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Abstract 

Using the analogy between lateral convection of heat and the two-phase flow in bubble columns, 

alternative turbulence modelling methods were analysed.  The k-� turbulence and Reynolds stress 

models were used to predict the buoyant motion of fluids where a density difference arises due to 

the introduction of heat or a discrete phase.  A large height to width aspect ratio cavity was 

employed in the transport of heat and it was shown that the Reynolds stress model with the use of 

velocity profiles including the laminar flow solution resulted in turbulent vortices developing.  

The turbulence models were then applied to the simulation of gas-liquid flow for a 5:1 height to 

width aspect ratio bubble column. In the case of a gas superficial velocity of 0.02 m s
-1

 it was 

determined that employing the Reynolds stress model yielded the most realistic simulation 

results.  

 

Keywords: Two-Phase Flow, Bubble Columns, Computational Fluid Dynamics, Mixture Models, 

Turbulent Reynolds Stresses, k-� Turbulence, Thermal Convection 
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Introduction  

 

Bubble columns are seen as good tools for the reaction and transfer of mass, but design 

procedures reduce the effectiveness of reactor design [1].  Understanding of the complexity of the 

fluid dynamics in bubble columns is important due to their application in the chemical and 

bioprocess industries.  Many parameters control the flow of the fluid phases through bubble 

columns, where the relative buoyancy of the discrete phase is the major driving force for the flow 

regime.  Other factors that impact on the complex flow phenomena include the coalescence and 

dispersion of bubbles, surface tension, viscosity and pressure effects.  The value of these 

parameters can influence the size, shape and volume fraction of the bubbly gas phase [1-2].   

 

In an effort to enhance the performance of equipment over the past two decades, many attempts 

have been made to develop accurate and workable predictive models of the flow regimes that are 

present.  However, many of these models are one-dimensional and do not account for the three-

dimensional transient turbulent interactions that increase the complexity of any solution 

attempted [2].   Computational fluid dynamics is a tool that can be used to demonstrate the 

influence of the multi-dimensional transport of discrete phases on the hydrodynamics.  

Nevertheless, there are limitations to the effectiveness of the mathematical models employed 

when averaging the gas and liquid phases to specific particle sizes and fluid properties.   

 

Over the last decade modelling techniques applied to multiphase flow in bubble columns have 

shown improvement in representing the flow regimes (Torvik and Svendsen [3-4], Sokolichin 

and Eigenberger [5-9], Lapin and Luebbert [7], [9], Delnoij et al. [11] and Ranade [12]).  The 
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two-fluid model represents both phases as pseudo-continua with continuity of mass and 

momentum equations independently predicting the motion of each phase and has been rigorously 

examined with flows in two-dimensional bubble columns [3-9] and [11].  The mixture model 

employs a transport equation (to predict the discrete phase volume fraction) along with the 

continuity of mass and momentum equations that treat the phases as a pseudo-continuous mixture 

of both the continuous and discrete phases [13-16].  An alternative method of modelling the 

motion of the gas bubbles in a batch liquid column is discrete particle tracking [7][10-11], where 

individual bubble motion is predicted in a Lagrangian frame of reference.  The particle tracking 

method is computationally intensive, even for low gas phase fractions, as the motion of each 

bubble/particle is considered in the calculation of multiphase flow phenomena.  The two-fluid 

and mixture model methods can predict gas phase motion more efficiently, but at a reduced 

accuracy as the influence of bubble rotation and wake effects are generally ignored [2].   

  

The discrete phase models we present were derived from earlier simulations of a 5:1 bubble 

column for both two and three dimensions cases [13-16], which in turn were based on the 

experimental investigations of Degaleesan et al [13].  The dynamics of gas-liquid mixture were 

analysed along with consideration of discrete particle motion and initial developments in pseudo-

continua representations of the solid phase fraction [13-16].  Comparing vector fields for the 

experimental [17] and numerical investigations [3] [15] in Figs. 1-3, the vortices observed in Fig. 

1 do not correspond to the flow structures depicted in axisymmetric (Fig. 2) and plane fields (Fig. 

3a.), when solving gas-liquid motion with k-ε the two-dimensional turbulence model [22].  The 

corresponding structures are only observed within the fully three-dimensional simulation where 

the corresponding vector fields are depicted in Fig. 3b [15].  Restricting the complexity of the 
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flow to two-dimensions therefore greatly reduces the reproducibility of the experimentally 

observed eddies, particularly when k-� turbulence models are employed.  A reduction in the 

computational demand was observed when ignoring the third-dimension [15].  The aim of the 

present project is to assist in the implementation of the computationally intensive two and three-

phase flow models when solved with the transport of turbulent Reynolds stresses.  Including all 

these models increases the time required to obtain a flow solution and would therefore 

significantly increase the time required to obtain a three-dimensional flow solution.  Therefore, 

we considered meshes that are either axisymmetric or plane in form.  The use of the 

axisymmetric mesh is limited as only the radius of the column is considered, whereas the plane 

mesh is a slice over the whole diameter of the column.  Using the whole column diameter enables 

the modelling of the column diameter non-axisymmetric scaled vortices.  Restricting the domain 

to just the radius of the column limits the modelling of these vortices, therefore the plane mesh 

was employed here.  We have chosen to investigate under homogeneous flow conditions so that 

the influence of coalescence and break-up is negligible [2].  Therefore, a fixed bubble size of 5 

mm was used with a superficial gas velocity of 0.02 m s
-1

 [17]. 

 

Heat transport has been long established in the modelling of turbulent flows particularly when 

simulating natural convection in cavities with large height to diameter ratios [21-22].  The 

convection of heat across the width of the mesh provides an excellent example of how to simulate 

the turbulent interactions in buoyancy driven flows.  Applying the analogy, between lateral  

multiphase flow in bubble columns and lateral convection [23] it would seem of interest to 

attempt to model the transport of the discrete phase using the same techniques that are applied 

when modelling the buoyant motion of air between two infinite plates at differing temperatures.  

To employ this technique effectively, it would be wise to test the capacity of the solver employed 
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(Fluent [28-29]) by simulating lateral convection of heat in a long vertical channel. The 

investigations of Chait and Korpela [22] provide the basis for the simulation of buoyancy driven 

flows where heat causes local differences in the fluid density.   

 

Mathematical Models  

 

Energy Transport 

 

The thermal transport equation (1) has the general form of a transport equation with time 

dependent and the non-linear velocity terms on the left hand side.  On the right had side is the 

temperature gradient and the velocity coupling term.  These last two terms are intrinsic to the 

accurate prediction of the structure of both the velocity and temperature fields and how each of 

the variables influences the other.  Along with the energy transport equation, the conservation of 

mass (2) and momentum (3) are used to predict and check the pressure and velocity fields.  The 

fluid density considered was temperature-dependent and was calculated by using the Boussinesq 

approximation (5), which was then applied to the transport equations ((1)-(3)).  The coefficient of 

thermal expansion, �, is an average value for the temperature range considered. 

 

Algebraic Slip Mixture Model [13][28-29] 

 

The investigations of Zuber, Findlay, Ishii and Mishima provide the physical and theoretical  

basis for the application of a continuum mixture approach to the simulation of multiphase flow 

[24-26].  Considering the discrete and continuous phases as a pseudo-continuous mixture, a 
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single continuity equation (9) and a single momentum equation (10) were employed to assess 

mixture phase transport.  To predict the mixture phase composition a volume fraction equation 

for the discrete phase (11), a mixture density (12) and a mixture viscosity (13) must be employed 

to characterise gas-liquid or solid-liquid interactions.   

 

Each phase has distinct interactions that influence the transport of one phase through the other. 

This was characterised by the use of mass-averaged (14), drift (15) and slip (16) velocities.  The 

slip or relative velocity was obtained by averaging a combined momentum equation for the 

discrete phase and the mixture according to the principles of local equilibrium and Favre 

averaging.  The assumptions made, in the averaging procedure, were that the pressure was the 

same for all phases and that only viscous drag influences particle motion leading to fluctuating 

form of slip velocity.  A constitutive equation was then employed to account for the fluctuating 

terms to further simplify the relative velocity [27].   

 

Frictional effects depend on the flow regime (equations (17)). This is considered when modelling 

such flows [24-26]. The Reynolds number, equation (18), was based on the particle diameter that 

serves as the characteristic dimension.  The regimes vary according to discrete particle size, the 

volume has a critical influence on the driving forces fraction and the distribution of particle sizes.  

Predicting flow phenomena in the heterogeneous regime increases the complexity of the 

description of the mixture phase, as different bubble sizes are prevalent.  Therefore as mentioned 

above, in order to simplify the models employed we concentrate our flow predictions on the 

homogeneous regime, where a single bubble size was assumed.   
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Modified Scalar Equation Mixture Model  

 

The scalar transport model can be used to model the transport of any parameter where the  

volume fraction of a phase, heat or the influence of electromagnetism [28-29] are some examples. 

The scalar equation (19) employed here models the transport of a pseudo-continuous discrete 

phase in conjunction with the basic continuity and momentum equations. We note here that the 

solver specifies all the terms on the left hand side of equation (19).  To produce a relevant 

solution, a diffusion coefficient was used, Γ, and this was defined as 0.1 m
2
 s

-1
, though 

correlations could be used to predict the dispersion of each phase [27].    To depict the transport 

of the discrete phase source terms are applied to the right hand side of the scalar equation (19). 

The last term on the right hand side of (19) is the deviatoric stress tensor to include the influence 

of turbulence on the bubble plume in a similar manner to the energy equation (1) by using the 

analogy to thermal convection.  The third term is the inter-phase interaction term that is 

calculated by the drift velocity.  The second term on the right hand side of (19) is the convective 

flux of the discrete phase. We note that there are two convective fluxes with one for the mixture 

phase and that the scalar equation (which predicts the volume fraction) is different to the volume 

fraction formulation used in the algebraic slip mixture model [13][28-29].  Comparing both 

volume fraction equations, equations (11) and (19), it is apparent that the diffusive flux term and 

the deviatoric stress tensor are not found in (11). The continuity of mass and momentum 

equations that are solved with equation (19) have the same form as the continuity equations, 

equations (9) and (10), used in the algebraic slip mixture model [13][28-29].  The drift velocity 

was also calculated in a similar manner using equations (12)-(16).  The mixture viscosity was 
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predicted with the aid of equations (20)-(21) and this differs from the algebraic slip mixture 

model [13][28-29], which only employs (13). 

 

Transport of Turbulence  

 

The k-� turbulence equations are used to depict the transport of energy between large and small 

vortices in the velocity field.  The transport of turbulent energy was modelled through the use of 

a pair of coupled transport equations (22) and (23) that describes the generation of energy due to 

motion (conversion from one source i.e. due to density difference) in one equation (22) and 

dissipation of that energy in the other (23).  This effectively characterises the growth and 

evolution of vortices caused by some form energy input be that agitation from heat, another fluid 

or the motion of a solid object.  

  

The exact Reynolds stress equation (28) is a more complex model and is simplified into several 

different equations to reduce the complexity of the formulation and to enable closure of the exact 

equation in the mathematical models [28-29].  This includes the use of both equations (22) and 

(23) plus the inclusion of the effects of buoyancy, pressure, pressure-strain and any rotation 

through equations (29)-(37). 

 

In the prediction of the lateral convection of heat, it is beneficial to the numerical solution of the 

transport equations to split the flow into basic flow and secondary mean flow quantities [21-22].  

The basic flow quantity was determined from a known profile that was obtained under laminar 

flow conditions (38).  The secondary mean flow is determined by taking an x-y average of the 

Navier-Stokes equation and this then represents the effect of the Reynolds Stresses.  Using such a 
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profile is relevant to multiphase flow that is based on the density difference driving force, 

therefore, exploiting the analogy with natural convection [23].  The velocity profiles for the 

lateral convection of heat and the gas-liquid flow cases are in the form of equations (39) and (40).  

The basic profile for the gas-liquid flow (40) was obtained from the reported experimental 

velocity profiles of Degaleesan et al. [13][17-19] and the lateral heat convection profile (39) was 

the laminar flow profile of Chait and Korpela [22].  Reynolds stresses therefore are intrinsically 

important in attempting to capture the turbulence effects in the fluid flow that arises from the 

differences in density. 

 

Model Parameters  

 

Boundary Conditions and Physical Properties  

 

The meshed domains are two-dimensional planes with height to width ratios of either 50:1 (in an 

attempt to model a vertical cavity of infinite extent) or 5:1 (that corresponds to previous 

investigations [13-19]).  The high aspect ratio mesh contains 5000 cells in a plane 500 cells high 

by 10 cells wide (where each cell is 0.1m high ×  0.1m wide).  The lower aspect ratio mesh 

contains 2000 cells (with the ratio 100:20 cells, where each cell is 0.01m high ×  0.01m wide).  

Four walls surround the large aspect ratio mesh to which temperature conditions are applied.  For 

the small height to width ratio mesh, velocity-inlet and pressure-inlet conditions are applied to 

the bottom and the top of the mesh respectively, with the remaining boundaries being treated as 

walls.  The velocity-inlet condition is only applied to 80% of the base of the column that mimics 

a multi-orifice plate distributor and the pressure-inlet was used to represent the liquid surface.  
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The conditions applied to the inlet boundaries include the volume fraction, the pressure and the 

inlet velocity of the discrete phase.   

 

The physical properties of the fluids simulated include the density, the viscosity, the specific heat 

capacity, the thermal expansion coefficient and the thermal conductivity of each of the fluids.  

The fluid phase density and viscosity are defined as 1.225 kg m
-3

 and 1.7894*10
-5

 kg m
-1

 s
-1

 for 

air, 998.2 kg m
-3

 and 1.003*10
-3

 kg m
-1

 s
-1 

for water.  The diameter for the air bubbles was 5 mm 

assuming that the form of the particles is spherical.  The definition of the fluid phase for lateral 

convection of air required the specific heat capacity, the thermal expansion coefficient and the 

thermal conductivity to be defined as 1006.43 J kg
-1

 K
-1

, 1.77*10
-8 

K
-1

 and 2.42*10
-2

 W m
-1

 K
-1

 

respectively.  The expansion coefficient was determined by using the Grashof number 

formulation, equation (6), assuming a value of 8500 [22].  This ensured strong non-linearity as 

the maximum Grashof number for which the basic flow exists is 8037 [22]. The Prandtl number, 

equation (41), for air under ambient conditions was assumed. 

 

Lateral Convection of Heat 

 

A cubic velocity profile is applied to the vertical velocity field, with an inflection point at the 

mid-point of the mesh in the horizontal direction (39).  A temperature of 300 K was applied to 

the left wall and 310 K to the right wall and the fluid or air temperature was initialised as 305 K. 

 

To describe the influence of each turbulent flow modelling method three cases were 

implemented. These were thermal convection using the k-� turbulence model (A) or the Reynolds 

stresses model (B). The Reynolds stress model was also used with a profile for the velocity that 
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was added to the solution (updating the velocity field) after each time-step (C).  Each case was 

solved for 500 seconds of flow time, with a time-step size of 0.2 seconds to ensure that the 

correct flow phenomena were observed for validating the use of the energy and turbulence 

transport models in the software code [28].  All under-relaxation factors for the last ten cases 

were set to 1 except for the k-� and Reynolds stress transport equations, which were defined as 

0.1. 

 

Gas-Liquid Transport  

 

Two models were employed in the prediction of the gas-liquid mixture, the algebraic slip (A1-

A3) mixture model [13] and the modified scalar equation (S1-S3) form of the mixture model.  

Three different applications of the turbulence models were applied to both mixture-modelling 

methods and comparisons with the experimental investigations of Degaleesan et al [17-19] were 

made.  As for the lateral convection of heat, the three turbulence models applied to the fluid 

mixture include the k-� turbulence transport (A1 and S1), the Reynolds stress turbulence 

transport without applying the velocity profile (A2 and S2) and Reynolds stress turbulence 

transport with the updating of the laminar velocity profile after each time-step (A3 and S3).   

 

For cases S1 to S3 the fraction of the gas phase at the inlet was defined as 0.6 for reasons of 

solution stability.  The superficial gas velocity applied at the inlet was 2 cm s
-1

 (within the 

homogeneous flow regime) that is 3.125 cm s
-1

 if one considers that only 80% of the inlet 

diameter are concerned.  Therefore, the mass flow-rate of the gas phase through the inlet was 

calculated to be 7.7*10
-4

 kg s
-1

.  As only 16 of the 20 cells were used at the base (the gas phase 

inlet and the porosity or free surface area for the experimental distributor was 0.1%), a flux 
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through each cell was estimated to be 0.6.  The boundary condition for the gas fraction at the inlet 

velocity in cases A1 to A3 was 1.  The time step was 0.1 seconds (it was found that no difference 

in the solutions was obtained at a smaller time-step size).  The flow fields were solved for 6000 

steps or 600 seconds of flow time. 

 

The discretization techniques applied to the discrete phase models include the use of the body 

force weighted scheme for pressure effects [28-29], the QUICK [30] scheme for the momentum 

equation and the SIMPLEC [31-34] algorithm that couples the velocity field to the pressure field.  

The volume fraction equation for the discrete phase was solved using a second order form of the 

UPWIND scheme [31-34] (due to a limitation in the solver).  Under-relaxation factors were set at 

0.1, 0.3, 0.7 for slip velocity, pressure, volume fraction and momentum equations respectively 

and all the remaining terms are set to 1 [13][15],  except for the Reynolds stress turbulence model 

that has an under-relaxation factor of 0.1.   

 

Results and Discussion 

 

Lateral Convection of Heat 

 

Applying the energy equation to model the transport of heat in a 50:1 aspect ratio mesh for the 

three turbulence models resulted in velocity vector fields (Fig. 4) and stream function contours 

(Fig. 5).  Only case C displays the expected vortices in Fig. 4 that are approximately two to three 

of the mesh widths in height.  The stream-function contours for case C also display structures of 

the same scale in Fig. 5.  The vector and contour plots for cases A and B do not show any of the 
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flow phenomena that were observed in case C.  The velocity for cases A and B was several orders 

of magnitude less than for case C, resulting in the non-existent stream function contours observed 

in Fig. 5.  Comparing the vector-fields and contours of stream function with earlier lateral 

convection models [22-23] it is apparent that only case C corresponds to the expected flow 

structure. 

 

Gas-Liquid Transport 

 

To characterise the gas-liquid flow phenomena modelled, time series of the vertical mixture 

velocity (Fig. 6), time-averaged profiles of vertical velocity (Fig. 7) and the volume fraction of 

the gas phase (Fig. 8) are presented. Field plots of velocity vectors and contours of the volume 

fraction of the gas phase depict the influence of each turbulence model on the mixture model 

employed (Fig. 9 for cases A1 to A3 and Fig. 10 for cases S1 to S3). 

 

The time series of the vertical mixture velocity (Fig. 6) was recorded at half-second intervals 

from a point location on the column centreline at a height of 0.5 m above the base of the column 

for cases A1, S1, A2 and S2.  For the A1 time series there is little or no change to the velocity, 

except for the initial 20-second period during which time the gas-liquid flow interactions and 

structures develop.  This differs with the S1 time series, which displays a regular oscillation with 

a time-period of 25 seconds that first appears within 25 seconds of the gas flow starting.  The 

time-period for the two-dimensional scalar equation case is almost 1.5 times greater than the 

regular oscillation that was observed for the three-dimensional simulation [15].  The increase in 

the time-period for the scalar equation model could be a result of ignoring the third dimension 

and therefore suppressing the motion of the vortices through the tangential axis of the column. 
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Unsteady series for cases A2, S2, A3 and S3 were observed, where only the A2 and S2 curves are 

presented in Fig. 6.  There is a difference between the A2 and S2 cases, as the regular oscillations 

that were observed for the A2 case do not occur for the S2 case.  The time-period of the 

oscillation in the velocity for the A2 case was approximately 10 seconds and becomes regular 

after 30 seconds of time.  The oscillations observed with the S2 case begin within 5 to 10 seconds 

of the flow being initialised.  The time series for the A3 and S3 cases were little different from 

the A2 and S2 cases except that the velocity ranges were slightly higher. This was due to the 

influence of the velocity profile being updated after each time-step. 

 

Profiles of the time-averaged vertical mixture velocity across the width of the mesh at a height of 

0.5 m or 2.5 column widths are illustrated in Fig. 7.  The curves for all the cases show parabolic 

forms, but only the S1 case is asymmetric.  Most of the cases over-predict the velocities, 

particularly the A2, A3, S1 and S3 profiles.  The S2 case is the most accurate case with profile 

that closely matches the experimental profile [17-19].  At the column centreline the S2 case was 

0.011 m s
-1

 less than experimental profile [17-19] and the S3, A2 and A3 cases were 0.067, 0.096 

and 0.145 m s
-1

 greater than the S2 case.  At the column wall the S2 case was 0.02 m s
-1

 less than 

the experimental velocities.  The increase in the velocities predicted at this point by the S3, A2 

and A3 cases over the S2 case increased to 0.091, 0.138 and 0.216 m s
-1

 respectively. 

 

Fig. 8 depicts the corresponding profiles for the volume fraction of the gas phase.  The S2 and S3 

profiles lay across the range of the experimental data with a flat, plug flow profile and correlate 

to hold-up profiles presented by Joshi [2], though the S2 case is 2 % greater than the S3 case.  

The A2 and A3 profiles under-predict the volume fraction of the S2 case by 2 % but with a 
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parabolic form instead.  Both models produce curves that are unlike experimental data, which 

have a discontinuous form that could be said to peak at ~14% between |0.03| and |0.07| m from 

the column centre.  Both the A1 and S1 cases differ from the cases solved with the Reynolds 

stress model, the A1 case has two distinct peaks either side of the column centreline and the S1 

case is asymmetric with a peak on the right hand side of Fig. 8 that maps to the velocity profile. 

 

Fig. 9 illustrates the vector and contour fields for the cases A1 to A3 and Fig. 10 displays the 

corresponding fields for cases S1 to S3.  The vector fields for the A1 case are steady and consist 

of two large circulation patterns, with the bulk of the flow in the vertical direction.  The influence 

that the steady vortices have on contours of the volume fraction of the gas phase with a steady 

gas plume can also be seen. 

 

The flow pattern that arises from the scalar mixture model when solved with the S1 case is 

different, with unsteady elongated vortices on top of a large column diameter eddy at the base of 

the column.  The vector field for the S1 case in Fig. 10 corresponds to phenomena observed in a 

cylindrical column model that are depicted in Fig. 3b [15] and the experimental fields in Fig.1 

[13].  The influence of the vortices on the gas phase motion is shown through the meandering of 

the plume at the base of the column.  The flow structures depicted by the field plots for the S1 

case indicates why the profile is asymmetric with vortex pushing the main upward flow to the 

right side of the column. 

 

Unsteady vortices of column diameter scale are observed for cases A2, A3, S2 and S3.  The 

vector fields resemble the complex structures that were predicted in simulations by Sokolichin 

and Eigenberger [5-9].  The vortices in the S3 case are smaller than the vortices in the S1 and S2 
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cases.  The S3 field is comparable to the vector fields for A2 and A3 cases where the velocity 

‘updating’ has little or no influence on the vector field.  The S2 case displays elongated vortices 

that spread either side of the column diameter that are not stationary and grow and collapse as the 

gas phase is injected.  The effect of the vector field for the Reynolds stress model application of 

the mixture model on the gas fraction is observed in the contour profiles for the volume fraction 

with meandering plumes.  The S2 and S3 cases show a diffuse gas field with subtle influence of 

the vector field, whereas the A2 and A3 cases show a greater influence of the flow structure with 

eddies flicking the bubble plume from the left side of the column to right and vice versa.  Note 

that the gas fraction increases in value just below the pressure inlet condition for the S2 and S3 

cases. This is most probably due to the lack of bed expansion that occurs with having a fixed 

liquid surface. 

 

Conclusions 

 

The linear thermal transport problem for a large height to width ratio cavity indicates that 

turbulence models are required to obtain an unsteady flow structure with eddies that have a 

diameter equivalent to the mesh width.  The only method that produced an unsteady flow 

structure was the Reynolds Stresses model where the ‘updating’ of vertical velocity profile took 

place after each time-step.  The principles derived from this method of solving thermal 

convection in a cavity were then applied to gas phase transport through a liquid medium 

according to the analogy between buoyant thermal convection and multiphase flow in bubble 

columns [23].  Two modelling approaches testing the solution of the gas-phase transport 

equations were combined with three turbulence models to predict the unsteady motion of a 
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continuum gas phase.  Comparing the influence of different turbulence modelling methods on the 

gas phase transport, it was determined that the Reynolds stress model captures the unsteady 

nature of bubble columns through the variation in the velocity.  The S2 was the most accurate 

model, with gas hold-up and velocity profiles that corresponded to the profiles presented by 

Sanyal et al. [13] Degaleesan et al. [17-19] and Joshi [2].   

 

Further improvements to bubbly flow models could include predicting the effect of coalescence 

and break-up of bubbles on the overall gas phase by modelling the transport of multiple gas 

phases, where each volume fraction equation is solved for a specific bubble size.  Other effects 

that have not been considered here and require further examination are comprehensively 

discussed in Joshi’s review of bubble column investigations.  These effects include the influence 

of multi-dimensional flows, bubble wakes, energy transport due to bubble motion [2]. 
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Appendix A: Thermal Convection Equations 

 

Energy transport equation, 
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conservation of mass equation, 
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deviatoric stress tensor, 
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Boussinesq approximation, 
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characteristic velocity based on the Grashof number, 

ν

∆β
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 (7) 

 

temperature difference,  

0TTT −=∆  (8) 

 

Appendix B: Mixture Model Equations 

 

Continuity equation for the mixture phase, 
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volume fraction equation for the mixture model, 
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mixture density, 
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drift velocity, 
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slip velocity equation, 
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friction factor for the mixture model, 
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Re018.0f =  1000Re ≥  (17b) 

 

particle Reynolds number, 
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modified scalar equation, 
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mixture viscosity, 
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gas phase µ*, 
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Appendix C: k-� Turbulence Transport Equations 

 

turbulent kinetic energy transport equation, 
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rate of dissipation of energy from the turbulent flow, 
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turbulent viscosity formulation, 
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total derivative for the turbulent kinetic energy, 
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total derivative for the rate of dissipation of energy from the turbulent flow, 
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constant that determines the orientation buoyant shear layers, 
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exact transport equation for the transport of Reynolds Stresses, 
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turbulent diffusive transport, 
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buoyancy effects, 
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stress production, 
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system rotation effects, 

( )jkmmiikmmjlij uuuu2R ε+εΩρ=  (32) 

 

pressure-strain term, 
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decomposition of pressure-strain term, 
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slow pressure-strain term, 
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rapid pressure-strain term, 
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wall reflection term, 
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the following equation separates the flow field variables into known and unknown values by 

referencing a known flow profile q’(xi), 

)x(q)t,x,x(q)t,x,x(q ijiji
′+′′=  (38) 

 

velocity profile for the lateral convection problem, 
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empirical velocity profile for air-water flow in a bubble column,  

1425.0x*1076.0x*9254.0u i

2

i +−−=  (40) 

 

Prandtl number, 

κ

ν
=σ  (41) 

 

Nomenclature 

 

General Symbols 

 

B = buoyancy effect term from Reynolds stress model  

C = coefficient 

1C′  = constant in the linear pressure-strain model, for the wall reflection term = 0.5 

2C′  = constant in the linear pressure-strain model, for the wall reflection term = 0.3 

cp = specific heat capacity (J kg
-1

 K
-1

) 

d = particle diameter (m)  

E = enthalpy  

F = external forces (kg m s
-2

) 

f  = dimensionless friction factor (-) 

G  = generation of turbulent energy  

Gr = Grashof Number 
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g  = acceleration due to gravity vector (0 –9.81 0 m s
-2

) 

k = kinetic energy (m
2
 s

-2
) 

L = characteristic length (m) 

n = unit normal vector (where the subscript defines the direction of the vector) 

P = stress production term for the Reynolds Stress model 

p = pressure (N m
-2

) 

q = variable (i.e. velocity) 

q’ = primary flow variable (i.e. velocity) 

q’’ = secondary flow variable (i.e. velocity) 

R = effect of system rotation of the Reynolds stress model 

Re = Reynolds number (-) 

S = source term (kg m
-3

 s
-1

) 

t = time (s) 

U = mean velocity (m s
-1

) 

u = velocity component (m s
-1

)  

v = slip velocity component (m s
-1

) 

W = distance to the wall (m) 

x = spatial co-ordinate (m) 

 

Mathematical Operators 

 

D = total differential operator 

tanh  = hyperbolic tangent function  

∂ = partial differential operator 
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∇ = del operator 

∆ = difference between two quantities of a variable  

� = summation 

� = vector form of variable (i.e. representing i, j and k forms of the variable as a matrix) 

__
 = bar denoting an averaged product 

 

Greek symbols 

 

α = volume fraction (-) 

� = coefficient of thermal expansion (K
-1

) 

δ = Kronecker symbol  

� = rate of dissipation of turbulent energy (m
2
 s

-2
) 

φ = scalar function variable, in this case representing the volume fraction of the discrete 

phase (-) 

Γ = diffusion coefficient for the scalar function = 0.1 m
2
 s

-1
 

� = pressure strain (N m
-2

 s
-1

) 

� = constant for the linear pressure-strain model wall reflection term = 0.41 

� = temperature (K) 

κ = thermal conductivity (W m
-1

 K
-1

) 

µ = dynamic viscosity (kg m
-1

 s
-1

) 

ν = kinematic viscosity (m
2
 s

-1
) 

ρ = density (kg m
-3

) 
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� = Prandtl number (for the kinetic energy equation is 1 for k-� turbulence transport or 0.82 

for the Reynolds stresses and 1.3 for the dissipation rate) 

τ = deviatoric stress tensor 

	 = mean rate of rotation tensor 

 

Subscripts and Superscripts 

 

0 = reference value for a physical property at a corresponding quantity for an associated 

variable i.e. density of fluid at a specific temperature 

1 = constant for the linear pressure-strain model = 1.8 

2 = constant for the linear pressure-strain model = 0.6 

1� = constant for the turbulent dissipation of energy = 1.44 

2� = constant for the turbulent dissipation of energy = 1.92 

3� = constant for the turbulent dissipation of energy  

b = buoyancy  

c = continuous phase 

Dq  = drift velocity of the qth phase  

eff  = effective value in reference to the addition of turbulent and non-turbulent contributions 

of a variable  

h = heat source for the conservation of heat  

i = co-ordinate index 

j  = co-ordinate index normal to i  

k = kinetic energy  
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l = co-ordinate index 

m = co-ordinate index  

mp = mixture phase index 

n = number of phases 

p = pressure context for the specific heat capacity 

q = discrete or particulate phase (including bubbles, drops and particles) 

qm  = maximum discrete phase fraction (i.e. 0.62 for solids and 1 for bubbles) 

r  = phase index 

s = mass source for the conservation of mass 

t  = turbulent context 

w = wall effects 

� = rate of dissipation of turbulent energy 

µ = turbulent viscosity constant = 0.09 

* = viscosity power function, different for solid and gas phases 
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Figures 

 

Fig. 1. Longitudinal plots of vectors of velocity obtain from tracking of a radioactive source at a 

superficial gas velocity of 2 cm s
-1 

[17]; 

 

Fig. 2. Corresponding vector fields obtained from two-dimensional axi-symmetric simulations 

[13] at two superficial gas velocities; a: 2 cm s
-1

; b: 12 cm s
-1

; 

 

Fig. 3. Vector fields obtained at a superficial gas velocity of 2 cm s
-1

 utilising the k-ε turbulence 

model [15]; A: two-dimensional plane; B: vertical slice from a cylindrical simulation of the 

bubble column; 

 

Fig. 4. Vectors of velocity (m s
-1

) obtained from the lateral convection of heat simulations. The 

scale on the left is for the colour of the vectors for the 50:1 height to width aspect ratio mesh 

where the turbulence models were different for each case; A: k-ε turbulence model; B: Reynolds 

Stresses model with no basic flow profiles; C: Reynolds Stresses model with velocity profile 

updated after each time-step; 
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Fig. 5. Contours of stream function (kg s
-1

) obtained from the lateral convection of heat 

simulations. The scale on the left is for the colour of the stream function contours for the 50:1 

height to width aspect ratio mesh where the turbulence models were different for each case; A: k-

ε turbulence model; B: Reynolds Stresses model with no basic flow profiles; C: Reynolds 

Stresses model with velocity profile updated after each time-step; 

 

Fig. 6. Time series of the vertical mixture velocity (m s
-1

) for gas-liquid flow on the column 

centre line at a height of 2.5 column widths; A1: 
         

; A2: 
         

; S1: 
         

; S2: 
         

; 

 

Fig. 7. Profile plots of the vertical mixture velocity (m s
-1

) for gas-liquid flow at a height of 2.5 

column widths; A1:  � ; A2:  � ; A3:  � ; S1: �; S2: �; S3: �; Experimental: �; 

 

Fig 8. Profile plots of the gas volume fraction (-) for gas-liquid flow at a height of 2.5 column 

widths; A1:  � ; A2:  � ; A3:  � ; S1: �; S2: �; S3: �; Experimental: �; 

 

Fig. 9. A1 to A3 field plots at 300 seconds; A: A1 velocity vectors, scale from 0 m s
-1

 for small 

vectors to 0.5 m s
-1

 for large vectors; B: A1 gas fractions, scale from 0 for black contours to 0.15 

for light grey contours; C: A2 velocity vectors, scale from 0 m s
-1

 for small vectors to 0.5 m s
-1

 

for large vectors; D: A2 gas fractions, scale from 0 for black contours to 0.15 for light grey 

contours; E: A3 velocity vectors, scale from 0 m s
-1

 for small vectors to 1.0 m s
-1

 for large 

vectors; F: A3 gas fractions, scale from 0 for black contours to 0.15 for light grey contours; 
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Fig. 10. S1 to S3 field plots at 300 seconds; A: S1 velocity vectors, scale from 0 m s
-1

 for small 

vectors to 0.4 m s
-1

 for large vectors; B: S1 gas fractions, scale from 0 for black contours to 0.5 

for light grey contours; C: S2 velocity vectors, scale from 0 m s
-1

 for small vectors to 0.5 m s
-1

 for 

large vectors; D: S2 gas fractions, scale from 0 for black contours to 0.5 for light grey contours; 

E: S3 velocity vectors, scale from 0 m s
-1

 for small vectors to 0.6 m s
-1

 for large vectors; F: S2 

gas fractions, scale from 0 for black contours to 0.5 for light grey contours; 

 

Table 1 Lateral convection case specifications 

 

Table 2 Gas-liquid flow case specifications 
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Fig. 6. 
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Fig. 7. 
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Fig. 8. 
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Fig. 10. 



 48 

Table 1 

Case Phenomena 

Flow 

Equation 

Turbulence 

Model Temperature  Condition (K) 

        Left Wall Fluid/Top/Base Right Wall 

A 

Lateral 

Convection 

Energy 

Equation 

k-e 

turbulence 300 305 310 

B 

Lateral 

Convection 

Energy 

Equation 

Reynolds 

stresses 300 305 310 

C 

Lateral 

Convection 

Energy 

Equation 

Reynolds 

stresses 

with a 

laminar 

flow 

profile 300 305 310 
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Table 2 

    A1 A2 A3 S1 S2 S3 

                

                

Algebraic Slip Mixture Model Yes Yes Yes - - - 

Modified Scalar Mixture Model - - - Yes Yes Yes 

        

k-e turbulence Yes - - Yes - - 

Reynolds Stresses - Yes - - Yes - 

Reynolds Stresses with flow profile  - - Yes - - Yes 

        

Gas Inlet Velocity (m s-1) 0.032 0.032 0.032 0.032 0.032 0.032 

 Defintion Fraction Fraction Fraction Flux Flux Flux 

 Value 1 1 1 0.6 0.6 0.6 

        

Liquid Surface Definition Fraction Fraction Fraction Flux Flux Flux 

 Value 0 0 0 0 0 0 

        

Walls Definition Fraction Fraction Fraction No flux No flux No flux 

 Value 0 0 0 0 0 0 

                

 


