
UncertWeb Processing Service: Making models easier

to access on the web

Richard Jones, Dan Cornford, and Lucy Bastin

Computer Science Research Group

Aston University

Birmingham, UK

Abstract

Models are central tools for modern scientists and decision makers, and there are many

existing frameworks to support their creation, execution and composition. Many frame-

works are based on proprietary interfaces, and do not lend themselves to the integration

of models from diverse disciplines. Web based systems, or systems based on web services,

such as Taverna and Kepler, allow composition of models based on standard web service

technologies. At the same time the Open Geospatial Consortium has been developing

their own service stack, which includes the Web Processing Service, designed to facili-

tate the executing of geospatial processing - including complex environmental models.

The current Open Geospatial Consortium service stack employs Extensible Markup Lan-

guage as a default data exchange standard, and widely-used encodings such as JavaScript

Object Notation can often only be used when incorporated with Extensible Markup Lan-

guage. Similarly, no successful engagement of the Web Processing Service standard with

the well-supported technologies of Simple Object Access Protocol and Web Services De-

scription Language has been seen. In this paper we propose a pure Simple Object Access

Protocol/Web Services Description Language processing service which addresses some of

the issues with the Web Processing Service specification and brings us closer to achieving

a degree of interoperability between geospatial models, and thus realising the vision of a

useful ‘model web’.

UncertWeb Processing Service 1

1 Introduction

The development and use of models has been key to the successes of science in improving

our understanding of, predictions for and decisions about the world around us. Increas-

ingly models are being used in a policy context, where it is often necessary to integrate

models from different domains to form a more holistic picture of the overall system. Such

model integration raises several challenges, both philosophical and practical. These are

considered in Bastin et al. (2011) which focusses strongly on the issue of uncertainty

management. Here we focus more closely on the practical issues which arise from expos-

ing geospatial models on the web (Geller and Turner, 2007) to facilitate their access and

subsequent integration.

Many models, particularly those of environmental systems, are geospatial in nature.

The geospatial community has been gradually making a transition from standalone ap-

plications to service-oriented architectures. This transition has been driven by the Open

Geospatial Consortium (OGC), an organisation responsible for defining a number of

standards for web service interfaces and data representation. These interfaces include

the Web Feature Service (WFS) for serving geographical features, the Web Coverage

Service (WCS) for serving raster coverages, and the Web Processing Service (WPS) for

exposing geospatial processing functionality (including complex environmental models)

over the web. In addition to these service standards, it is necessary to support a set of

information models to represent geospatial objects and observations. To achieve this, the

Geography Markup Language (GML) (OGC 07-036, 2007) and Observations & Measure-

ments (O&M) (OGC 10-025r1, 2011) conceptual models and schemas are defined. The

use of such standardised interfaces and information models can lead to increased inter-

operability, as organisations are able to interact and share data in a common manner.

Outside the OGC community, there are a number of widely used specifications for web

services (Pautasso et al., 2008). These include Simple Object Access Protocol (SOAP)

and Web Services Description Language (WSDL), two complementary standards for ex-

changing messages between services and describing those services. These specifications

were developed within the World Wide Web Consortium (W3C) and are extensively used

across the web. Since the WPS shares a similar purpose to these standards, the lack of in-

UncertWeb Processing Service 2

tegration between WPS and SOAP/WSDL requires further exploration. The aim of this

paper is to review the objectives and nature of the WPS specification and to demonstrate

a SOAP/WSDL based implementation for exposing models to the web, which fulfils the

functional requirements of a WPS, but is compatible with existing well-supported web

technologies, and addresses some of the limitations of the WPS standard. This framework

is being used within the UncertWeb project1, and can integrate with existing modelling

frameworks, such as Taverna and Kepler, which are compatible with more widely adopted

web standards.

The paper firstly introduces web service technologies, including the WPS and those

from outside the OGC community and explains the motivation for developing an alter-

native solution to the WPS. The design and implementation of this alternative, which

integrates geospatial processes with existing standards, is then detailed. A use case based

on crop yield modelling is employed to demonstrate the practicality of the framework in

a real world example, this also being used as motivation throughout the paper. Findings

are then evaluated and conclusions are given.

2 Web service technologies

Web service technologies have been developing for many years, and continue to evolve.

The WPS specification was developed after SOAP/WSDL technologies were standard-

ised, and these are both reviewed below. Other architectural patterns such as RESTful

approaches are considered, and more recent trends in web based systems are identified.

2.1 WPS

Within the geospatial community, the OGC WPS standard is widely used for exposing

processes on the web. The standard aims to facilitate the publishing, discovery, and

client binding of geospatial processes (OGC 05-007r7, 2007). It defines an Extensible

Markup Language (XML) based client-server communication protocol with three main

operations:

1http://www.uncertweb.org/

UncertWeb Processing Service 3

GetCapabilities to return metadata about the service, including the processes offered;

DescribeProcess to retrieve information about a specific process, including its inputs

and outputs;

Execute which includes any required inputs and parameters, and returns the output(s)

of the process.

There are benefits of using the specification, such as having standardised mechanisms for

passing data by reference, and requesting asynchronous execution of a process. Without

these mechanisms, interoperability would be reduced as each service may have a different

approach to providing these features. A more in depth review of the limitations of the

current WPS specification is given in Section 3.3.

2.2 SOAP/WSDL

The W3C defines two standards which are considered to be essential technologies for

deploying and describing a web service: SOAP and WSDL (Louridas, 2008). SOAP is

an XML-based protocol for exchanging messages between systems, commonly used in

network services (Box et al., 2000). WSDL is an XML specification for describing these

network services (Christensen et al., 2001). Compared to the relatively new WPS stan-

dard, SOAP and WSDL both have the associated benefits of being mature specifications,

with a wide range of tool and community support.

Using SOAP gives the advantage of a standard header element, which can be used for

transferring infrastructure information such as security, reliability and routing. A stan-

dard fault element is also specified, making a clear distinction between a normal response

from a process or an exception. WSDL focuses on providing a technical description of

a service, listing operations, inputs, outputs, and payload types (OGC 08-009r1, 2008),

with the aim of allowing services to describe themselves.

2.3 Representational State Transfer (REST)

REST is an alternative architectural style to SOAP/WSDL introduced by Fielding (2000).

RESTful approaches to web services are based on the transfer of representations of re-

UncertWeb Processing Service 4

sources, rather than a focus on operation calls as with other architectures. RESTful

services are increasingly popular on the web due to their simplicity and full use of HTTP

verbs. A common usage pattern is GET for retrieving, POST for creating, and PUT for

updating resources.

The geospatial community has made a move to adopt RESTful services for data, with

the OGC Web Map Tile Service (WMTS) standard detailing a full REST interface (OGC

07-057r7, 2010). Similar interfaces for the WCS have also been proposed (Mazzetti et al.,

2009). This may be caused by the inherent ease of mapping data objects to resource URIs,

and operations on those data objects to HTTP verbs. In contrast, existing examples of

REST processing services are limited. Foerster et al. (2011) describes an implementation

of a RESTful web processing service. Although it demonstrates how such a service can

be exposed using REST, it remains to be seen whether this approach offers benefits for

a processing service over other architectures. In the approach proposed in Foerster et al.

(2011) metadata and process execution are exposed as resources which can be accessed

using HTTP verbs (a simple approach, but one which is inconsistent with the OGC

model). The request/response nature of processes means that the full range of HTTP

verbs is only utilised when dealing with asynchronous processing jobs; a job is created with

an HTTP POST request and queried with subsequent GET requests which ultimately,

return the result when it becomes available. The job and its results can then be removed

from the service using an HTTP DELETE request. It remains unclear, however, how

inputs are specified and how processes themselves should be represented as resources —

a matter identified by the paper as a key concept for REST. The example poses the

question of whether the REST architecture is appropriate for every use case.

2.4 JavaScript Object Notation (JSON)

There has been a recent shift towards web browser based applications. These have many

benefits over traditional desktop applications, such as not requiring local installation,

and being able to instantly update without the user being aware. Traditionally, XML

has been the primary data-interchange format used in web service architectures. However,

the shift towards browser based applications has driven an increase in popularity of JSON,

UncertWeb Processing Service 5

a lightweight data-interchange format (Crockford, 2006).

JSON is based on a subset of JavaScript, the client-side programming language which

forms much of the basis for these web applications. While JSON can be natively parsed

into JavaScript objects, XML requires specific parsers for each XML-based language,

making it more complex to process to a web application developer compared with JSON.

This fact is becoming clear after the popular websites Twitter and Foursquare deprecated

parts of their XML Application Programming Interfaces (APIs) in late 2010.

3 Motivation

3.1 UncertWeb

UncertWeb is an EC funded project aiming to ‘uncertainty-enable’ the model web (Geller

and Turner, 2007). The model web is a concept based on the notion that models, as well as

data resources, can be published to the web, discovered and invoked within complex web-

based workflows (Geller and Turner, 2007). UncertWeb aims to develop mechanisms,

standards, tools, and test-beds for uncertainty propagation in web service workflows.

UncertWeb has several use cases, including a scenario based on crop and yield modelling

in the UK, working with the Food and Environment Research Agency (FERA). As the

model web is currently only a concept, UncertWeb has the challenge of building these

components, in addition to uncertainty-enabling them.

Within the model web concept, and thus within UncertWeb, a model is defined as a

process which takes a set of inputs, and produces a set of outputs. However this naive

view of models alone is not sufficient to fully describe a geospatial model of a real physi-

cal system. A model also embodies knowledge, typically contained within the experience

and expertise of the model owner / creator, or relevant community, which is very dif-

ficult to fully capture in an automated manner. Such knowledge includes information

about the appropriateness of running the model in different configurations and at dif-

ferent resolutions, about the stability of the model at different parameter settings, and

about its applicability within certain usage scenarios. We speculate that currently such

information cannot be well expressed in a form which can be understood and reasoned

UncertWeb Processing Service 6

with by machines, and thus we posit that this contextual information should be pro-

vided to model users in textual, unstructured form. However, models do normally have

well defined requirements on their inputs, and specification of their outputs in terms of

the data types supported. These inputs and outputs are often simple scalars, vectors

and arrays, but can also have more complex structures such as vector spatial models.

Many current models are rather inflexible in this respect, requiring specialised domain-

and even model-specific data structures to be provided as inputs. The semantics of de-

scribing model inputs therefore remains a challenging problem. Models also come in

many flavours in terms of computational complexity, from the highly computationally-

demanding numerical weather prediction and climate models, to very simple statistical

models of input/output relationships for example an empirical crop yeild model that uses

only soil and weather data, learned on historical data, rather than physically meaningful

processes and mechanisms.

Building the model web presents many challenges for interoperability. The vision is

to have a number of models from different providers and organisations, and for a user to

be able to select one of those models and use it, either by itself or in a workflow. For

this to be achievable, models must be able to communicate with each other in a standard

way, meaning that a set of suitable information models for representing data, and service

interfaces for defining interactions, is required. One solution being investigated in the

UncertWeb project is the Composition as a Service (CaaS) approach (Bigagli et al., 2011),

where, instead of requiring a single service interface specification, the CaaS component

can mediate between services with different interfaces. The CaaS is envisaged as allowing

a user to specify in an implementation–independent language which services they wish

to use, and how they want the services to be orchestrated in the workflow. The CaaS is

then responsible, through the use of adapters for each different (data and interface) type,

for building requests and parsing responses to each service. The services described in this

paper will be used alongside traditional WPS to evaluate the mediation and workflow

orchestration capabilities of the UncertWeb CaaS.

UncertWeb Processing Service 7

3.2 Processing requirements for the model web

We have identified several desirable features for a web-based processing service:

• Easy of use. The services (models) will be used by modellers who are not necessarily

familiar with the specifications and standards used within the geospatial community.

• Client / library support. If existing clients and supporting libraries are available,

the barrier to use is much lower.

• Process development. Processes will potentially be developed and deployed by

the model owner who may not be familiar with geospatial interface and encoding

standards.

• Workflow support. The UncertWeb project is heavily reliant on model workflows,

making compatibility with associated standards and tools important.

• Reference passing. When dealing with large geospatial datasets, passing resources

by reference is required.

• Asynchronous processing. Geospatial processes can take hours to complete, making

asynchronous execution desirable.

• Dicovery and usage. For describing processes, inputs, and outputs to enable the

potential for discovery and automated service consumption.

Although this list of requirements has been gathered specifically for the UncertWeb

project, they are relevant to the majority of cases of exposing models on the web. These

requirements will form the basis of our assessment for the current version of the WPS,

and the new processing service described in this paper.

3.3 WPS shortcomings

While the WPS specification has valuable features such as standard ways of controlling

process execution and providing metadata, there are several drawbacks to the specifica-

tion. Many of these drawbacks increase complexity for the service consumer, presenting

UncertWeb Processing Service 8

an immediate barrier to use. The interface provided by a WPS is designed to be generic,

and allows the publishing of any process, geospatial or otherwise. A process can therefore

use any data type for an input or output. If a client fully supports a data type, it should

be possible to parse, modify, generate, extract and in many cases visualise the informa-

tion carried by the data. Supporting any data type makes client development extremely

difficult, as it will only be possible to fully support a limited number of data types, and

subsequently a limited number of services. It is argued within the WPS specification that

profiles should be developed to support use, and that the WPS is only an abstract model

of a web service. However, profiles require consumers to develop specific clients, which

negates some of the interoperability benefits of using such a specification. In practice

there are very few existing profiles, and no mechanism for managing these.

Usability issues are even more prevalent when considering the description mechanism

for model inputs and outputs. In the process description returned by a WPS, a type

can only be described with a MIME reference and an XML schema URL. This leaves a

lot of ambiguity when consuming a service, since an XML schema could, and typically

does, contain several elements. Some current WPS implementations rely on using the

URL to handle data, but do not consider that the same type may have different schema

locations. This also poses a problem when using a large schema, such as GML version

3. Many services advertise processes where the input must be described using a GML 3

schema URL, but in reality the service will not be able to understand every element in

that schema.

As a concrete example, consider exposing an agricultural field-use simulator as a

web service. In its simplest form the model has three inputs: the field areas as real

valued measurements, field type classification as text observations, and a crop transition

probability matrix, which arises because of the Markov structure of the crop transition

probabilities assumed in the model. Our use case model workflow contains just such

a field-use simulator, which will be further discussed in Section 5. With the WPS, we

are only able to specify that the former two inputs conform to the O&M schema, which

encompasses observations of a variety of types, and itself is a conceptual model for which

a profile must be developed. The third input is more complex still, but is typical of

UncertWeb Processing Service 9

the sorts of inputs that are needed by models, which are often quite specialised to their

domain of application. With the current WPS standard a user has three options for

determining the exact data type to use:

1. Prior knowledge (that is, they know what the model needs before even seeing the

model description);

2. Use of the plain text input descriptions, which are generally not machine readable;

3. Sending a request and hoping that, if incompatible, the service sends information

to help correct the error, although there is nothing in the service description to

suggest that this should occur.

Client development is also restricted by the tool and library support available for

the WPS. Compared to the more widely used web service standards, such as SOAP

and WSDL, support for WPS is limited. Although some tools are available, they lack

functionality compared to equivalents outside the geospatial world. Workflow standards

and software such as the Business Process Execution Language (BPEL), Taverna and

Kepler are all compatible with services described using WSDL, and do not contain any

built-in support for WPS.

With the WPS specification being this generic, misuse is possible and common. Under

the specification, it is valid for a service owner to expose a process with a data type

simply described as being any XML. Whilst the owners of the service know what that

input should consist of, interoperability with external users is significantly affected. A

consumer should be able to send a valid request to the service without having to rely on

additional information provided outside of the interface itself. For a service owner wishing

to only expose a process internally, it is unclear whether the advantages of implementing

the WPS specification outweigh the effort required. There is a common misconception

that merely complying with a standard ensures immediate interoperability of services.

However, interoperability also requires common data types (information models), concrete

descriptions of service interfaces, and the tools to be able to support these information

models and services.

UncertWeb Processing Service 10

The latest version of the WPS specification is currently at 1.0, and work on version

2.0 is taking place within the OGC. Although initial plans for version 2.0 aim to solve

some of the issues mentioned here (OGC 09-184, 2009), the standardisation process is

lengthy, making it impractical to rely on implementing an updated standard within the

timescales of the UncertWeb project.

3.4 WPS integration with other technologies

A key motivation for developing an alternative service interface was the lack of software

and community support for WPS. Using tools such as Apache Axis and Microsoft Visual

Studio, it is possible to quickly deploy a usable SOAP/WSDL web service from existing

code. These tools are also able to generate code from WSDL documents, making it

easier to integrate applications with web services. A large amount of workflow software

is compatible with, and in some cases relies on, services described using WSDL.

WPS adoption by the open source community in the geodomain has been partially

successful. Service frameworks such as 52N WPS2, PyWPS3, and the ZOO Project4 have

been developed to implement the standard, and GRASS GIS5 has support for generating

WPS compliant process descriptions. However, client support is still limited. For exam-

ple, uDig6 may be able to send requests to a WPS with the appropriate plugin, but it

can only support a very limited number of formats for the inputs and outputs of these

services. If a format is unsupported, the user is unable to use the process. A uDig plugin

for orchestrating workflows has also been developed (Schäffer and Foerster, 2008), but is

restricted to only WPS instances and shares the same data format issues as the client

plugin.

The popularity of SOAP/WSDL services has driven several efforts to integrate these

standards with WPS. Although detail regarding WSDL implementation was originally

missing from the specification, the OGC later detailed possible solutions (OGC 08-009r1,

2http://52north.org/communities/geoprocessing/
3http://pywps.wald.intevation.org/
4http://www.zoo-project.org/
5http://grass.fbk.eu/
6http://udig.refractions.net/

UncertWeb Processing Service 11

2008). These are based on providing a WSDL document either to describe the whole

WPS instance, or on a per-process basis. Due to the generic nature of the WPS, each

instance can only be described by WSDL in an abstract manner. The schema for the

Execute request document only specifies that a process has a number of inputs and

outputs with any data type. No mechanisms are provided for obtaining a concrete schema

for an individual process. Instead, the DescribeProcess operation defined by the WPS

specification must be used to discover the exact input formats required for a process.

Due to the complexity of this usage pattern, the benefits of using WSDL are drastically

reduced. If the field-use simulator example is exposed as a WPS and then included

in a Taverna workflow, a WSDL document is required. When using a generic WSDL

document, a user only knows that a number of inputs are required, and is unaware, for

example, that there are three inputs and that these inputs consist of measurements and

a transition matrix. To discover more information about the process, a DescribeProcess

request must be separately issued, and the Execute request document must be built

manually. A concrete WSDL document, by contrast, can be imported and the required

inputs and data types immediately identified. Taverna then provides graphical interfaces

for setting these inputs.

When creating a WSDL document or schema on a per-process basis, request and

response messages which do not validate against WPS schemas must be defined. This is

required because the WPS schemas only define a request as having a number of Input and

Output elements, with no data type information. It is impossible to add specificity whilst

maintaining compatibility with the base schema. The benefits of using WPS are therefore

reduced, as interoperability provided by following the fixed message structures detailed

in the specification is lost. Each provider may have a different pattern for creating the

WSDL messages, as there are no specific guidelines or specifications to follow on this.

There have been attempts to automatically derive WSDL documents from WPS in-

stances (Sancho-Jiménez et al., 2008), relying on proxy services to convert a WPS process

description to WSDL. In practice, these approaches generate documents with inadequate

message structure descriptions. Since the WPS describes a type with only a MIME refer-

ence and XML schema URL, input and output data types cannot be described in enough

UncertWeb Processing Service 12

detail, because WSDL requires an element, or set of elements, from within a schema to

be specified for each input or output. As a WPS process description does not contain this

information, the majority of proxy based services use the XML anyType element. This

reduces the potential for usability and interoperability since the human (or machine) pro-

cess consumer has no information about the actual data type without further querying

the service through the DescribeProcess operation.

Another proxy approach was developed in the early stages of the UncertWeb project,

as part of a number of experiments with BPEL. To solve the issue of inadequate message

descriptions, custom tags were added to the metadata elements for each process input

or output on the WPS instance. The proxy service parses and interprets these tags to

generate a concrete WSDL document. Whilst this approach solves this issue of inade-

quate descriptions, the non-standard nature of the metadata tags makes it infeasible for

adoption on a wider scale. With a proxy-based solution, there is additional effort for the

developer, and overhead in running an additional service.

If the benefits of WPS over other widely used standards were clearer, the effort and

overheads of manually creating WSDL documents and developing proxy services would be

worthwhile. These solutions maintain compatibility with both WPS and WSDL clients.

However, it is currently difficult to see why a combined WPS and proxy approach would

be favoured over simpler standalone SOAP/WSDL services, which can be generated using

frameworks that take existing code and convert it to usable web services.

The SOAP and WSDL standards were defined by W3C in 2000 and 2001, and ver-

sion 1.0 of the WPS specification was finalised in 2007. With these existing standards

well established at that point, it is unclear why the OGC chose to implement a custom

protocol. It becomes even more unclear when considering that the features within OGC

specifications have equivalents within SOAP/WSDL. For example, SOAP has a common

fault element, as does the OGC. To maximise reusability, it would have been possible

to use the established SOAP fault element, rather than require users of the OGC WPS

standards to implement new tools. The OGC could perhaps argue that the aim was to

ensure consistency across their web service stack, which defines a common pattern for

all service interfaces, including WFS, WCS and WPS. We argue that in the context of

UncertWeb Processing Service 13

standards uptake consistency within a service stack is less important than consistency

across the World Wide Web.

With SOAP/WSDL or JSON, creating clients is straightforward. You can either use

the previously mentioned code-generating tools, use a generic client, or develop a custom

one. The compact nature of JSON allows requests and responses to be generated and

parsed with ease, especially in JavaScript. In comparison, the WPS is complicated for

the consumer. To understand how to issue and build requests the specification must

be read, as message descriptions are not provided in a standard format such as XML

schema. The WPS usage pattern is complex, and involves: listing process identifiers

with GetCapabilities, retrieving a full description of the process they wish to use with

DescribeProcess, and finally using Execute for the actual processing request. Whilst this

pattern is familiar to users within the OGC world, it may seem unnecessarily complex

for those outside the domain.

In a rapidly-evolving web environment, it is important to support current technologies.

This priority is even more critical for geospatial communities when you consider the

growing interest in location, with smartphones and many other devices becoming location-

aware. The barrier for entry is lowered if current technologies are supported, as more tools

and support will be available. To give one example, the current lack of JSON support in

WPS can lead to longer implementation times for developers of web applications. The

lengthy and detailed standardisation process for OGC standards can mean a long wait

of several years before useful features such as this are added to a specification, although

it is relatively simple to implement such support in a non-standardised way. This is a

common problem when comparing standardisation and popularisation as mechanisms for

developing a shared understanding or a community model; in practice some aspects of

both are required. This paper aims to make a contribution to future development of

geospatial processing on the web.

UncertWeb Processing Service 14

4 The framework

To provide an alternative service interface based on existing standards, we developed a

generic Java-based framework for exposing processes on the web. The framework has

two interfaces: one based on SOAP/WSDL, and the other on JSON. Although it is

currently possible to use JSON in SOAP and WPS interfaces, these require embedding

or linking to JSON documents from within XML. Using two data exchange formats in

this manner adds complexity, especially when combining the lightweight JSON format

with heavyweight XML, requiring multiple parsing mechanisms. Therefore, we created

the JSON-based interface to provide data exchange in a single, lightweight format. Our

main aim for the service framework was to make it as easy as possible for both users of

the processes, and process developers. Each component of the system is designed to be

extensible, essentially creating a ‘pluggable’ architecture.

[Figure 1 about here.]

Using the framework at its simplest, a developer needs only to extend the abstract

process class, as shown in Figure 1. The subclass must implement methods for returning a

list of input and output identifiers, their data type, and the process outputs given a set of

inputs. Each input and output has a data type specified by a Java class. The framework is

responsible for automatically selecting the appropriate XML or JSON encoding depending

on this class, whether that be GML, O&M, GeoJSON, or some other format. For example,

if a process has an output with a data type specified as a JTS7 Point, the built in GML

encoding would be selected. In the JSON interface, GeoJSON encoding would be used.

Currently, the framework can parse and encode data conforming to the UncertWeb GML

and O&M profiles described in Section 5. In addition to these vector formats, support is

included for raster NetCDF data.

If no appropriate representation exists, the developer must implement an encoding

class themselves. If the developer does not wish to use the built in encoding classes, they

are able to override them with their own. An encoding class for XML should specify what

7http://www.vividsolutions.com/jts/

UncertWeb Processing Service 15

classes are supported, where the schema can be found, and a mapping from Java class to

schema type, along with methods for parsing and generating the XML.

A standard feature of the service is reference passing. For any complex input or

binary data, it is possible to specify a URL referencing the data rather than embed it in

the request. The service will then load the URL and parse the data using the encoding

classes. In cases where large binary data will be used, and it may not be feasible to load

the complete file into a Java object representation, a process developer can request to

skip the encoding classes and simply be passed the URL to the data. It is also possible

to ask the service to return a reference to the output data rather than embed the data in

the response. In these cases, the data is currently stored by the service and returned as

a URL. However, it would also be possible to support standard data access services such

as the WFS and the Sensor Observation Service (SOS).

Utilising the information kept within encoding classes, the framework is able to auto-

matically generate a WSDL document. For a given input or output, the encoding class

knows which schema element the data type Java class should refer to, and the relevant

schema URL. The generated document is therefore fully-specified, with process-specific

concrete schema elements. A consumer of the document is aware of each input and out-

put, its data type, and whether or not it is required, without any additional calls to the

service.

In addition to exposing a concrete WSDL document, the service uses a fixed pattern

for process requests and responses. In the SOAP/WSDL interface, each input or output

has an element, the name of which is the identifier. That element can either contain

a simple value, a complex value, or a reference. Simple values are primitives such as a

floating-point numbers and strings. Complex values are structures consisting of several

nested values, usually representing objects with multiple properties, such as elements

within GML and O&M. A reference is given by a URL, which could locate a file contain-

ing, for example, binary coverage data on a web server, or some data on a web service.

Listing 1 demonstrates this fixed pattern in a request document for a process with three

inputs; one simple, one complex, and one reference. The same approach is adopted in

the JSON interface. This fixed message pattern allows a generic usage scenario, similar

UncertWeb Processing Service 16

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ps="http

://www.uncertweb.org/ProcessingService">

<soap:Header />

<soap:Body>

<ps:ExampleProcessRequest>

<ps:A>0.444</ps:A>

<ps:B>

<gml:Point xmlns:gml="http://www.opengis.net/gml/3.2" gml:id="point1">

<gml:pos srsName="http://www.opengis.net/def/crs/EPSG/0/4326">52.87 7.78</gml

:pos>

</gml:Point>

</ps:B>

<ps:C>

<ps:DataReference href="http://uncertws.aston.ac.uk/data/example_point.xml"

mimeType="text/xml" />

</ps:C>

<ps:RequestedOutputs>

<ps:O reference="true">

</ps:RequestedOutputs>

</ps:ExampleProcessRequest>

</soap:Body>

</soap:Envelope>

Listing 1: An example SOAP request to the processing service

to that of the WPS.

All exceptions caught within the framework are returned to the user as standard

SOAP fault elements. Each element contains a human-readable explanation, further

specific error information, and a code with the intention to help find the source of the

exception - either client or server. In the case of the JSON interface, there is currently

no specification similar to SOAP available. We therefore created our own structure to

mimic the information contained in a SOAP fault. If a developer wishes to indicate a

fault produced by a process, they can throw an instance of ServiceException.

UncertWeb Processing Service 17

Whilst the framework is functional, it is currently an early version, and missing some

features. Geospatial processes are often performed on large data sets, creating execution

times ranging from seconds to hours. With synchronous process execution, it may be

infeasible for a user to wait for a response, or the request may simply time out. These

issues stress the importance of asynchronous process execution, a standard feature in

the WPS specification, but currently missing from the framework. This feature will be

prioritised in future development of the framework, in addition to support for more raster

formats and utilising SOAP security to restrict access to processes.

5 Use case

To test the service framework, a workflow was built as part of the FERA UncertWeb use

case. The workflow, as introduced in Section 3.3 and shown in Figure 2, is composed of

a set of models for predicting land-use and crop yield response to climatic and economic

change. It currently consists of two models, although will be further extended in the

future. The first, Land Capability Classification System (LCCS) is used to calculate the

probability of crop transitions within fields, given a set of historical crop rotation data.

The other, LandSFACTS, is the previously-mentioned field-use simulator. LandSFACTS

was developed by the Macaulay Land Use Research Institute (Castellazzi et al., 2010), and

simulates crop allocations for a period of five years, based on the transition probabilities

which form the outputs of the LCCS and a set of rules and constraints to ensure for

example the correct treatment of genetically modified crops, or other external constraints.

[Figure 2 about here.]

For each of the models, a process was deployed using the framework. The models

had been previously developed and were supplied as R and C++ source code. As neither

models were accessible through a web service interface, the processes on the framework

were implemented as wrappers. The wrappers are responsible for taking the parsed web

service inputs, converting them to a suitable format for the existing model, executing

the model, then converting the outputs to the required format. These steps will often

be required, as formats commonly used in a web service environment, such as O&M, are

UncertWeb Processing Service 18

unlikely to be supported by many existing models. This mapping of intrinsic model data

types to data types supported in the modelling framework is a signficant challenge for

exposing models on the web, and interoperability more generally.

The GML and O&M encoding standards are able to model a wide range of objects

from within geographic systems, and can describe geographic data sets. At their base,

generic level, the standards are difficult to use. For example, the schema for O&M states

that the result of an observation can be of any type, which is impossible to implement. A

profile of a schema restricts the types that can be used. Within the UncertWeb project,

we have developed profiles for both GML and O&M. These restrict the elements available

in the GML schema to widely-used primitives, such as points, lines, polygons and raster

grids, and the result in an O&M observation to boolean, categorical, text, uncertainty,

discrete numeric, reference, and measurements. These restricted profiles make it possible

to guarantee support for these types within services and clients, and a set of fully-featured

Java APIs have been developed to facilitate usage8.

In our web processing framework, support for the UncertWeb GML and O&M profiles

is included, and was appropriate for the majority of inputs and outputs in our example

workflow. However, there are occasions when no elements in these standards are able to

represent some of the data required or produced by the workflow. An example of this is

the crop transition matrix output from the land capability model. We considered adding

a transition matrix type to our profiles, but to keep the profiles more general, it was

decided to keep it separate. The flexibility of the framework allowed us to develop our

own encoding class for this type.

[Figure 3 about here.]

To demonstrate the workflow, a simple JavaScript web client was developed. Using

the JSON interface provided by the processing service framework, we were able to or-

chestrate the workflow entirely with JavaScript. Requests and responses are generated

and parsed, calling each service in turn and displaying appropriate visualisations once

processing is completed. Several parameters can be adjusted within the web client, al-

lowing users to control the behaviour of the workflow. Once the user clicks the submit

8http://www.uncertweb.org/software/utilities

UncertWeb Processing Service 19

button, the client reads the parameter values in the fields presented to the user. A JSON

request to the LCCS process is built, and sent asynchronously to the service. When the

response is received, several tables displaying the transition matrices are shown to the

user. These output transition matrices are added to a JSON request for the LandSFACTS

process, in addition to the field areas and type classification. This request is again, sent

asynchronously to the service. After the response has been received, the simulations are

parsed. For each field, a colour indicator is placed on a map provided by Google Maps.

This indicator represents the simulated crop in that field for the selected year. The user

is able to select the sample, simulation and year from which they wish to display the

simulation. The processes can also be orchestrated with Taverna, making it possible to

extend the workflow by adding other processes and functionality if required.

6 Evaluation

The developments within this paper successfully achieve the goal of creating a model

execution service framework which can support widely used web technologies. By au-

tomatically selecting appropriate data types and generating a service description, model

owners can focus on process functionality rather than the more technical aspects of expos-

ing their models on the (geo)web. A challenge still exists in connecting models to a web

service interface. This is caused by models being written in a variety of languages. Our

wrapper approach goes some way in solving this, but still requires development effort, as

for the majority of models specific wrappers will have to be developed.

The implementation of the crop allocation model workflow provided a basis for a

usability test based on the requirements in Section 3.2. The outcomes from this test

are summarised in Table 1. Exposing the existing models on the web was generally as

simple as overriding methods in a class. The extensible nature of the framework allowed

a custom encoding format to be integrated in the same simplistic manner as a process.

The benefits of providing a concrete WSDL document could be immediately seen by

composing the workflow with Taverna, and generating usable Java code with Apache

Axis. By utilising the JSON interface, a JavaScript web client was developed without the

UncertWeb Processing Service 20

need for parsing and generating code, as required by XML. Further usability tests will be

performed upon releasing the framework to a wider community. Both the framework and

WPS support reference passing. Unlike the WPS, the framework is unable to support

asynchronous process execution. This could be a serious limitation when dealing with

long-running processes. However, this will be implemented in a future version.

[Table 1 about here.]

An additional drawback of the framework, which relates to a limitation of WSDL, is

the lack of metadata attached to the service interfaces. OGC WPS can provide addi-

tional metadata to assist service discovery and usability. This metadata can be generic

information such as a description of a process input, or geospatially specific information

such as the supported resolutions for a coverage input. Metadata like this would facili-

tate automated or semi-automated workflow composition. Initial steps are being taken

to solve this limitation by supplementing the generated WSDL document with metadata

annotations. These annotations, described in Table 2, are tag based and share a common

dictionary with all models in the UncertWeb project. An alternative approach could be

to create an additional operation for retrieving metadata on a per-process basis. In either

case, it is extremely important that the approach is standardised to make it useful to the

wider community.

[Table 2 about here.]

7 Conclusions

With WSDL describing each process on the service in a standard manner, interoperabil-

ity at the process level is achieved. A compatible client is able to parse the description

and present inputs to a user, build a request, and execute a process. Workflow tools and

software can orchestrate multiple services described with the approach we propose here,

without the need for process-specific code. The built-in support for the UncertWeb GML

and O&M profiles, which are rather generic in character, encourages the use of interop-

erable formats for commonly used data, such as geospatial primitives and observations.

UncertWeb Processing Service 21

As the framework is not formally standardised, it is only able to reach a certain level of

interoperability. The use of fixed message structures could help to achieve a higher level,

but only if they were standardised and adopted. While, clearly, a specification like WPS

can greatly facilitate interoperability, the current version presents many complexity and

usability issues, often leading to process implementations which actually hinder interop-

erability. Integrating with popular web technologies and focusing on usability of the WPS

will enable the specification will be more useful and attractive to a wider community.

Several issues require further attention to make the developed framework into a more

complete model integration tool. First, support for existing community modelling frame-

works should be considered. This might take the form of a set of tools to help model

developers and users add support for their models to the framework. Secondly a more

complete support for different data types would be helpful; however we speculate that

this may evolve with the framework as more models are added. Thirdly, support for

security and asynchronous processing could be added to the framework to allow a more

flexible and secure distributed computational environment. Future work should also fur-

ther consider the semantic annotation of models and their inputs to facilitate improved

discovery and machine mediation between model components.

Acknowledgements

The research leading to these results has received funding from the European Union

Seventh Framework Programme (FP7/2007-2013) under grant agreement n [248488]. We

acknowledge discussions with Christoph Stasch and other members of the UncertWeb

team in defining the UncertWeb profiles and service annotations. Jill Johnson and John-

Paul Gosling provided modelling expertise to the use case demonstrated in this paper.

We are grateful to two reviewers, whose constructive suggestions helped us improve the

paper.

UncertWeb Processing Service 22

References

L. Bastin, D. Cornford, R. Jones, G. B. Heuvelink, C. Stasch, E. Pebesma, S. Nativi,

P. Mazzetti, and M. Williams. Managing uncertainty in integrated environmental mod-

elling frameworks: The UncertWeb framework. Environmental Modelling and Software,

in review, 2011.

L. Bigagli, M. Santoro, V. Angelini, P. Mazzetti, and S. Nativi. Service frameworks for

modelling resources. Technical report, National Research Council of Italy, 2011.

D. Box, D. Ehnebuske, G. Kakivayam, A. Layman, N. Mendelsohn, H. F. Nielsen,

S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1. W3C Note.

W3C, May 2000. URL http://www.w3.org/TR/soap11.

M. Castellazzi, J. Matthews, F. Angevin, C. Sausse, G. Wood, P. Burgess, I. Brown,

K. Conrad, and J. Perry. Simulation scenarios of spatio-temporal arrangement of crops

at the landscape scale. Environmental Modelling & Software, 25(12):1881–1889, 2010.

ISSN 1364-8152. doi: 10.1016/j.envsoft.2010.04.006.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description

Language (WSDL) 1.1. W3C Note. W3C, March 2001. URL http://www.w3.org/TR/

wsdl.

D. Crockford. JSON: The fat-free alternative to XML. In Proceedings of XML 2006,

2006. URL http://www.json.org/fatfree.html.

R. T. Fielding. Architectural Styles and the Design of Network-based Software Architec-

tures. PhD thesis, University of California, Irvine, 2000. URL http://www.ics.uci.

edu/~fielding/pubs/dissertation/top.htm.

T. Foerster, A. Bruehl, and B. Schaeffer. RESTful Web Processing Service. In Proceedings

of the 14th AGILE International Conference on Geographic Information Science, 2011.

G. Geller and W. Turner. The model web: a concept for ecological forecasting. In

Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International,

pages 2469–2472, July 2007. doi: 10.1109/IGARSS.2007.4423343.

http://www.w3.org/TR/soap11
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.json.org/fatfree.html
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

UncertWeb Processing Service 23

P. Louridas. Orchestrating Web Services with BPEL. IEEE Software, 25:85–87,

March 2008. ISSN 0740-7459. doi: 10.1109/MS.2008.42. URL http://dl.acm.org/

citation.cfm?id=1345866.1345902.

P. Mazzetti, S. Nativi, and J. Caron. RESTful implementation of geospatial services

for Earth and Space Science applications. International Journal of Digital Earth, 2(1

supp 1):40–61, 2009. doi: 10.1080/17538940902866153. URL http://dx.doi.org/10.

1080/17538940902866153.

OGC 05-007r7. OpenGIS Web Processing Service. OpenGIS Standard. Open Geospatial

Consortium Inc., Wayland, USA, 2007.

OGC 07-036. OpenGIS Geography Markup Language (GML) Encoding Standard.

OpenGIS Standard. Open Geospatial Consortium Inc., Wayland, USA, 2007.

OGC 07-057r7. OpenGIS Web Map Tile Service Implementation Standard. OpenGIS

Standard. Open Geospatial Consortium Inc., Wayland, USA, 2010.

OGC 08-009r1. OWS 5 SOAP/WSDL Common Engineering Report. OGC Discussion

Paper. Open Geospatial Consortium Inc., Wayland, USA, 2008.

OGC 09-184. Improve specification of complex data input/output formats in process de-

scription. OGC Change Request. Open Geospatial Consortium Inc., Wayland, USA,

2009.

OGC 10-025r1. Observations and Measurements - XML Implementation. OpenGIS Stan-

dard. Open Geospatial Consortium Inc., Wayland, USA, 2011.

C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. big web ser-

vices: Making the right architectural decision. In 17th International World Wide

Web Conference (WWW2008), pages 805–814, Beijing, China, April 2008 2008. URL

http://www2008.org/.

G. Sancho-Jiménez, R. Béjar, M. A. Latre, and P. R. Muro-Medrano. A Method

to Derivate SOAP Interfaces and WSDL Metadata from the OGC Web Processing

Service Mandatory Interfaces. In Proceedings of the ER 2008 Workshops (CMLSA,

http://dl.acm.org/citation.cfm?id=1345866.1345902
http://dl.acm.org/citation.cfm?id=1345866.1345902
http://dx.doi.org/10.1080/17538940902866153
http://dx.doi.org/10.1080/17538940902866153
http://www2008.org/

UncertWeb Processing Service 24

ECDM, FP-UML, M2AS, RIGiM, SeCoGIS, WISM) on Advances in Conceptual Mod-

eling: Challenges and Opportunities, ER ’08, pages 375–384, Berlin, Heidelberg,

2008. Springer-Verlag. ISBN 978-3-540-87990-9. doi: http://dx.doi.org/10.1007/

978-3-540-87991-6 44. URL http://dx.doi.org/10.1007/978-3-540-87991-6_44.

B. Schäffer and T. Foerster. A client for distributed geo-processing and work-

flow design. Journal of Location Based Services, 2(3):194–210, 2008. doi: 10.

1080/17489720802558491. URL http://www.tandfonline.com/doi/abs/10.1080/

17489720802558491.

http://dx.doi.org/10.1007/978-3-540-87991-6_44
http://www.tandfonline.com/doi/abs/10.1080/17489720802558491
http://www.tandfonline.com/doi/abs/10.1080/17489720802558491

UncertWeb Processing Service 25

List of Figures

1 A simplified overview of the processing service framework class architecture. 26
2 A diagram of the FERA land-use and crop yield response workflow. . . . 27
3 Screenshots from the workflow demonstration web client. 28

FIGURES 26

Figure 1: A simplified overview of the processing service framework class architecture.

FIGURES 27

Figure 2: A diagram of the FERA land-use and crop yield response workflow.

FIGURES 28

Figure 3: Screenshots from the workflow demonstration web client.

FIGURES 29

List of Tables

1 A summary evaluation comparison in the context of the use case. 30
2 The UncertWeb dictionary of process and parameter metadata tags. . . . 31

TABLES 30

Table 1: A summary evaluation comparison in the context of the use case.
UncertWeb Processing Service WPS 1.0.0

Standardisation Not formally standardised, making
it difficult to encourage adoption.
Fixed structure documents are used,
creating the potential to standard-
ise.

Formally standardised, ensuring a
level of compatibility and support
within the OGC world.

Service de-
scription

Fully described with concrete
schema elements. For example,
the user is aware that the field
areas should be given as an O&M
measurement collection.

Described with an abstract schema
document. For example, the user
only knows the field areas are O&M
— this could be text, boolean, mea-
surement, or various other types of
observation.

Client genera-
tion

Java client code was generated using
Apache Axis. User does not need to
see any XML.

The 52N WPS Java client can be
used, but a user is still required to
view and understand the ProcessDe-
scription XML document.

Web demon-
stration client

Used the JSON-based interface to
develop a simple client. Responses
parsed to native JavaScript objects.

Client would require full use of
XML.

Orchestration
with Taverna

Supported out of the box. Able to
create a workflow without dealing
with XML directly. Some usabil-
ity problems with O&M — Taverna
cannot parse the schema properly
due to the number of elements.

Orchestration with Taverna requires
creating a WSDL file for the WPS
instance. Request and response doc-
uments then have to be manually
created.

Metadata Annotated tags. Can be parsed by
clients and services within Uncer-
tWeb.

Free text, potential for annotated
tags.

TABLES 31

Table 2: The UncertWeb dictionary of process and parameter metadata tags.
Process

description A textual description of the process, input, or output.

Spatial

spatial-resolutions Supported resolutions of the raster layers.

spatial-support-types Indicates whether the support of the cell value is the centre
of the object or the average value of the complete object
(typically a grid).

spatial-crss Supported spatial reference systems.

spatial-geometry-types Types of geometry supported.

spatial-domain Extent of the spatial domain supported.

Temporal

temporal-resolutions Indicates the temporal support of the values of the variable.

temporal-support-types Indicates whether the support of the cell value is the centre
of the object or the average value of the complete object
(typically a time instant)

temporal-domain Extent of the temporal domain supported.

Variable

variable-phenomena Phenomena identifier. For example, the observedProperty
URI in case of O&M data.

variable-uncertainty-types UncertML9 type of uncertainty information.

variable-units-of-measure Units of measure of the variable.

	Introduction
	Web service technologies
	WPS
	SOAP/WSDL
	REST
	JSON

	Motivation
	UncertWeb
	Processing requirements for the model web
	WPS shortcomings
	WPS integration with other technologies

	The framework
	Use case
	Evaluation
	Conclusions

