A393 (red) and I394 (green) in H8, and 

L169 (purple) in ICL1. These residues are thought to putatively interact during receptor activation.  

A393 

 

 

 

I394 L169 
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Of all the three residues (A393, R397 and W399) in Helix 8 whose mutation showed significant 

decrease in αCGRP potency, A393 and R397 appear to be on the cytoplasmic side of the helix 

considering the helical wheel plot. Going by this, A393, like R397, might be involved in G-protein 

coupling. In spite of this, the most probable explanation observed for the effects of the Ala – Asp 

mutation is a possible disruption in the helix as earlier suggested. Also, in β2-AR, unwinding of the 8
th
 

helix is one of the conformational changes observed to accompany receptor activation (Hulme, 2013). 

It is therefore possible that A393D causes an agonist-independent unwinding of CLR helix 8 resulting 

in constitutive activity observed for this mutant.   

N400A showed a very significant ~36% increase in cAMP basal activity with no significant effect on 

pEC50, Emax or cell surface expression values. It is possible that mutation to this residue causes 

unwinding of the helix thereby shifting the receptor equilibrium towards the active state.  

Although mutation to almost half of the total residues investigated in this chapter caused significant 

reduction in CGRP potency and/or maximum cAMP levels, it cannot be ascertained what role, if any, 

they play in CGRP binding and the formation of the R* form of the receptor. This information is 

limited owning to the unavailability of ligand binding assay data for these mutant receptors. However, 

as they are on the cytoplasmic surface of the receptor, they cannot have a direct role 

It is important to mention that some of these residues that appear to play a role in receptor signalling 

could act by interacting with receptor component protein (RCP). RCP, cytoplasmic protein found to 

co-immunoprecipitate with CLR in cell culture and tissues, are required for CGRP receptor signalling 

(Tolun et al., 2007). The site of interaction of RCP at the receptor complex is still unknown, so it is 

difficult to speculate what effects mutants might have on receptor signalling. This makes CGRP 

receptor signalling more complicated. 

Six of the residues investigated significantly influence α-CGRP mediated receptor internalization. 

W399A and N400A cause significant ~35% and ~29% increase in receptor internalization 

respectively. This strongly suggests that W399 and N400A negatively regulate α-CGRP receptor 

internalization. W399’s effect on receptor internalization agrees with that reported for AM1 
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(Kuwasako et al., 2010). The role of membrane anchor earlier suggested for W399 might have come 

to play here. The mutation of this residue to Ala may favour interaction with β-arrestin that drives the 

endocytosis pathway thereby resulting in increased receptor internalization observed for this mutant. 

F163M showed significant ~43% decrease in internalization. This reiterates the importance of this 

residue, not only in receptor activation but in endocytosis. Although not significant, Ala mutation of 

this residue showed a mild ~16% decrease in receptor internalization. A393D, 1394 and I404A 

resulted in significant ~60%, ~44% and ~35% decrease in receptor internalization respectively. 

Previous studies in porcine CTR and human CLR have indicated the region between positions 391 

and 418 as important for CTR and CGRP receptor internalization (Findlay et al., 1994; Conner et al., 

2008). These results therefore reveal some of the key residues responsible for the role this region 

plays in receptor internalization. The mechanisms involved however need to be investigated. 

Although this region has also been shown to affect receptor internalization in the AM1 receptor 

(Kuwasako et al., 2010), the C-terminus of the GLP2 receptor has been suggested to have no role in 

receptor endocytosis (Estall et al., 2005). This suggests that the role observed for this region might be 

receptor-specific. 

It is interesting to note that almost all mutants, which showed significant effect on cAMP levels, also 

appeared to alter agonist-induced internalization. Although this does not necessarily suggest the 

dependence of receptor internalization on G-protein coupling or vice versa, it rather shows that the 

part of the receptor is important for both cAMP signalling and agonist-induced receptor 

internalization 

In conclusion, these results suggest that the helix 8 of the CLR plays a significant role in cAMP 

response, cell surface expression and receptor internalization. Notably among the important residues 

within this helical region are W399, R397 and A393. I404 in the extended C-terminal region of H8 is 

also noteworthy. The importance of F163 is also very interesting. The investigation of these residues 

in this receptor is novel. As the very limited existing investigations on this receptor region in other 

family B GPCRs are performed employing receptor truncation, more investigations need to be 

conducted to see the role these residues play in other family B GPCRs. As pointed out in Chapter 1 
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however, there could still be huge differences observed for the presence, absence or overall 

conformation of the 8
th
 helix even within the class B GPCRs. This therefore makes interpretations and 

extrapolations from other receptors more difficult. Above all, the availability of a crystal structure will 

help a great deal to better interpret some of these results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



163 
 

Chapter 5: Production of the N-terminal extracellular domains of CLR and RAMP1, -2 and -3 

in Pichia pastoris 

5.1 Introduction 

Most of the work done in the past few years on the CGRP receptor has been on the receptor in its 

native membrane and usually in intact (mammalian) cells. Studies carried out in this way have 

limitations to how much information they can give about the receptor and the forms of interaction 

between its (the receptor) components. Conducting detailed structural investigation on this receptor, 

as for other GPCRs, involves carrying out biophysical studies on isolated receptors and this normally 

requires that the protein be produced in some larger quantity than would happen in cells where it 

naturally occurs. For this reason, recombinant protein production techniques are usually employed to 

make large amounts of GPCRs for various studies. This technique involves subcloning and expressing 

the GPCR gene in prokaryotic (most commonly Escherichia coli) or eukaryotic (most commonly 

yeast, insect or mammalian) cells, with the growth conditions optimized to increase the rate of the 

protein synthesis pathway. Each of these expression systems has its own peculiar features and the 

choice of expression system usually depends on the purpose of study (which includes the amount of 

protein desired) and affordability (Terpe, 2006), with a generally valued consideration believed to be 

the evolutionary closeness of the host system to the target membrane protein (Bill et al., 2011). The 

GPCRs produced in this process are isolated from the cell membrane, which would usually contain 

other (unwanted) proteins, and purified. This isolation process requires the use of detergents or other 

lipid mimics e.g. styrene maleic acid lipid particles (SMALPs) (Knowles et al., 2009) to provide an 

artificial amphipathic membrane-like environment for the proteins in solution.  

The entire production process of GPCRs is a difficult task. The reasons for this range from 

insufficient yield to the inability of making a perfect environment that mimics that of the natural 

cellular membrane, which houses the transmembrane domain. Though some detergents have been 

successfully used to achieve this purpose for some GPCRs, they have also been reported to have 

negative impact on the stability of GPCRs (Lundstrom, 2005; Kobilka, 2007). This has particularly 
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been the bane of successful crystallization especially for family B GPCRs, which assume variable 

conformations when purified in detergents (Bill et al., 2011). This problem is compounded by the fact 

that these receptors need to retain their functions as much as possible outside their native 

environment. A way of avoiding this problem has seen researchers producing and working with the 

truncated forms of these receptors, especially the N-terminal extracellular domain (ECD). The 

absence of the TM domain makes the ECD easier isolate and study. However, it should be clearly 

noted that although the difficulty in producing the TM domains of these proteins have led to more 

concentration on the ECDs, the ectodomains in themselves play a large role in ligand binding and 

receptor activation, and hence hold a lot of importance. There have been successes recorded for the 

family B GPCRs due to their large (~100 – 160 amino acids) ECD, which can interact with ligands 

without the transmembrane domain (Hoare, 2005; Perrin et al., 2003; Koth et al., 2010; Kumar et al., 

2011).  This forms the basis of this project. 

The CLR differs from other family B members by being the only member that absolutely requires 

RAMP1, RAMP2 or RAMP3 for its function. Therefore, any study intended on the CLR would 

normally involve the RAMP. Here, a strategy developed to produce the ECDs of the CLR and 

RAMP1, -2 and -3 (hereafter referred to as RAMPs except otherwise stated) in a eukaryotic system is 

reported. Expression in this system avoids the issues associated with the absence of posttranslational 

modification peculiar with prokaryotic expression system. In this segment of the research project, 

genes encoding the ECDs of the CLR and RAMP were amplified and subcloned into a Pichia pastoris 

(yeast) vector – pPIC9KMep_Net. The yeast cells were transformed with the resulting constructs from 

the subcloning. The genes were expressed and the receptor proteins produced. The proteins were 

analysed by western blot analysis to determine if the proteins of interest had been produced. The 

protein samples were used for further biophysical characterization. 

Overall, the proteins produced in this study were intended to be used for interaction studies using 

surface plasmon resonance (SPR). This is aimed at developing an SPR-based tool for investigating 

novel interacting partners for RAMPs.  
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5.2 Results  

5.2.1  Defining the sequence of CLR and RAMP N-terminal ECDs for recombinant 

expression 

The optimum sequence to express as the soluble ectodomain of the receptor proteins (CLR and 

RAMP1, -2 and -3, hereafter called RAMPs) were determined with the help of sequence homology 

with other family B GPCRs in earlier research works (Augen et al., 2008) and the Uniprot
TM

 

bioinformatics database. The RAMPs ECD residues were also determined in reference to Kusano et al 

(2008) and employing the Uniprot
TM 

with slight modifications. For instance, RAMP1 and RAMP3 

were mapped a residue earlier than reported by Kusano et al (2008) to avoid having the disulphide-

forming Cys residue as the first residue. The residues making up the CLR and RAMP1 ECDs were 

drawn with the assistance of Dr James Barwell.  These amino acid sequences, for the proteins 

produced in this research work, are shown in Fig 5.1. The number of residues and some key features 

(e.g. glycosylation sites and disulphide bonds) of these domains are summarised in Table 5.1.   
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Fig 5.1: Amino acid sequence of the N-terminal extracellular domains of CLR and RAMPs. Putative N-

glycosylation sites are highlighted red while disulphide-forming Cys residues are highlighted yellow. The 

RAMP3 disulphide Cys residues were determined based on sequence homology with RAMP1 and 2. 

 

Table 5.1: Some key features of the ectodomains of CLR and RAMPs 

Protein N-terminal 

residues 

positions 

No of 

residues 

 Calculated 

MW + tags 

(~KDa) 

No of 

glycosylation 

sites 

Di-sulphide 

bonds 

CLR 23 – 133 111 18 3 3 

RAMP1 26 – 117 90 16 0 3 

RAMP2 43 – 145 103 17 1 2 

RAMP3 27 – 119 93 16 4 2 
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5.2.2 Construction of CLR/RAMP expression vector 

The genes of interest (i.e. CLR/RAMPs) were amplified by polymerase chain reaction (PCR). The 

resulting PCR products (Fig 5.3a) were inserted into the pPIC9K_MepNet expression vector (Fig 5.2) 

following digestion of the PCR product and the vector. The vector digestion was confirmed by 

running an agarose gel electrophoresis (Fig 5.3b). The inserts, indicated by the lower bands, confirms 

this. 

 

       

   

 

  

 

 

 

 

Fig 5.2: (a) Schematic representation of the P. pastoris expression vector for recombinant production of the N-

terminal ECD of CLR, RAMP1, RAMP2 and RAMP3. The various regions indicated are the coding regions for; 

the 5ʹalcohol oxidase 1 gene promoter (5ʹpAOX1); α-factor (α-F) secretional signal from Saccharomyces 

cerevisiae; FLAG-tag; decahistidine (10His) tag; tobacco etch virus (TEV) protease cleavage site; biotinylation 

(Bio) tag from Propionibacterium shermanii and the terminator (Stop) domain. BamHI and SpeI are the 

restriction endonucleases used to clone the receptor ECD genes. (b) Vector of pPIC9K_MepNet constructed 

using the Serial Cloner v2. 

a 

b 
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Fig 5.3: (a) Agarose gel picture of the receptor genes PCR products; L= ladder, 1 = N-terminus of RAMP3 (277 

bp); 2 = N-terminus of CLR (332 bp); 3 and 4 = full length of CLR (1134 bp). (b) Digestion of the pPIC9K 

plasmid with BamH1and Spe1 restriction endonucleases. Both lanes represent the cut plasmid. The insert is 

indicated by the arrow.  

 

5.2.3 Transformation 

The integration of the cloned plasmid vector into the Pichia cells was confirmed by colony PCR. 

Colonies were picked at random, each representing either a CLR, RAMP2 or RAMP3 clone. The 

clone loaded in each lane was noted. The bands observed corresponds with the number of base pairs 

(~800bp) expected for the cloned genes (Fig 5.4). The 800 bp represents the number of bp 

CLR/RAMP2/RAMP3 in addition to the number of bp between this gene and the primer sequence on 

the expression vector. This indicates that the respective clones contain the desired inserts. Going by 

the result from the colony PCR, an integration frequency of ~40% was observed as roughly 3 out of 

every 8 colonies showed bands corresponding to the expected 800 bp for each receptor protein ECD 

construct. It is important to note however that this might not represent the actual integration frequency 

as the colony PCR might have failed for some samples owning to reasons such as too many cells 

(from transformant colony) being present in the PCR reaction mix.   

 

b a 
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Fig 5.4: Colony PCR to confirm integration following transformation. Each lane represents a 

CLR/RAMP2/RAMP3 colony picked at random. The bands indicated by the arrow show that the cloned gene is 

present in the respective colonies. 

 

5.2.4 Screening (small scale expression) of transformants 

Having confirmed integration, the genes were expressed in a 24-well expression plate in a 3ml 

volume per well. A 20µl aliquot of the sample from each expression medium was analysed by western 

blot (Fig 5.5).           

 

Fig 5.5: Western blot analysis of the 10xHis-tagged CLR, RAMP2 and RAMP3 transformants in expression 

medium using the manual method. Wells 1-3= CLR; 4-6=RAMP3; 7-8=RAMP2 

1      2     3        4       5       6       7       8 
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All the visible bands were observed to be retained in the wells of the polyacrylamide gel. This was not 

as expected as it appears the proteins have not traversed the gel. The photographic film for the 

western blot at this stage had been fixed and developed manually, it was therefore not clear whether 

the result obtained was due to the technique employed in the fixing and development of the film or 

something else. In order to eliminate any doubts arising from the detection system employed in the 

western blot procedure, there became the need to use a more trusted and automated system (e.g. a 

CCD camera) for the detection process. 

  

5.2.5 Troubleshooting the expression and Western blot analysis procedures 

Since the use of photographic film was not sufficiently reliable as a detection method, a CCD camera 

was used to repeat the detection. No visible bands were obtained (Fig 5.6). It was not clear if the 

western blot had failed, not enough protein had been loaded or there was no

expression. The process was therefore repeated with increased concentrations of protein sample and 

antibody used in the same and separate experiments. No significant changes were observed. 

             

       1        2       3       4      5        6       7      8 

 

Fig 5.6: Western blot analysis of the 10xHis-tagged transformants in expression medium using the CCD camera 

system. Wells 1-3= CLR; 4-6=RAMP3; 7-8=RAMP2 
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At this point, it was thought that since the protein had been stored at -20 °C for ~90 days, it might 

have been degraded and therefore be the reason why virtually nothing appeared on the western blot 

image.  As the proteins had not previously been expressed by this means, their susceptibility to 

degradation was unknown. The expression process was therefore repeated to produce fresh samples 

for analysis.  

To improve the analysis, the percentage of polyacrylamide resolving gel used was also explored. A 

10% and 15% polyacrylamide resolving gel was used together with the 12% already employed in the 

previous analyses. As a positive control for the sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS PAGE) and the western blot, a set of His-tagged molecular weight markers, 

detectable on western blot, was used.  

The results confirmed that both the SDS PAGE and western blotting processes were working (Fig 

5.7a & b). In addition to finding the best gel percentage for the protein analysis, a 4-20% gradient gel 

was used. Although the images obtained on this occasion showed the loaded samples were traversing 

the gel, there were no clear bands seen as the samples were all smears (Fig 5.7a – c). This process was 

repeated to check for consistency but the results remained similar. Thus it seemed the western blot 

was working but that there might be something wrong with the sample. It was also concluded at this 

point that the manual photographic film method of detecting the blot was not in itself responsible for 

the bottlenecks earlier encountered. 
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Fig 5.7: Western blot analysis of the 10xHis-tagged transformants in expression medium with different 

percentages of SDS gel. 10% (a) 15% (b) and 4-20% (c) gradient gels. M=marker; wells 1-3= CLR; 4-

6=RAMP3; 7-8=RAMP2.  

 

It was now not clear whether the protein of interest was being produced, either at the induction or 

some other stage. It was thought that the proteins appearing on the western blot might be a yeast 

protein with multiple histidine residues and which was detected in the western blot by non-specific 

interaction with the anti-His antibody. To check the expression process, positive and negative controls 

were therefore devised. For the positive control, a green fluorescent protein (GFP)-transformed Pichia 

pastoris cell sample, already successfully used to produce GFP by Holmes et al. (2009), was obtained 

 kDa 

 

a b 

c 
M       1        2    3    4     5    6    7   8 
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from Dr Sarah Routledge (Aston University). The negative control was an untransformed X33 strain 

of the Pichia pastoris – the same strain used to express the target proteins of interest.  

Following another expression trial with these controls, it became clear that the process was working 

as a clear band was seen for the GFP at the correct molecular weight (Fig 5.8). The problem of smears 

and unclear bands however, still persisted for the CLR and RAMP3 samples. It was then thought at 

this point that there might be substances in the expression medium interfering with the protein and 

making them aggregate and/or produce smear. To rule out this factor of interference, there was 

therefore a need for the samples to be purified. 

                

 

Fig 5.8: Western blot analysis of expressed tranformants and the GFP. M=marker, Lanes 2=GFP; 3&4=CLR; 

6=RAMP3. The arrow indicates the GFP band.  

 

5.2.6 Troubleshooting by purification of samples  

The samples were purified using the batch method, modified from Singh et al (2010) and optimized 

for this expression. For instance, the equilibration buffer contained 20 mM imidazole to minimize 

non-specific binding and the protein-resin mixture was incubated overnight at 4°C to maximize batch-

binding. Following purification and another western blot analysis, some clear, though faint, bands 
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were seen for RAMP3 (Fig 5.9a) but not for CLR (Fig 5.9b). The GFP positive control showed that 

the purification process was working (Fig 5.9b). Although the purification process appeared to have 

yielded some positive result as observed for the RAMP3, the persistence of this problem for the CLR 

sample required the troubleshooting process to be taken a step further. The conclusion at this point 

was that it was possible that the smearing was due to the glycosylation of the expressed proteins. This 

therefore presented the need to conduct a deglycosylation reaction. 
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Fig 5.9: (a) Western blot analysis of purified 10xHis-tagged RAMP3 protein sample. M = Marker; C = crude; 

FT = flow through; W1 & 2 = 1st and 2nd washes respectively; E1, 2 & 3 = 1st, 2nd and 3rd elutions 

respectively. Arrows indicate bands most likely corresponding to the different glycosylated forms of RAMP3. 

(b) Western blot analysis of purified 6xHis-tagged GFP and 10xHis-tagged CLR. M=marker, Wells 1=crude 

GFP; 2=GFP wash; 3=GFP elution; 4=crude CLR; 5= CLR wash; 6&7=CLR elutions 1&2 respectively.                     

 

Consequently, a deglycosylation reaction was carried out to remove the sugar bound to the protein. 

This procedure resulted in the CLR for the first time appearing as bands of the expected molecular 

weight (Fig 5.10). Although some smears still appeared with the RAMP3 sample, clear bands around 

the right molecular weight for the monomer and dimer for this protein could be observed (Fig 5.10). 

     75 

   25 

  15 

  10 

 kDa       M      1       2         3         4        5       6       7 
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An SDS PAGE analysis and fluorescent staining was performed for these samples, the bands excised 

and sent for mass spectrometry analysis to confirm that they were the proteins of interest. 

      

 

Fig 5.10: Western blot analysis showing deglycosylated and untreated protein samples. M=marker; Wells 

1=Deglycosylated CLR; 2=Non deglycosylated CLR; 3&5=Deglycosylated RAMP3; 4&6=Non deglycosylated 

RAMP3; 7=Deglycosylated RAMP2; 8=Non deglycosylated RAMP2. 

 

5.2.7 Large scale expression 

Having isolated suitable expression clones and optimised their purification, 150ml volume expression 

was carried out in shake flasks in order to obtain sufficient material for biophysical characterization. 

The protein samples were harvested and purified. Silver stain and western blot analyses were carried 

out and showed the samples were successfully purified as bands corresponding to the correct 

calculated molecular weights were observed for the proteins with no bands observed for the control 

condition (Fig 5.11 and 5.12). The silver-stained SDS polyacrylamide gels in Fig 5.11b, 5.11c and 

5.11d show the bands (indicated by arrows) for the CLR, RAMP3 and RAMP2 respectively at the 

correct calculated molecular weight. Although some multiple bands were observed for the CLR and 

RAMP3 proteins, this was thought to be due to degradation, aggregation, oligomerization as well as 

glycosylation. The effect of glycosylation may be as a result of full or partial glycosylation as 

   10 
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    M      1       2         3         4        5       6       7         8 
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reported, for instance, for CLR by Flahaut et al. (2003). The negative control (Fig 5.11a), as expected 

showed no observable band(s).          

 

 

              

d           

 

 

 

 

 

Fig 5.11: Silver staining for the purified CLR, RAMP3 and RAMP2 samples. (a) Untransformed X33 (negative) 

control; (b) CLR; (c) RAMP3; (d) RAMP2. The bands corresponding to the right molecular weight of these 

proteins are indicated by arrows. The shorter arrows for RAMP3 probably represent fully and partially 

glycosylated RAMP3. M=prestained marker; M2=His-tagged marker; FT=flow through; W1, W2 & 

W3=Washes 1, 2 & 3 respectively; E1&E2= Elutions 1&2 respectively.  
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The western blot pictures, like the silver staining, also reveal these proteins at their calculated 

molecular weight (Fig 5.12b – d). However, unlike the silver staining, no multiple bands were 

observed below the right molecular weight of the CLR. This is probably because there were no His 

tags present on the degraded fragments of these proteins.     

 

 

 

Fig 5.12: Western blot analysis of the purified CLR, RAMP3 and RAMP2 samples. (a) Untransformed X33 

control; (b) CLR; (c) RAMP3; (d) RAMP2. The bands corresponding to the right molecular weight of these 

proteins are indicated by the arrows. The double arrow in c probably reflects the varying glycosylation pattern in 

RAMP3. M=prestained marker; M2=His-tagged marker; FT=flow through; W1, W2 & W3=Washes 1, 2 & 3 

respectively; E1&E2= Elutions 1&2 respectively. Markers are marked in kDa. 
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The protein samples were also subjected to analytical ultracentrifugation (AUC) to further check for 

oligomerizaton and/or aggregation. The results obtained (Fig 5.13) were consistent with those 

obtained for silver staining (Fig 5.11). To also check for a possible association between CLR and 

RAMP2 or RAMP3, 1:1 molar ratio mixture of CLR and RAMP2 or CLR and RAMP3 were 

incubated for 24h at 4°C and then subjected to AUC. From the AUC profile (Fig 5.13) there are 

several peaks, though broad, which could represent CLR/RAMP ectodomain association and/or 

individual ectodomain aggregation.      

 

Fig 5.13: Analytical ultracentrifugation analysis of protein samples. CLR (blue), RAMP2 (cyan), RAMP3 

(pink), CLR/RAMP2 (brown), and CLR/RAMP3 (purple).  CLR/RAMP2 or CLR/RAMP3 were a 1:1 mixture 

of CLR and RAMP2 or -3 in a 0.5 ml total volume and were incubated at 4°C for ~24 h before ultra-

centrifuging; please see Chapter 2 for further experimental procedures.  
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5.2.8 Wild type versus protease-deficient strains in CLR and RAMPs production 

The presence of multiple bands observed for purified CLR and RAMP3 protein samples was a point 

of concern. The reasons for this, as earlier mentioned, have been attributed to the singular or 

combined effect(s) of aggregation, oligomerization and degradation. The latter is most likely 

responsible for the bands observed below the calculated molecular weight of these proteins. In order 

to check for the possibility of alleviating the problem of degradation without altering the purity of the 

protein (e.g. without the addition of a protease inhibitor), these protein constructs were expressed in 

the protease-deficient (SMD1163) strain and compared to the wild type (X33) strain. Following 

expression and purification of these proteins, no observable difference was noticed for the CLR and 

RAMP3 expressed in both strains after SDS PAGE silver staining and Western blot analyses (Fig. 

5.14). However, a very significant difference, this time in protein quality, was observed for RAMP1 

with the protease-deficient strain producing a clear and distinct band as opposed to the wild type (Fig. 

5.14) 

 

 

Fig 5.14: Silver-stained and Western-blotted SDS PAGE pictures of eCLR and eRAMPs produced in the wild 

type (a) and protease-deficient (b) strains of P. pastoris. The bold arrow indicates the corresponding calculated 

molecular weights of these proteins. The light arrow indicates likely product of degradation. 
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5.2.9 Deglycosylation of eCLR and eRAMP3 revealed clear protein bands  

Protein samples of eCLR and eRAMP3 from the expression performed in section 5.8 were 

deglycosylated by treating with endoglycosidase H (Endo H). This was done to again test the 

hypothesis that deglycosylating these proteins helps their mobility and separation on SDS PAGE. The 

silver-stained and Western-blotted polyacrylamide gel pictures reveal clearer and more distinct bands 

for the eCLR and eRAMP3 fragments. This is shown in Fig 5.15.  

 

 

Fig 5.15: Silver staining (a) and Western blot (b) analysis of glycosylated and deglycosylated (Endo H-treated) 

eCLR and eRAMP5. 1 & 2 – MW markers; 3 – eCLR (X33) deglycosylated; 4 – eCLR (X33) glycosylated; 5 – 

eCLR (SMD1163) deglycosylated; 6 – eCLR (SMD1163) glycosylated; 7 – eRAMP3 (X33 deglycosylated; 8 – 

eRAMP3 (X33) glycosylated; 9 – eRAMP3 (SMD1163) deglycosylated; 10 – eRAMP3 (SMD1163) 

glycosylated. X33 – Wild type host strain; SMD1163 – Protease-deficient strain. The arrows indicate the distinct 

bands for eCLR and eRAMP that corresponds with their calculated molecular weight in their respective lanes.  

 

From Fig 5.15, distinct bands were observed for these natively glycosylated proteins following 

treatment with a deglycosylation enzyme. This is more appreciable on the silver staining gel picture 

(with arrow indications). The bands below those of the right molecular weight are most likely 

products of degradation, although the ones closest to the actual bands may represent partially 

glycosylated protein fragments as earlier suggested in section 5.2.7. This is therefore in correlation 

a b 
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with earlier experiment carried out in section 5.2.6 where deglycosylation was shown to aid 

distinctiveness of bands.  

Moreover, it is worth mentioning that deglycosylation also helped in revealing potential oligomers for 

the different protein samples. This is clearly observed in the Western blot picture for lanes 

representing deglycosylated proteins (Fig 5.15, lanes 3, 5, 7 and 9).   

 

5.2.10 Circular dichroism showed proteins were folded 

Intact unmodified protein samples of CLR and RAMPs were analysed primarily to determine if they 

were folded or not, i.e. if they exist in their secondary structural conformation. Since the secondary 

structural content of these proteins are known (ter Haar et al., 2010; Kusano et al., 2011), circular 

dichroism profiles would reveal if they are richly α-helical, mainly composed of β-sheet or both. The 

results reveal that CLR contains both β-sheet (~45%) and α-helix (~10%) while the RAMPs are 

predominantly α-helical (over 80%) (Fig 5.16). Although the α-helical profile observed for RAMP3 is 

less pronounced compared to RAMP1 and RAMP2, this is probably due to the quality of the protein 

sample. It is important to note that the secondary structure estimation obtained via this system is not 

always representative of the exact secondary structure component of the protein as there are limiting 

factors and so should serve as a guide. For instance, the technique requires the accurate protein 

concentration and this is difficult to obtain as most methods for determining protein concentration 

vary with protein types (Kelly at al., 2005).    



183 
 

 

Fig 5.16: Far UV CD spectra of CLR and RAMPs. 1 mm cuvettes were filled with 0.7 – 1.0 mg/ml of protein 

samples (one for each) dialysed in 50 mM sodium phosphate buffer pH 7.5. Spectra were recorded from 260 to 

190nm with 8 scans averaged for each sample.  Arrows indicate troughs and shoulders at around 208 and 222 

nm respectively indicating the presence of α-helix. 

 

The CLR and RAMP2 samples were tested for their interaction using the SPR. This was done to 

develop an SPR-based system with which novel interacting partners of RAMPs could be detected.  

CLR was immobilized and RAMP2 applied to the immobilized phase to investigate binding. 

Although the immbolization of CLR was successful (Fig 5.17a), the association of RAMP2 was 

inconclusive as nonspecific binding was also observed (Fig 5.17b). The nonspecific binding might be 

due to imperfect immobilization of the CLR or some technical reasons and therefore required 

troubleshooting.   
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Fig 5.17:  Surface plasmon resonance sensograms for the (a) immobilization of CLR and (b) binding of RAMP2 

to CLR. C-terminally biotinylated CLR ECD was immobilized on streptavidin-coated sensor chip and RAMP2 

run over to investigate any specific interaction (see section 2.3.2.3 for more details on methodology).  The 

difference in the two levels indicated by arrows in (a) is indicative of successful immobilization. The similarity 

observed in the pattern of the two horizontal lines indicates that there was non-specific binding. 

 

a 

b 
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5.3 Discussion 

The soluble N-terminal extracellular domains of the human CLR and RAMP1, -2 & -3 have here been 

successfully produced, albeit with some bottlenecks, especially the heavy glycosylation of CLR and 

RAMP3. The recombinant expression of these receptor proteins’ soluble N-termini was accomplished 

by the presence of an α-factor secretion peptide upstream the plasmid vector cloning site. This 

secretion peptide was necessary as CLR requires the RAMPs for trafficking to the cell surface from 

the endoplasmic reticulum (McLathie et al., 1998, Miret et al., 2002) and vice versa, though to a 

certain and varying degree(s) (Hilairet et al., 2001; Flahaut et al., 2003). The constructs also 

contained a 10xHis epitope tag in-frame to the 5ʹ end of CLR- or RAMP-encoding cDNA for 

purification and detection.  

The results obtained at various stages of the expression and characterization processes showed the 

success of the strategy employed in the production of these receptor proteins. Although the expression 

of human CLR and RAMPs in some eukaryotic systems e.g. S. cerevisiae (Miret et al., 2002) and 

Xenopus oocyte (Flahaut et al., 2003) have been reported, none has been reported for the ectodomains 

of these receptor proteins in P. pastoris. The major problem encountered in this study was the 

heterogeneous glycosylation of these proteins especially for CLR and RAMP3. These N-glycosylation 

sites are all localized within the N-terminus of the proteins. The inability of the protein samples to 

efficiently traverse the gel was totally alleviated following protein deglycosylation (Fig 5.10). It is 

most likely that the heavily formed sugar moieties caused the forming of smears. Smearing is usually 

observed for glycosylated proteins expressed in eukaryotic expression systems (Miret et al., 2002; 

Flahaut et al., 2003). Apart from the mobility of these proteins, deglycosylation also helped reveal a 

clearer resolution and distinct bands (Fig 5.10 and 5.15). Deglycosylation helped reveal bands 

corresponding to dimers especially for CLR at ~37 kDa and RAMP3 at ~32 kDa, which were not 

clearly observed for the non-deglycosylated forms (Fig 5.10 and 5.15b). This, together with that 

observed for RAMP1 and RAMP2 in the western blot analysis of Fig 5.14, suggests that CLR and 

RAMPs form stable homodimers which are resistant to denaturing and/or reducing conditions. This 

finding is consistent with that observed for RAMP1 and RAMP3 by Sexton et al. (2001). This current 
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study further reveals that the dimerization could be independent of the transmembrane domains of 

these proteins, although the degree or nature of dimerization may vary. It is also possible that RAMP3 

also forms a homotrimer as reflected by bands observed at around 50 kDa which is consistent in the 

results obtained in Fig 5.10 and 5.15.        

It is not known what role homo-oligomerization specifically plays in overall receptor signalling. CLR 

and RAMPs associations have been consistently described as a 1:1 heterodimerization (McLatchie et 

al., 1998; ter Haar et al., 2010; Kusano et al., 2011) meaning that it is unlikely to play a role in 

receptor formation. However, as suggested by Sexton et al. (2001), it is possible that homo-

oligomerization plays a role in regulating the amount of component protein available for CLR/RAMP 

hetero-dimerization for functional receptor formation, or even by preventing the availability of the 

receptor for endocytosis pathway especially in the case of CLR. In a broader sense, this could also 

imply some individual functions played by CLR or RAMPs independent of the other but this remains 

speculative.  

The multiple bands observed for RAMP3 in Fig 5.11c (bands indicated by short arrows, though faint) 

and in Fig 5.15a (lane 8) imply its heterogenous glycosylation and is consistent with those observed 

for this protein in previous studies (Flahaut et al., 2003; Sexton et al., 2001). Although the RAMP3 

protein expressed in these previous studies was the full length, this should not affect the glycosylation 

pattern as the glycosylation sites of RAMP3 (as with CLR and RAMP2) are located within the N-

terminus. RAMP3 has four consensus N-linked glycosylation sites at N28, N58, N71 and N103 (Fig 

5.1) which are glycosylated to various degrees with N71 and N103 more efficiently glycosylated than 

N28 and N58 (Flahaut et al., 2003). This protein therefore usually appears as 3 molecular species and 

here in this study, was observed at around 19, 21 and 24 kDa (Fig 5.11c). The band corresponding to 

the 16 kDa marker could be as a result of incomplete glycosylation while the bands below the 

molecular weight mark of 15 kDa, especially observed in Fig 5.15, are most likely degraded 

fragments of the protein. CLR on the other hand has N-linked glycosylation sites at positions 66, 118 

and 128 (Muff et al., 2001) but usually show uniform glycosylation and was observed as a single band 

for the full length receptor expressed in a eukaryotic expression system (Flahaut et al., 2003). In Fig 
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5.11b and 5.12b, purified CLR ECD showed a distinct band at around 23 kDa which is ~ 5 kDa higher 

than the calculated MW as a result of glycosylation. This is therefore in agreement with the work of 

Flahaut et al. (2003). Although there were additional bands observed below the said MW mark in Fig 

5.11b, these are most likely as a result of degradation and/or the loss of the epitope tag as these bands 

were not observed in the equivalent western blot picture (Fig 5.12b). The loss of epitope tag has also 

been observed for calcitonin receptor and RAMP1 expressed in Escherichia coli (personal 

communication with Dr Harriet Watkins, University of Auckland, New Zealand). This suggests that 

the P. pastoris expression system could be a good representation of the mammalian system in 

recombinantly producing these receptor proteins especially when considering posttranslational 

modifications such as glycosylation. 

The role of glycosylation in calcitonin family peptide receptor pharmacological properties has not 

been well established. While CLR is terminally glycosylated when co-expressed with RAMP1 in 

mammalian cells, it shows core glycosylation in the presence of RAMP2 or -3 suggesting that 

glycosylation may play a role in CLR and RAMP association (Foord and Marshall. 1999), although 

this was thought to have been influenced by the choice of epitope tag and concluded that RAMPs 

made no difference to glycosylation (Hilairet et al., 2001). In Schneider insect cells, the glycosylation 

of CLR is undisturbed by any of the RAMPs but still influenced its functioning (Aldecoa et al., 2000). 

In CLR, single mutation of N60 or N112 to threonine had no significant effect on cell surface 

expression while double mutation of same residues to threonine disrupted cell surface expression and 

N117T substitution impaired receptor function in the presence of RAMP1 and -2 (see Buhlmann et 

al., 2000 and Gujer et al., 2001). It is still not certain if these effects were as a direct result of altered 

glycosylation as N117D mutation showed caused no significant deviation from WT. In other words, 

the role of glycosylation in receptor signalling still hangs in the balance but from all indications, it 

cannot be discarded.  

The protease deficient strain tested due to the recurrent issue of degradation did not offer any 

noticeable remedy especially for CLR and RAMP3 (Fig 5.14). This is not unexpected as there have 

been mixed reports about the successes recorded in the use of these strains in alleviating the problem 
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of proteolytic degradation (reviewed in Macauley-Patrick et al., 2005). The protease-deficient strain 

SMD1163 (his4 pep4 prb1), used in this study, has disruption in the genes encoding proteinase A 

(PEP4) and B (PRB1) which results in the inactivation of vacuolar aspartyl protease and some 

vacuolar carboxypeptidase (see Chapter 1 for details). It is possible that these proteases are not mainly 

responsible for the degradation of CLR and RAMP proteins expressed herewith. Interestingly, the 

protease-deficient strain offered a very noticeable difference for RAMP1 in terms of protein quality 

(Fig 5.14). While faint and multiple bands were seen for RAMP1 expressed in the WT (X33) strain, a 

very distinct band was observed for RAMP1 expressed in SMD1163 (Fig 5.14). It is possible at this 

instance that this strain has contributed to RAMP1’s resistance to proteolytic degradation. This 

implies that the benefits of this strain (and possibly other protease deficient strains) could be protein-

specific, meaning that a strain could be successfully used to express a particular protein but expresses 

another poorly.  

RAMP2 was resistant to proteolytic degradation, at least under the same circumstance as other 

proteins (Fig 5.14), irrespective of the expression host strain. This makes this a little more 

complicated but interesting. Moreover, going by the data obtained from AUC analysis of CLR and 

RAMP2 and -3, RAMP2 showed no peaks that could be likened to aggregation unlike the case of 

CLR and RAMP3. Instead, it showed a very distinct peak corresponding to the glycosylated monomer 

at ~ 20,000 Da and a much smaller peak corresponding to a trimer at ~ 60,000 Da. The reasons for 

these varying observations are difficult to predict. RAMP2 has only one glycosylation site at N130 

(Kusano et al. 2011). It is uncertain whether the aggregation of CLR and RAMP3, from the several 

broad peaks observed for them in Fig 5.13, are influenced by their glycosylation status. Possible 

reasons and underlining mechanisms for these varying observations are still open to experimental 

findings.   

Another interesting feature in the results obtained in this study is that the proteins were found to be 

folded. This was interesting because being the N-terminal ECD and individually expressed for the 

first time, it was not certain what effect this would pose on the overall secondary structures of these 

receptor proteins. The circular dichroism (CD) plots of RAMP1, -2 and -3 (Fig 5.16) revealed spectra 
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typical of rich α-helical content with troughs at around 208 and 222 nm and a peak at near 190nm 

(Kelly et al., 2005). Crystal structures exist for RAMP1 (Kusano et al., 2008) and RAMP2 (Kusano et 

al., 2011) which showed these proteins to be predominantly (up to 90%) α-helical. Although no 

similar structure currently exists for RAMP3, it is assumed that they show similar structural 

architecture as RAMP1 and -2. The slightly altered CD spectra of RAMP3 could be as a result of its 

heavy heterogeneous glycosylation. Glycosylation of proteins is capable of altering their CD spectra 

albeit to a reasonably low degree (Liu et al., 2007). This could also be a reflection of the protein 

quality as an aftermath of protein glycosylation. CLR on the other hand showed that it contains anti-

parallel β-strands as well as α-helix and random coil (Fig 5.16). Like RAMP1 and -2, crystal 

structures exist for CLR ECD (ter Haar et al., 2010) and the overall constituent of this protein is 

reflected in the far UV spectra with the antiparallel β-strand been predominant over α-helix with a 

converged minimum between 210 and 220 nm and a peak at about 192 nm (Kelly et al., 2005). 

Moreover, the spectra obtained here for CLR ECD agrees to an appreciable extent with that reported 

for the mouse CRFR2β ECD (Perrin et al., 2003). 

In conclusion, the successful production of the CLR and RAMPs ECD in P. pastoris eukaryotic 

expression system has been established. The heavy heterogeneous glycosylation of the proteins, 

especially for CLR and RAMP3 which was a bottleneck, was overcome by deglycosylating the 

proteins and this has also provided more information about homo-dimerization of these receptor 

proteins independent of one another. Also, the successful immobilization of the CLR ECD on SPR 

makes this system promising as a tool for investigating novel interacting partners of RAMPs. 

Obtaining these receptor proteins as individually folded moiety was another highlight of the successes 

recorded in this work, although it is not yet known how this may affect CLR/RAMPs interaction. 

Above all, this strategy has now produced the soluble N-terminal extracellular domains of CLR and 

RAMP1, -2 and -3 which could now be used for further biophysical characterization. This looks 

promising and could be extended to determining novel receptor-receptor heterodimerization and non-

receptor partners. 
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Chapter 6: General discussion and Conclusion 

The CGRP receptor has a more complex pharmacology than other GPCRs. This is largely due to 

CLR’s associations with the receptor activity modifying protein 1 (RAMP1) and receptor component 

protein (RCP), which are required to form a functional receptor. A clear mechanism of receptor 

signalling is yet to be established for this receptor. This has not been helped by the lack of a full 

receptor structure for this receptor or any other family B GPCRs. Using (mainly alanine scan) 

mutagenesis, this thesis has dug further into this mechanism by investigating residues within the N- 

and C-termini with the aim of better understanding how this receptor performs its signalling. Results 

obtained have been interpreted based on the general paradigm of the family B GPCRs and available 

information from the family A. The soluble N-terminus of the CLR and RAMP1, -2 and -3 (RAMPs) 

have also been produced and characterized to help develop a system that studies RAMPs interaction 

with other receptors.  

Chapter 3 investigated the N-terminal extracellular domain (ECD) of the CLR as a component of the 

CGRP receptor. Mutation of all residues selected for investigation significantly affected, to a varying 

degree, αCGRP potency, αCGRP-mediated receptor internalization and/or cell surface expression. 

The exception to this was D90A that showed significant, but relatively negligible, effect on cAMP 

stimulation and behaved like wild type in other parameters employed for analysing the mutants. These 

residues are mainly localised within the β hairpin structure and loop of CLR ECD. The localization of 

these residues, which have now been shown to be crucial for receptor signalling, implies that these 

strictly structurally conserved β hairpin and loop structures are highly significant for the distinct 

ligand binding and activation prototype of this family of receptors. This is a possible explanation for 

the works of Stroop et al. (1995) and Bergwitz et al. (1996), for instance, where hybrid receptors 

(from within the B family) of varying N-terminus and Juxta domain with C-terminus displayed 

similar pattern of ligand-receptor interaction with corresponding composite ligands (reported in 

Chapter 1). Despite the positions occupied by thse resides wihin the N-terminal ECD of CLR as well 

as the significant effects their mutations showed on receptor signalling when compared to wild type, it 

could not be ascertained if they directly interact with CGRP. This is, as earlier stated, as a result of the 
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unavailability of CGRP binding data which would indicate an effect of mutation on KD. Thus their 

role in ligand binding remains, to some extent, speculative. 

Although the N-terminus has been widely recognised as mainly required for ligand binding, 

investigation on the ECD also suggests a possible role in regulating the pathways for receptor 

coupling Gs or β-arrestin. This is suggestive from the result obtained for the K103A mutant receptor 

(Chapter 3), although there could also be some other residues within the ECD with similar role acting 

individually or synergistically. Possible mechanisms for this might be that the residue(s) influences 

the orientation of CGRP receptor in such a manner that it is committed to Gs coupling and not β-

arrestin and vice versa. It is also possible that such residue affects the conformation of the ECD and 

consequently stabilizes the EC loops, and possibly the TM, in a conformation that influences Gs 

coupling or β-arrestin binding. This thus shows the need for more information on the ECD/TM bundle 

interface.  

As mentioned earlier, while crystal/NMR structures exist for the ECD of receptors within the B 

family with great deal of similarity observed in structural signature and ligand-binding pattern, there 

is still inconsistency observed especially in receptor-ligand interaction (Miller et al., 2012). An 

opposite orientation of ligand in ligand-receptor interaction observed for the VPAC1 receptor when 

compared to other family B members (Couvineau et al., 2011) makes this more controversial but 

interesting. Some of these differences are believed to define individual specific ligand binding and it 

is therefore in itself a valuable reason why the study of each receptor is of high importance. Moreover, 

since the peptides of the secretin family appear to characteristically fall into 3 or more subgroups (e.g. 

the glucagon and calcitonin subfamily; see Chapter 1 for further details), it is very likely that these 

ligands exhibit some unique variations in specifically associating with their receptors. 

Even though much of the information available on the structural mechanism of family B GPCRs 

activation remain hypothetical, what remains an undisputable fact is that the N-terminal ECD of this 

family of receptors is very important for ligand binding at least for those with solved structures of 

ligand-bound ECD. The work carried out in Chapter 3, together with the work of Barwell et al. 
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(2010), has further reiterated this for the CGRP receptor. More specifically and importantly, the work 

has mapped out, for the first time, residues constituting a putative ligand binding core, which most 

likely represents the cleft that binds the C-terminal and helical mid-region of CGRP. 

Chapter 4 dwelt on helix 8 and associated C-terminal region. As far as the B family of GPCRs is 

concerned, the presence of H8 still remains hypothetical, implying that little is known about it (see 

Chapter 1). Despite the minimal information available for this part of the receptor, especially in the 

family B and C, the H8 has not been widely studied across all families of GPCRs. This further makes 

this work of high importance.  

The work identified several residues at this region required for receptor signalling. Most notable are 

A393 and W399 within the 8
th
 helix and I404 in the region immediately flanking H8 at its C-terminal 

end. The mutation of these residues showed significant effects on 3 or more of the parameters 

employed in the investigations. Although A393 appeared particularly important especially considering 

the effects of its mutation (i.e. A393D) on basal activity and αCGRP-mediated internalization of the 

receptor, these effects might be a reflection of the charge on the Asp residue with which this residue 

was substituted rather than the actual absence of A393. Among other inferences that could be drawn 

from this, an interesting one to point out is that the amphipathic nature of this helix is plausibly a 

required feature for receptor signalling. Moreover, it has been observed that the charged residues 

component of H8 across various GPCR families are richly basic (Paker and Parker, 2010). This might 

not be unconnected with the orientation of H8 relative to the phospholipid bilayer, where it lies at an 

interface between the membrane bilayer and the cytoplasm.  So, it is possible that A393D mutation 

has disrupted this charge balance and, as earlier suggested, it would be interesting to see what effect a 

Leu mutation will have. 

Also peculiar to GPCRs H8, in the A family, is the phenomenon of palmitoylation. Although (as 

described in Chapter 1) this is not present in all family A members with solved structures and while 

one might be tempted to think that this feature might not be required for helix 8 anchoring to the 

membrane, it is possible that there are some other elements in other family A GPCRs (without the 
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palmitoylation site) that play similar role. In Chapter 4, a similar anchoring role was suggested for 

W399, which may also involve Y402. The former is invariantly conserved in receptors of family B. 

This may therefore represent a common theme/model by which these receptors stabilize or anchor 

their H8, when present, to the phospholipid membrane bilayer just like the common signatures 

observed in the N-termini among receptors of this family.   

Results obtained in Chapter 4 showed that the H8 of CLR influences β-arrestin and G-protein 

coupling and has a subtle effect on receptor cell surface expression. This is in agreement with what 

have been reported for family A GPCRs where their H8 participate in conformational changes 

accompanying receptor activation (Hoersch et al., 2008) and β-arrestin-dependent receptor 

internalization (Kirchberg et al., 2011). Conversely, as discussed in Chapter 4, there have been 

disagreements in the roles reported for H8. Taking a close look at their amino acid composition 

particularly at this region, it is tempting to think that the differences in reported roles might relate to 

the distribution of Ser/Thr residues (which are potential phosphorylation sites) within H8 and 

associated C-terminal region. For instance, no Ser/Thr residues are present among the amino acid 

residues spanning helix 8 and even among the first 8 residues beyond H8 (see Fig 4.1) in human CLR 

while in its ‘sister receptor, the human CTR, 2 Thr residues are found. Also, while there are no 

Ser/Thr in H8 and associated C-terminal region of human CLR, VIPR1 and SCTR, other family 

members possess Ser and/or Thr within this region. 

Apart from the aforementioned probable mechanisms by which these residues could affect receptor 

signalling, it is important to add that some might act by influencing ligand binding to the receptor. 

Although the region within which these residues are localized rules out any possibility of their direct 

involvement in ligand interaction, it is possible that they affect receptor conformational changes 

between the resting and active states, thus influencing ligand binding and hence, receptor signalling. 

Some residues within this same region (H8) of CLR have been found to significantly affect KD in AM 

receptor (Kuwasako et al, 2011). It is however not known if they show similar effect in CGRP 

receptor due to the lack of ligand binding data.       
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Also investigated in Chapter 4 was F163 at the bottom of TM1. A common stabilizing interaction for 

H8 among family A GPCRs is with ICL1 and/or the bottom of TM1 (see Chapter 1). CLR H8 may 

make similar interaction as postulated by Vohra et al. (2013) and F63 may play a key role in this. 

More effort is needed to be put into the molecular structure determination of CLR, as well as other 

family B receptors, to give clearer picture of the conformation of and interactions by this helical 

segment and associated C-terminal region. 

In Chapter 5, the ECDs of CLR and RAMP1, -2 and -3 were recombinantly produced and were 

subjected to biophysical characterizations especially analytical ultracentrifugation (AUC) and circular 

dichroism (CD). A series of troubleshooting experiments were performed to alleviate some technical 

problems most especially the heavy glycosylation of the soluble protein fragments, which affected 

their resolution by SDS PAGE. CLR/RAMP interaction was also tested using surface plasmon 

resonance (SPR).  

The various successes recorded in structural studies of the ECDs of family B receptors and RAMPs, 

coupled with the size of and role played by this domain, has given a clear impression that the domain 

could be used as a means to learn more about these receptors and probably even other non-family B 

receptors, albeit to a limited extent. RAMPs have already been found to associate with some other 

GPCRs like VPAC1 and -2, PTH1 and CRF1 receptors in family B (Christopoulos et al., 2003; 

Wootten et al., 2013) and even the calcium sensing receptor in family C (Bouschet et al., 2005). 

Although it is not known whether the ECD of these receptors also interact with RAMPs ECD, the 

realization of this in the case of CLR/RAMP1 (ter Haar et al., 2010; Koth et al., 2010) and 

CLR/RAMP2 (Kusano et al., 2011) indicates that this might also work with these other receptors. 

Moreover, Chapter 5 showed that the ECD of these receptor proteins may form dimers and trimers 

which suggests they could make similar interactions with other receptor proteins at the N-terminus. In 

other words, the system reported in Chapter 5 could be extended to producing and screening novel 

partners of RAMPs considering the complexity currently involved in producing stable full length of 

these receptors. Moreover, the Pichia pastoris expression system used here produced reasonably large 

(up to an average of 4 mg) amounts of protein from as little as 2 g of wet cells and the SPR on the 
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other hand requires as little as around 0.3 mg of protein sample. However it is important to state that 

this SPR system still requires some amount of testing and optimization. 

In conclusion, gaining full understanding of the mechanism of ligand binding and activation of the 

CGRP receptor is very demanding. The complete comprehension of this molecular mechanism entails 

understanding the various conformational changes through which the receptor passes in the course of 

ligand recognition and binding to G-protein coupling and beyond. This currently remains elusive 

especially in the absence of the molecular structure of the TM domain of this receptor. Aside from the 

on-going quest to understand how this receptor is activated, new interests are emerging, with more 

focus on the roles RAMPs (and possibly other non-GPCR molecules) may play in the signalling of 

GPCRs. Overall, while there has been laudable research on this receptor and its modifying proteins, 

the task of unfolding their mechanism of signalling is also far from done. Thus, the hunt of this 

information remains fascinating and novel. 
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Appendices 

 

Sequencing primers for HA CLR pcDNA3.1(-) 

T7 primer 

Forward: 5’ TAATACGACTCACTATAGGGAAACCC 3’ 

TM2 primer 

Forward: 5’ ATCTGTTCTTCTCATTTGTTTGTAACT 3’ 

TM4 primer  

Forward: 5’ CCTTCAGGTCGCCATGGAATCAGCAC 3’ 

BGH primer 

Reverse: 5’ ATCTGTTCTTCTCATTTGTTTGTAACT 3’ 

 

Sequencing primers for 10xHis pPIC9K_MepNet 

α-Factor primer 

Forward:  5’ ACTACTATTGCCAGCATTGC 3’ 

3’ AOX1 primer 

Reverse: 5’ GCAAATGGCATTCTGACATCC 3’ 

 

Oligonucleotide primers used to generate CLR mutants 

W72A 

Forward: 5’ CAGAACCTGGGATGGAGCCCTCTGCTGGAACGATG 3’ 

Reverse: 5’ CATCGTTCCAGCAGAGGGCTCCATCCCAGGTTCTG 3’ 

 

D90A 

Forward: 5’ GCAGCTCTGCCCTGCCTACTTTCAGGACTTTGATC 3’ 

Reverse: 5’ GATCAAAGTCCTGAAAGTAGGCAGGGCAGAGCTGC 3’ 

 

Y91A  

Forward: 5’ GCAGCTCTGCCCTGATGCCTTTCAGGACTTTGATC 3’ 

Reverse: 5’ GATCAAAGTCCTGAAAGGCATCAGGGCAGAGCTGC 3’ 
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 F92A  

Forward: 5’ CTCTGCCCTGATTACGCCCAGGACTTTGATCCATC 3’ 

Reverse: 5’ GATGGATCAAAGTCCTGGGCGTAATCAGGGCAGAGC 3’ 

 

D94A 

Forward: 5’ CTGCCCTGATTACTTTCAGGCCTTTGATCCATCAGAAAAAG 3’ 

Reverse: 5’ CTTTTTCTGATGGATCAAAGGCCTGAAAGTAATCAGGGCAG 3’ 

 

F95A  

Forward: 5’ CCCTGATTACTTTCAGGACGCCGATCCATCAGAAAAAGTTAC 3’ 

Reverse: 5’ GTAACTTTTTCTGATGGATCGGCGTCCTGAAAGTAATCAGGG 3’ 

 

K103A 

Forward: 5’ GATCCATCAGAAAAAGTTACAGCCATCTGTGACCAAGATGGAAAC 3’ 

Reverse: 5’ GTTTCCATCTTGGTCACAGATGGCTGTAACTTTTTCTGATGGATC 3’ 

 

R119A 

Forward: 5’ GACATCCAGCAACGCCACATGGACAAATTATACC 3’ 

Reverse: 5’ GGTATAATTTGTCCATGTGGCGTTGCTTGCTGGATGTC 3’ 

 

Y124A 

Forward: 5’ CAACAGAACATGGACAAATGCCACCCAGTGTAATGTTAACAC 3’ 

Reverse: 5’ GTGTTAACATTACACTGGGTGGCATTTGTCCATGTTCTGTTG 3’ 

 

F163A  

Forward: 5’ CTTATCTCGCTTGGCATAGCCTTTTATTTCAAGAGCC 3’ 

Reverse: 5’ GGCTCTTGAAATAAAAGGCTATGCCAAGCGAGATAAG 3’ 

 

F163M 

Forward: 5’ CTGCTTATCTCGCTTGGCATAATGTTTTATTTCAAGAGCCTAAG 3’ 

Reverse: 5’ CTTAGGCTCTTGAAATAAAACATTATGCCAAGCGAGATAAGCAG 3’ 
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A393D  

Forward: 5’ CTTTAATGGAGAGGTTCAAGACATTCTGAGAAGAAACTGG 3’ 

Reverse: 5’ CCAGTTTCTTCTCAGAATGTCTTGAACCTCTCCATTAAAG 3’ 

 

I394A  

Forward: 5’ GAGAGGTTCAAGCAGCCCTGAGAAGAAACTGGAATC 3’ 

Reverse: 3’ GATTCCAGTTTCTTCTCAGGGCTGCTTGAACCTCTC 3’ 

 

L395A  

Forward: 5’ GGAGAGGTTCAAGCAATTGCCAGAAGAAACTGGAATCAATAC 3’ 

Reverse: 5’ GTATTGATTCCAGTTTCTTCTGGCAATTGCTTGAACCTCTCC 3’ 

 

R396A  

Forward: 5’ GAGAGGTTCAAGCAATTCTGGCCAGAAACTGGAATCAATAC 3’ 

Reverse: 5’ GTATTGATTCCAGTTTCTGGCCAGAATTGCTTGAACCTCTC 3’ 

 

R397A 

Forward: 5’ GAGGTTCAAGCAATTCTGAGAGCCAACTGGAATCAATACAAAATC 3’ 

Reverse: 5’ GATTTTGTATTGATTCCAGTTGGCTCTCAGAATTGCTTGAACCTC 3’ 

 

W399A  

Forward: 5’ GTTCAAGCAATTCTGAGAAGAAACGCCAATCAATACAAAATCCAATTTGG 3’ 

Reverse: 5’ CCAAATTGGATTTTGTATTGATTGGCGTTTCTTCTCAGAATTGCTTGAAC 3’ 

 

N400A  

Forward: 5’ CAATTCTGAGAAGAAACTGGGCCCAATACAAAATCCAATTTGG 3’ 

Reverse: 5’ CCAAATTGGATTTTGTATTGGGCCCAGTTTCTTCTCAGAATTG 3’ 

 

Y402A  

Forward: 5’ GAGAAGAAACTGGAATCAAGCCAAAATCCAATTTGGAAAC 3’ 

Reverse: 5’ GTTTCCAAATTGGATTTTGGCTTGATTCCAGTTTCTTCTC 3’ 
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K403A  

Forward: 5’ GAGAAGAAACTGGAATCAATACGCCATCCAATTTGGAAACAGCTTTTC 3’ 

Reverse: 5’ GAAAAGCTGTTTCCAAATTGGATGGCGTATTGATTCCAGTTTCTTCTC 3’ 

 

I404A 

Forward: 5’ GAAACTGGAATCAATACAAAGCCCAATTTGGAAACAGCTTTTC 3’ 

Reverse: 5’ GAAAAGCTGTTTCCAAATTGGGCTTTGTATTGATTCCAGTTTC 3’ 

 

F406A 

Forward: 5’ GGAATCAATACAAAATCCAAGCCGGAAACAGCTTTTCCAACTC 3’ 

Reverse: 5’ GAGTTGGAAAAGCTGTTTCCGGCTTGGATTTTGTATTGATTCC 3’ 

 

 

T8-HA CLR 

 

RPRRRNCATMALPVTALLLPLALLLHAARPDYASYPYDVPDYASLGGPSLEGSAELEESPEDS

IQLGVTRNKIMTAQYECYQKIMQDPIQQAEGVYCNRTWDGWLCWNDVAAGTESMQLCPDY

FQDFDPSEKVTKICDQDGNWFRHPASNRTWTNYTQCNVNTHEKVKTALNLFYLTIIGHGLSI

ASLLISLGIFFYFKSLSCQRITLHKNLFFSFVCNSVVTIIHLTAVANNQALVATNPVSCKVSQFI

HLYLMGCNYFWMLCEGIYLHTLIVVAVFAEKQHLMWYYFLGWGFPLIPACIHAIARSLYYN

DNCWISSDTHLLYIIHGPICAALLVNLFFLLNIVRVLITKLKVTHQAESNLYMKAVRATLILVP

LLGIEFVLIPWRPEGKIAEEVYDYIMHILMHFQGLLVSTIFCFFNGEVQAILRRNWNQYKIQFG

NSFSNSEALRSASYTVSTISDGPGYSHDCPSEHLNGKSIHDIENVLLKPENLYN- 

 

 

CD33-myc RAMP1 

 

MPLLLLLPLLWAGALAMEQKLISEEDLLHGSCQEANYGALLRELCLTQFQVDMEAVGETLW

CDWGRTIRSYRELADCTWHMAEKLGCFWPNAEVDRFFLAVHGRYFRSCPISGRAVRDPPGSI

LYPFIVVPITVTLLVTALVVWQSKRTEGIV 

 

 

Colour code 

Red - Signal peptide  

Blue - Epitope tag  

Magenta - First residue of mature protein 

 


