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Summary  

 

In excess of 1000 tonnes of Titanium (Ti) is implanted into patients in the form of biomedical 

devices globally on an annual basis. Ti is perceived to be ‘biocompatibile’ due to the 

presence of a robust passive oxide film (~ 4 nm thick) at the metal surface. However, surface 

deterioration can lead to the release of Ti-ions and particles can arise as the result of wear 

and/or corrosion processes. This surface deterioration can result in peri-implant inflammation 

leading to the premature loss of the implanted device or the requirement for surgical revision. 

Soft tissues surrounding a commercially pure cranial anchorage device (bone anchored 

hearing aid) investigated using synchrotron X-ray micro-fluorescence spectroscopy and X-

ray absorption near edge structure. Here we present the first experimental evidence that a 

minimal load bearing Ti implants, which are not subjected to macroscopic wear processes, 

can release Ti debris into the surrounding soft tissue. As such debris has been shown to be 

pro-inflammatory we propose that such distributions of Ti are likely to effect to the service 

life of the device. 
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Introduction. 

 

Metallic prostheses, fixation and anchorage devices are used extensively for orthopaedic, 

craniofacial and dental rehabilitation and are generally associated with predictable biological 

responses following their initial implantation. However, the development of peri-implant 

inflammation can result in the premature loss of the implanted device or the requirement for 

revision/rescue surgery [1]. Both scenarios can impact on patient well-being and 

economically on the health service provider. In the United States it has been reported that the 

direct cost of such revision surgery now exceeds $100 million per annum and is increasing 

due to an ageing population [2]. In the orthopaedic context, failures of replaced articulating 

joints are frequently aseptic and it has been recognised that a key contributory factor is the 

degradation of the implant surface(s) which leads to ion leaching and the accumulation of 

metal debris in the peri-prosthetic milieu [3-6]. Despite the concerns being raised regarding 

the likely biological effects of metal debris and ions generated through wear and/or corrosion 

processes, the exact mechanisms underpinning their release in-vivo and their subsequent 

involvement in peri-implant inflammation are not fully understood.  

 

In excess of 1000 tonnes of titanium (Ti) is implanted into patients in the form of biomedical 

devices globally on an annual basis [7]. Cranial anchorage devices and dental implants are 

manufactured from ‘commercially-pure’ grades (II–IV) of Ti (CPTi), whereas orthopaedic 

components are most commonly fabricated from the Grade V alloy, Ti 6Al 4V. Ti in these 

forms is highly reactive and therefore its perceived ‘biocompatibility’ is attributed to the 

presence of a robust passive oxide film (approximately 4 nm thick) at the metal surface. 

However, surface deterioration can lead to the release of Ti-ions, and particles can arise as 
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the result of wear and/or corrosion processes [8]. Whereas wear processes are an inevitable 

consequence of employing metals to replace load-bearing articulating surfaces as found in 

artificial joints, the mechanisms underpinning the in vivo corrosion of Ti are complex and 

inadequately characterised [9]. Gross corrosion of the intra-medullary stem of cemented 

‘Furlong’ Ti hip replacements has been demonstrated and resulted in cortical hypertrophy, 

systemic distribution of Ti-ions, pain and aseptic loosening [9]. Metallurgical simulations 

have demonstrated that in tight crevices, such as between components of modular Ti 

prosthetic devices, moisture and relative micro-motion of component surfaces can result in 

the dissolution of Ti ions, local acidification and the degradation of the protective oxide film 

from the metal, exposing it to the corrosive solution [8]. Intuitively, the process which is 

understood as crevice corrosion may occur in all Ti devices where peri-implant crevices exist, 

including dental and cranial anchorage implants. The potential sequelae are persistent Ti-ion 

leaching or Ti particle release into the peri-prosthetic environment irrespective of whether 

there is significant associated loading or wear. 

 

Investigations at a cellular and molecular level have demonstrated that Ti particles can 

stimulate the host-inflammatory response contributing to the pathology of peri-prosthetic 

bone loss [10]. Interactions of Ti particles with macrophages, osteoblasts, bone marrow-

derived mesenchymal stem cells, fibroblasts, endothelial cells, and T-cells is believed to 

contribute to the production of pro-inflammatory and pro-osteoclastogenic cytokines [10-12]. 

Moreover, Ti particles have been shown to initiate apoptosis, increase production of reactive 

oxygen species (ROS) and induce oxidative stress-related genes [10]. Notably, data 

demonstrate that Ti particles can alter cell function and phenotype with differential effects 

regulated by Ti particle size [13]. Lymphocyte populations including T-cells, respond to Ti 

particles by activation of the specific CD69+ and CCR4+ sub-populations and increasing 
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their secretion of the cytokine RANKL which indirectly locally inhibits osteoblast function as 

well as promoting bone loss via enhanced osteoclastogenesis [14]. Ti particle exposure of 

multipotent mesenchymal stem cells (MSCs) results in particulate endocytosis reducing their 

rate of cell-proliferation and cell-substrate adhesion and increasing the rate of apoptosis 

which further impairs innate repair mechanisms [15].  

 

The aim of the current investigation is to test the null hypothesis that there is no association 

between CPTi implants unexposed to significant macroscopic wear and the accumulation of 

Ti in the peri-implant tissues. Given the evidence to suggest that the accumulation of Ti in 

peri-implant tissues can significantly modify inflammatory and regenerative processes, the 

objective is clinically important as frequently such devices fail due to peri-implant 

inflammatory processes.  A cranial anchorage device, the bone anchored hearing aid (BAHA) 

will be used as an experimental model. BAHAs are a well established treatment for 

conductive or mixed hearing impairment. A CPTi implant is inserted into the outer table of 

the post-auricular skull and connected via a modular percutanous CPTi abutment to a sound 

processor. Whereas relatively few patients (1-3%) extrude the BAHA device [16-18] up to 

33% suffer from peri-implant skin inflammation which becomes hypertrophic and requires 

revision surgery [17].  
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Methodology. 

 

Peri-implant inflamed skin tissue was obtained from consented competent adults undergoing 

scheduled revision surgery associated with a bone anchored hearing aid (BAHA). Ethical 

approval was obtained through the United Kingdom National Research Ethics Service prior 

to the commencement of the study (REC 08/H1203/128). The inflamed tissue was surgically 

retrieved from around the percutaneous Grade IV commercially pure titanium implant (Baha, 

Cochlear Ltd, Sydney, Australia) using a full thickness circumferential excision (Figure 1). 

Implants had been inserted into the outer table of the skull, post-auricularly, more than three 

years previously and were used to anchor an external sound processor as part of the BAHA 

system to treat unilateral sensorineural hearing loss. Skin was retrieved from around implants 

which remained firm and well osseointegrated but associated with a hypertrophic reaction 

surrounding the Ti implant and necessitating skin reduction surgery. Orientated tissue was 

immediately snap frozen in liquid nitrogen in order to preserve the chemical state and 

location of any Ti. Frozen tissue sections of 4-6 μm thickness were prepared using metal-free 

cryotomy and mounted on ultra-pure fused silica microscope slides (<10 ppb Ti) (Spectrosil 

2000, Heraeus Quarzglas GmbH & Co., Hanau, Germany). Spurious contamination with Ti 

during sample preparation was controlled for by processing further tissue with no known 

exposure or adjacency to Ti, in an identical manner. To comply with experimental facility 

protocols regarding exposure to unfixed human tissue, the tissue sections were covered in a 

25 μm polyimide film (Kapton, Dupont, Wilmington, USA) which was secured at the 

periphery of the glass slide with epoxy resin.  
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Synchrotron micro-focus X-ray fluorescence measurements were undertaken using a 4-

element Si drifts detector on the I18 Beamline at the Diamond Light Source (Oxfordshire, 

UK) using an incident energy of 5.7 keV. Tissue sections were initially mapped using a 50 

μm resolution to identify areas of interest. Subsequently, the incident beam was focused to 

give a spot size 5 µm (H) by 3.4 µm (W) and the sample was mounted at a 45º angle to the 

incident beam, thus resulting in a beam footprint of 5 µm by 5µm providing a resolution at a 

length scale similar to that of individual cells. Ti K-edge X-ray absorption near edge structure 

(XANES) spectra were acquired in fluorescence mode at room temperature from regions 

where Ti was detected to determine its chemical state. In addition to the explanted human 

tissue samples, spectra were also collected in transmission mode from Ti standards, including 

Ti foil (metallic) and several containing Ti4+ ions in different coordination environments: 

cristobalite (fourfold), Na2TiSiO5 (fivefold), and anatase, rutile and CaTiSiO5 (all sixfold). 

Reference standards were compared with experimental measurements using Athena software 

in order to determine speciation [19]. 
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Results. 

 

Synchrotron X-ray fluorescence mapping of thin (4-6 μm) sections of the inflamed skin tissue 

recovered from adjacent to a percutaneous CPTi implant using a 5 μm X-ray beam 

demonstrated a wide-spread scattered distribution of Ti (Figure 2). The distribution was 

heterogeneous in scale with fine fragments varying from 5 μm (highest resolution of 

detection) to 150 μm. Orientation of the tissue prior to snap freezing allowed location of the 

distribution relative to the adjacent Ti implant surface and demonstrated the Ti was scattered 

radially and distant to the tissue-implant interface (>25 μm) and deep to the skin surface 

(>2000 μm). Preliminary investigation of tissue sections, cut adjacent to the above mapped 

sections and stained with haematoxylin and eosin, by conventional optical microscopy 

revealed no discernible relationship between the underlying tissue architecture and Ti 

distribution. Comparison of the XANES spectra of the Ti standards with spectra taken from 

areas of high, medium and low relative Ti fluorescence intensity, as identified by X-ray 

fluorescence mapping, revealed that the Ti was present in a number of forms. Large metallic 

particles were detected, however there was a considerable distribution of oxide species 

(Figure 3) with sixfold co-ordination states akin to anatase and rutile being identified.  

 

No Ti was detected by X-ray fluorescence mapping performed on the control tissue which 

had no known Ti exposure and had been collected, stored and prepared according to an 

identical experimental protocol. 
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Conclusions. 

 

Previously, investigators have used microscopy, optical spectroscopy and mass spectrometry 

techniques to confirm the existence of Ti in peri-prosthetic orthopaedic soft tissues [20, 21]. 

The techniques have limited resolution or an inability to relate the quantity, size and chemical 

speciation of Ti to cellular and sub-cellular structures that would be required to inform 

biological investigations. Accordingly, synchrotron X-ray micro-focus spectroscopy was used 

in the current investigation and conferred the ability to detect trace distributions of Ti in thin 

tissue sections at a high resolution [22]. The current investigation has demonstrated for the 

first time a scattered and heterogeneous distribution of Ti in inflamed tissues taken from 

around failing skin-penetrating Ti implants. The tissue was taken from adjacent to a CPTi 

device which is not exposed to obvious macroscopic wear or loading in service. Furthermore, 

the location of the distributed Ti which was deep with respect to the skin surface, which 

suggests that wear processes are unlikely to be a major contributor. Debris from implant 

insertion is highly unlikely to lead to the observed widespread distribution of fine fragments 

of both oxide and metal.  In the absence of obvious macroscopic wear or loading processes, 

we propose that the Ti in the tissue results from micro-motion and localised corrosion in 

surface crevices [23, 24]. Our results provide primary evidence that the expected passive 

surface of skin-penetrating Ti implants can deteriorate in clinical service, leading to the 

accumulation of Ti debris in the surrounding tissue. The quantities, size and speciation of Ti 

debris reflect stimuli previously demonstrated to be pro-inflammatory in nature. Our results 

emphasise the need to understand further both the physical and chemical mechanisms leading 

to the dispersal of Ti species in tissue around implants and their potential to exacerbate 

inflammation.  Similar processes are likely to contribute to the failure of other metal implants 
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in soft tissues where macroscopic wear is not considered to be a risk.
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Figures 

Figure 1. Clinical photograph of peri-implant soft tissue overgrowth associated with a CPTi 
BAHA fixture. Up to 33% of patients suffer from peri-implant skin inflammation which can 
necessitate implant removal. Interrupted line indicates circumferential incision line for tissue 
explanation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. X-ray fluorescence map (5300 x 2000 μm) of the associated distribution of Ti in 
peri-implant soft tissue (6 μm thickness) taken >25 m from a CPTi BAHA. Legend refers to 
increasing fluorescence values at higher values specifically for Ti.  
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Figure 3. XANES spectra for Ti controls and experimental traces demonstrating both 
metallic and oxide species. 

 

 

 


