
NEURAL NETWORKS FORTIME-VARYING DATASurvey presentation for the workshop:Neural Networks for Statistical and Economic DataDublin, 10-11 December 1990Richard RohwerCentre for Speech Technology ResearchUniversity of Edinburgh80 South BridgeEdinburgh EH1 1HNrr@cstr.ed.ac.ukAbstractThis paper reviews some basic issues and methods involved in using neural networksto respond in a desired fashion to a temporally-varying environment. Some popularnetwork models and training methods are introduced. A speech recognition exampleis then used to illustrate the central di�culty of temporal data processing: learning tonotice and remember relevant contextual information. Feedforward network methods areapplicable to cases where this problem is not severe. The application of these methods areexplained and applications are discussed in the areas of pure mathematics, chemical andphysical systems, and economic systems. A more powerful but less practical algorithmfor temporal problems, the moving targets algorithm, is sketched and discussed. Forcompleteness, a few remarks are made on reinforcement learning.1 IntroductionNeural network models can be used to process to time-varying data for various purposesusing various methods. Research aimed at improving the methodology makes contactwith a broad range of disciplines and raises a panoply of di�cult, though enticing, ques-tions. This happens largely because the brain not only lives in an environment �lledwith time-varying data, but also generates internal time-varying signals of its own. Theinternal signals vary from direct responses to environmental data to obscure mechanismsfor internal processing. Therefore the subject of temporal data processing with neuralnetworks draws one towards a study of the brain's inner mechanisms, about which verylittle is known. For engineering purposes, we hope to understand some of the basic com-putational principles involved without getting bogged down in the intricate biologicaldetails.The �rst section reviews a simple recurrent network model, which can have highlycomplex dynamics, and two feedforward models which are inherently static. Next, the



central problem in processing temporal data is illustrated with a speech-recognition ex-ample. This is the problem of temporal credit assignment, or learning relevant context.There are applications for which the temporal credit assignment problem is readily solv-able, and others for which useful results can be obtained without solving it entirely. Theseinclude prediction problems for certain mathematical, chemical, and economic systems,and some speech recognition problems.The moving targets algorithm is perhaps unique in it's ability to handle di�cult tem-poral credit assignment problems. The basic ideas behind this algorithm are introducedand discussed. Unfortunately the algorithm is computationally impractical.Reinforcement learning is briey mentioned.2 Basic Neural Network ModelsNeural network models specify rules for changing the output values of model neurons, ornodes, with time. These output values are sometimes regarded as crude models of neural�ring rates. Let yit denote the value of node i at discrete time t. In a widely-used classof models, a subset I of the nodes are designated as inputs. These are assigned values Yittaken from a model of the network's external environment. The values of the remainingnodes are computed for time t+ 1 from their values at time t according to the rule:yi;t+1 = 8><>: f(Xj wijyj;t) i 62 IYi;t+1 i 2 I (1)where the weight wij models the strength of a synaptic connection from node j to nodei, and f is a di�erentiable function with constant asymptotes, such asf(x) = 1=(1 + e�x) (2)which varies smoothly from 0 at �1 to 1 at 1. One input, say node 0, is traditionallyassigned the constant value 1:0 so that wi0 provides a constant o�set or bias for theweighted sum computed by node i. Through rule (1) the weights specify the networkdynamics, the manner in which the state (the set of node values) changes with time.A network model can be trained to produce a desired sequence of target values on asubset T of the non-input nodes. The set H of nodes which are neither input nor targetnodes are called hidden nodes. Let Yit (for i 2 T ) denote the target value for node i attime t. (There is no confusion with (1) because I \ T = ;.) A scalar measure of thenetwork's performance is given byE = 12Xi2TXt (yit � Yit)2: (3)If the network operates perfectly, E = 0; otherwise E > 0. A popular procedure fortraining a network is back propagation of error through time [23], which proceeds bycomputing the derivatives dE=dwij and using these to incrementally adjust the weightsto slightly better values. This procedure is often highly e�ective, but one is guaranteedneither that a perfect solution E = 0 exists, nor that the smallest value of E will be found



by this procedure. That is, a local minimum can always be found, but not necessarilya global minimum. Even if a global minimum is found, there still may be other globalsolutions which be preferable for some reason not encoded in (3).A useful subclass of network models are the feedforward networks. Nodes of thesenetworks have no connections to themselves (wii = 0) and no feedback paths (jwijj > 0implies wji = 0). Typically the nodes of feedforward networks are arranged in numberedlayers, with nonzero weights from each layer going to higher-numbered layers, but nonegoing in the reverse direction and none going within a layer. The lowest layer is assignedinput from the environment. If the input remains �xed in an L-layer feedforward net, thenevery node value in the network remains �xed after L�1 time steps. By specifying targetvalues for the highest layer, and using its derivatives to minimize a function similar to(3), these networks can be trained to implement a mapping from input vectors to targetvectors which agrees with a set of examples. The hidden nodes in such networks arethose in the middle layers between the inputs and targets. It has been proven that afeedforward network with a single hidden layer can approximate any mapping to arbitraryaccuracy (although a large number of hidden units may be required) [7].A popular class of feedforward networks is the radial basis function networks [17,18, 16, 4]. These networks have one layer of hidden nodes, each of which implements aradial basis function. Hidden node a is assigned a centre in the input space having inputcoordinates cia and a radius ra, and computes an output which is large only for inputsnear its centre (on a scale set by its radius). The output of this network is feed througha linear transformation. Speci�cally, the output yip produced by example p isyip =Xa wiag0@qPi(Yip � cia)2ra 1A (4)where Yip is the input for example p and g is typically a Gaussian g(x) = e�x2. Non-Euclidian distance measures are sometimes used. The loosley-de�ned region for which aradial basis function has a signi�cant output is its receptive �eld. Usually the centres andradii of a radial basis functions network are assigned using one of a great variety of simplealgorithms which ensure that most input data points fall within a few receptive �elds.Then the weights are adapted to minimize an error measure similar to (3). This problemamounts to solving a large linear system of equations, which can be accomplished usingstandard methods [15] much more quickly than a minimization algorithm can be appliedto a standard feedforward back propagation network. This feature is a major attractionof radial basis functions.The name \radial basis functions" derives from the spherical symmetry of the recep-tive �elds. However this is not an important property of the method and generalizationsto less symmetric basis functions are commonly used.A network which is not feedforward is recurrent.3 Distant relevant context: a speech exampleLet us introduce some temporal processing issues by looking at some sample data: a shortsegment of speech. A spectrogram of the phrase \quite quiet at church" is shown in �gure



1. This shows the energy in the acoustic signal as a function of frequency (vertical axis)and time (horizontal axis). Dark areas on the spectrogram signify high energy. Theraw time-domain waveform is shown at the top of the �gure. A phonetician has assignedphoneme labels to the time segments indicated along the bottom of the spectrogram. Theneural network model (1) might be trained to recognize speech by feeding the energy ateach monitored frequency into a corresponding input node and assigning a speci�c targetnode to 1.0 when a corresponding phoneme is present, and 0.0 otherwise.There are two /k/ phonemes in the �gure. Their characteristics include a moderatelylong period of silence, followed by a rapid burst of energy spread widely over the spec-trum. After another moderate time interval, the onset of voicing produces three strongresonances (formants) in the low frequencies. The divergence of the second and thirdformants as the burst recedes helps to discriminate /k/'s from /p/'s and /t/'s. Thisvariation occurs during the course of the following two phonemes.This example shows that the information needed to recognize phonemes occurs onwidely disparate timescales. A speech recognition device must be attentive to the burst,which occurs during a few milliseconds, and must also notice phenomena which occurover hundreds of milliseconds. Most of the information occurring on short timescalesis irrelevant or redundant with information from previous times, but some is crucial.This example shows a need for networks to learn to notice and remember information ofpotential use for the future, possibly the distant future as measured by the timescaleson which some relevant events occur. We shall argued that the di�culty of a temporalinformation processing problem has much to do with its requirement for such distantcontextual information. Another obvious problem is that some information relevant thethe judgement of whether a /k/ is present occurs long after the /k/ has given way toother phonemes. Therefore the target values should be demanded from the network ata time considerably later than they occur according to the phonetician's labels. Thisincreases the time during which information must be remembered.Of course, the burst of the /k/ is not typical of the contextual information whichmust be remembered, most of the time the signal is repetitive or otherwise uninforma-tive. It is just as important to forget useless information rapidly as it is to rememberuseful information. The network must learn to selectively remember relevant contextualinformation only, even though there may be no sound way to judge relevance until thedistant future.4 Neural network capabilities in principle and inpracticeIt is easy to show that a single node connected to itself can be con�gured to act as a ip-op memory element, and equally simple to show that a single node can be con�gured toperform the not-and Boolean function. It is possible to emulate any computer by buildinga machine out of these two components, so in principle the neural network model (1) cando any calculation of practical interest. Furthermore, extensive numerical studies haveshown that this model typically produces complex motion involving long time-scales [19].Unfortunately, all this does not imply that networks are easily trained from examples to



do complex temporal tasks.Most existing training methods work only in Markovian [24], or nearly Markovianenvironments. This means that the target values at any time step can be determineduniquely from the input and target values from one, or a small number of time steps in therecent past. If the present state of the environment does not contain enough informationto enable a unique prediction of the targets at the following time step, then there is nohope unless the hidden nodes happen to encode the missing information. This may bethe case if the necessary information lies somewhere in the past, and the network wasclever enough to respond to that information by encoding it in some hidden nodes, andto arrange the dynamics so that this information is not lost before it is needed. The taskof deciding what the hidden nodes should have done in the past to reduce errors in thefuture is called the temporal credit assignment problem [28].Thus, the hidden nodes play an essential role in transmitting temporally distant rel-evant contextual information to the future. Unfortunately, hidden nodes complicate theexpressions for the derivatives needed for back propagation. This is unsurprising giventhe complex task they must learn to perform. Worse still, inspection of the derivative for-mulas shows that unless certain improbable cancellations occur, the expressions for thesederivatives are dominated by near-context information. In other words, the derivativeswill not suggest a weight adjustment which makes use of distant context until an optimumbased on recent context has been found to an absurd number of decimal places of accu-racy. Therefore methods based on calculating dE=dwij do temporal credit assignment ina manner appropriate only for Markovian, or nearly Markovian environments.5 Delay linesIt is possible to convert a non-Markovian environment to a Markovian one by introducingdelay lines. This augments the current state with copies of the past �max states, so that(1) becomes yi;t+1 = 8><>: f(�maxX�=0Xj w(�)ij yj;t�� ) i 62 IYi;t+1 i 2 I : (5)The delay lines (w(�)ij , � > 0) transmit all information �max steps to the future. If distantcontext is not needed then �max can be relatively small, making this a practical technique.If large �max is required, the network is likely to be overwhelmed with large amounts ofredundant and irrelevant information. This problem is compounded by the increasednumber of variable parameters (the delay-line weights) in the model. A model with toomany parameters tends to over�t the training data, becoming highly sensitive to theidosyncracies of the data instead of features which will likely be present in new data [2].6 Prediction with feedforward networksIn Markovian environments, or environments which can be made Markovian by introduc-ing a small number of delay lines, the hidden nodes do not need to perform any memory



function. The problem becomes feedforward in nature: A mapping must be learned whichoutputs the targets for the next time step given the inputs and targets for the currentstep (or past few steps). After training, this network is operated as a recurrent network;the input values at any time include target values computed earlier. However for train-ing purposes, the network can be regarded simply as a feedforward network learning amapping. Hidden nodes may be needed to enable the network to represent the desiredmapping, but in feedforward networks they are not burdened with a responsibility todetect and preserve relevant contextual information, so the training di�culties discussedearlier do not arise.This method has been used to good e�ect in a variety of prediction problems. Lapedesand Farber [13] trained a feedforward network to predict a chaotic time series generatedby the Glass-Mackey equation, a scalar delay-di�erential equation. In order to uniquelyspecify a solution to this equation, it is necessary to (arbitrarily) specify a portion of thetrajectory over a �nite time interval, the length of which is the \delay" parameter in theequation. Thus the equation is local in time. However, the complete speci�cation of sucha trajectory fragment requires an in�nite number of parameters (one for each real-valuedinstant in the interval), so the phase space of the system is in�nite-dimensional. (A phasespace of a system is a minimal set of variables in terms of which the system is renderedMarkovian.) However, the solutions to this equation do not wander about the entirephase space, but instead evolve toward a fractal attractor of dimension between 2 and3. Once on the attractor, the system should be predictable from its values at roughly 3di�erent time steps. The presence of a low-dimensional attractor is a typical propertyof high-dimensional deterministicly chaotic systems, but there is no general method forderiving coordinates for the attractor's niche in phase space in terms of the originalcoordinates of the problem.Lapedes and Farber used a feedforward network with 2 layers of hidden units to map 5past values of a Glass-Makey trajectory to 1 future value. The past values were uniformlyselected from the delay interval. They established that it is better to predict a nearbyfuture value and iterate the mapping to predict the more distant future than to predictthe distant future directly. This is reasonable because it should be easier to teach thenetwork to emulate the underlying local equation than to model the equation togetherwith its solutions over long time periods. Their results were substantially better thanother standard prediction methods, including polynomial �ts, iterated polynomials, andlinear mappings.A similar technique was used by Adomaitis, et. al. [1] to predict properties of anelectrochemical reaction governed in principle by local di�erential equations. Weigend,Huberman and Rumelhart [27] compared a simple feedforward network, a radial basisfunctions network, and a standard method in a sunspot-cycle prediction problem and a\computational ecology" model of computers competing for resources. They provide aquantitative measure of the extent to which the network makes use of its nonlinearity.They report that radial basis function methods require more training data to obtain validgeneralization, but they have a great speed advantage. Moody and Darken [14] report asimilar tradeo�s in a comparison between radial basis functions and standard sigmoidalnetworks for predicting the Glass-Mackey system. Jones, et. al. [9] claim to have amethod which combines the advantages of sigmoidal and radial basis functions networks.In a joint project with Morio Yoda and Masakazu Takeoka of Nikko Securities Com-



pany, Takashi Kimoto and Kazuo Asakawa of the Fujitsu Computer-Based Systems Lab-oratory in Kawasaki have used these techniques to predict when to buy or sell stocksused to compute the Japanese TOPIX index [11]. The results were better than a simplebuy-and-hold strategy. Of course, little is known of any equations governing economicsystems, but the success of this experiment suggests that the laws of economics, such asthere be, are at least somewhat local in time. Chen, Cowan, Grant, and Billings appliedthis type of method to model unemployment levels in (then) West Germany [5], but theability of their model to make new predictions has not been tested. Collard trained asimilar network on commodity market data from 1988 and reports that its predictions for1989 could have produced a tidy pro�t [6]. The input data for this experiment includednon-economic information such as weather data as well as economic data of relevance tothe commodoties market.As mentioned earlier extensive use of delay lines to bring contextual information tobear multiplies the number of parameters in the model and brings in irrelevant andredundant information as well. Waibel, et al. [12, 8] have added constraints to a networkof this type in order to combat this problem in a speech recognition application. Theyreason that the network should always look for the same features of the speech signalat every time step. Therefore the weights associated with one delay line should beconstrained to equal the corresponding weights on another. This trick, tying weights,reduces the number of parameters and increases the relevance of the information sentforward from the past. (In fact this system uses much more elaborate constraints thanindicated here.)7 An algorithm for non-Markovian problemsThe popular back propagation algorithm for feedforward networks trains hidden nodes,and has a natural extension to temporal problems, but it turns out that this algorithm'sability to utilize contextual information diminishes exponentially with time. The \MovingTargets" algorithm of Rohwer [20, 21, 22] reduces this to a linear decrease, but su�ersfrom serious practical di�culties. The basic idea of this algorithm is to treat hiddennodes as target nodes with variable target values. This allows errors to be allocateddirectly to the hidden nodes, so that the sum in the error measure (3) can be extendedto E = 12 X(itp)2T[Hfyitp � Yitpg2: (6)The \moving target" variables, Yitpfor(itp) 2 H, are lumped in with the weights inthe minimization problem; they are initialized randomly and optimized by a derivative-based procedure. If minimization is successful, the moving targets are discarded and theweights retained. Errors on target nodes can be traded for errors on hidden nodes atpossibly quite distant time steps if that helps to minimize this sum. This provides greaterexibility in temporal credit assignment than is possible with the standard method inwhich the weights are the only variables.The moving targets algorithm has been successfully applied to a problem which re-quires contextual information from 100 time steps in the past. The training data for thisexample contains 2 sequences. In each sequence a single input node is given a value of 1:0



at time step 100. It is 0:0 at all other times in sequence 2, and 0:0 at all other times insequence 1 except at time step 1, when it is 1:0. A single target node is asked to respondwith 0:0 at all times for sequence 2, and for time steps 0 to 100 of sequence 1, but with1:0 after time step 100 in sequence 1. Thus, the input sequences are distinguished only byan event at time 1, and the targets are identical until time 101. Using 1 hidden node it iseasy to \hand-wire" a weight matrix which will solve this problem; the hidden node needsto \turn on" in response to the �rst input 1:0-value in sequence 1, and to stay on (usinga positive self-weight) for all time. That way the two sequences will be distinguishedat time step 100 by the state of the hidden node. When the moving targets algorithmis applied to this problem, the network quickly adjusts so that the largest errors are onthe target nodes at time step 100 in each training sequence. The moving target value ofthe hidden node settles to 0.5 for most time steps. As training progresses, the movingtarget values on the hidden nodes at time step 100 increase for sequence 1 and decreasefor sequence 2, thereby providing the distinction needed to reduce the target node errorat time 101. The moving targets at time step 99 then respond similarly in order to ac-commodate the errors at step 100. This process carries on until the moving targets aredistinguished at time step2, at which point they can be \anchored" on a distinction inthe inputs at step 1.Although this example demonstrates that this algorithm has considerable capabilitiesfor non-Markovian problems, practical experience shows that it has serious disadvan-gages. In a large problem the minimization process is beset by a large number of movingtarget variables which must be optimized. Presumably for this reason, the minimizationproceeds at an impractically slow pace, and local minima are frequently encountered.8 Reinforcement learningReinforcement learning techniques have been an important approach to temporal creditassignment problems for many years [25, 26]. In these problems one subnetwork learnsto form a world model while another learns an optimal policy for reacting to a givenstate of the environment, in order to maximize a reinforcement signal at a later time.These methods provide a structure into which other algorithms can be incorporated, andmay prove useful for extending the context sensitivity of back propagation. They showparticular promise for robotics and other control applications [10, 3].9 ConclusionsSimple neural network models have the power to do arbitrary computations with time-varying data, and are amenable to learning from examples. However, existing trainingmethods are either unable to handle problems requiring attention to distant temporalcontext, or are highly impractical from a computational point of view. Nevertheless thereis a usefully large class of problems in which distant temporal context is not particularlyimportant. Methods using techniques for training feedforward networks show consider-able promise for this type of application. Early results suggest that many predictionproblems from physics, chemistry, and economics may be pro�tably approached in this
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