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Signhal Representation for Compression and
Noise Reduction Through Frame-Based Wavelets

Laura Rebollo-Neira, Anthony G. Constantinid€gnior Member, IEEEand Tania Stathaki

Abstract—A mathematical framework for data representation If the parameter, takes discrete valueg;' and the parameter

and for noise reduction is presented in this paper. The basis of the j takes discrete valuesb,, then a discrete set of wavelets

approach lies in the use of wavelets derived from the general the- ¢ (t); m,n € Z is obtained from a “mother” function
ory of frames to construct a subspace capable of representing the ¢T(723nthré)ug;1 the operations

original signal excluding the noise. The representation subspace is
shown to be efficient in signal modeling and noise reduction, but A _ —(m/2) —m
it may be accompanied by an ill-conditioned inverse problem. Gm,n(t) = Daé” nbo (%) = |ao| ¢(ag ™t —nbo). (4)

This is further examined, and a more adequate orthonormal .
representation for the generated subspace is proposed with an The fundamental property the mother functig(¥) [as well

improvement in Compression performance. as |tS Fourier transform;(w)] must haVe to rendel’ the set
¢m,n(t); m, n € Z useful for compression purposes is that of

Index Terms—Frames, noise suppression, signal compression, . ¢ decay in the time and in the frequency domains [4], [5].

wavelets. . . .
The decomposition of a signal in terms of wavelets adopts
the form
|. INTRODUCTION
. . . t) = m, nPm,n t). 5
HE representation of a signdl(¢) as a discrete set of 1) 7; sz:Z em,nPm, n(?) ®)

numbersc;, which is related through some functional
form to f(t), other than the sampleg(t;), is essentially a While orthogonality is not essential, when the ggt ,.(¢);
problem in signal modeling. When the cardinality ef is m, n € Z is an orthonormal set, the coefficients, ,, are
less than that off(¢;), then we have data compression. Aalculated in a straightforward manner as the inner products
classical way to carry out the signal modeling is through tHgm,»|f). Although orthogonal wavelets with reasonable fast

decomposition off(¢) into some functionsp;(¢) decay in both the time and frequency domains have been
constructed [3], [8], [10], the relaxation of the requirements on

ft) = Z cj®;(t). (1) orthogonality and linear independence can produce wavelets
i€z with better localization properties [2], [4]. This less stringent

If the signal space is restricted to the Hilbert space, then rgauirement for the construction of wavelets places the concept

reduce asymptotically the error of representation, the functioﬂg signal representation within the mathematical theory of

$;(t);j € Z must form acomplete sein the same space. frames” [6]. _ , _
This property guarantees that every finitd-norm function ~ Basically, a frame is @omplete seof functions and is not
#(t) admits a decomposition of the form (1), which converge¥&cessarily dasis In [2], [4], and [5], the conditions under

strongly to f(t). Furthermore, for the compression to bd'hich the functionsp,, »(¢); m, n € Z constitute a frame
effective, the functionsp;(t);j € Z must be chosen suchare extensively studied. The frame condition is imposed not

that the number of coefficients is significantly less than the only to guarantee completeness of the set but also to ensure

number of sampleg(t;) required to retain the desired signafat the mapping (5) has a bounded inverse. In addition to a
information. Some functions known to be endowed with bof°d compression performance, the aim of the present work
properties are the so-calledavelets[5]. is to r(_ed_uce s_|multaneou_sly the influence of random n0|§e on
Wavelets arise as translations and dilations of a singﬁe original signal. To this end, we propose the use of “well
prototype function. The dilation operator is defined as [5], [7Pcated” wavelets to define a “working” subspace capable
of representing the uncontaminated signal and incapable to
Dad(t) = |a|_(1/2)¢<£> (2) reproduce noise.

a Even though we restrict our considerations to frame-based
wavelets only (henceforth referred to as frame wavelets), the
. fact that we deal with a finite subset of frame elements, and

Typ(t) = ot — b). (3) that we build the dual vectors in this subspace, implies that

Manuscript received January 31, 1995; revised February 18, 1997. ThE INVerse mapping 1S requ”ed to exist. Th|§ IS a deV|at|9n
associate editor coordinating the review of this paper and approving it fiom normal frame analysis, where such an inverse mapping
publication was Dr. Farokh Marvasti. _ ____isconsidered mandatory. For the problem at hand, this is not an
The authors are with the Department of Electrical and Electronic Engineer- . h bi . fth bl | I
ing, Imperial College, London, U.K. inconvenience astheo chtlve of t e problem also allows us to
Publisher Item Identifier S 1053-587X(98)01995-3. restrict the space of solutions to that in which the inverse does

and the translation operator as
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exist and is a minimum norm solution. However, difficulties othe space of square summable sequences, Witk= (j|f)
more fundamental nature appear in connection with situatioasd g; = (g|j) = (jlg), where g; denotes the complex
in which the spectrum of the kerngd,, »|¢:, ) has a fast conjugate ofg;, whereas (9) leads to a representation by
decay rate. For kernels having this property, the inversig@i = L?(R), which is the space of square integrable functions,
becomes an ill-conditioned problem whereby the norm of theith f(¢) = (¢|f) and g(t) = {g|t) = (t|g)-
coefficients, which are used to represent the signal, yields aAs usual,|||f}|| = <flf>1/2 defines the vector norm, and
large numerical answer. It is important to remark that thise norm of a operatod is defined as
problem arises when one constructs the dual vectors in a .
subspace spanned byfiaite number of frame elements. If 1Al = sup A (10)
the dual frame in the Hilbert space were used to calculate ol=1
the coefficients of an expansion in terms of the same frarfieHermitian operator having a discrete set of eigenvectors
elements, although not all signals belonging to such a subspéiée) can be represented through its spectrum as
can be expressed in terms of coefficients so calculated, the
norm of these coefficientss guaranteed to be finiteWe A= Z ) An (9] (11)
analyze here the causes of the misbehamioerent in building
the dual vectors in the working subspaGaur treatment shows WhereA,; n € N are its eigenvalues satisfying
clearly that the problem can be avoided simply by adopting AI%) = An|th) (12)
an orthonormal representation for the wavelet-generated sub-
space. From the mathematical approach we present, a methl (¥m|¥n) = &, n. If A # 0;n € N, thenA is invertible,
to construct explicitly the orthonormal representation evolvesid the spectral decomposmon of its inverde! is
naturally. The new representation preserves the signal norm
and improves compactness of the subspace with respect to its Z W}n Z/)n (13)
compression properties. neN

The paper is organized as follows. In Section I, the notation
to be used is introduced. In Section lll, the frame definition
is given, and the working subspace referred to above isThe theory of frames was introduced by Duffin and Shaffer
constructed. Section IV deals with the inverse problem, af@]. In another context [2], [4], [S], this theoretical framework
an orthonormal representation is proposed. In Section Kas been adopted to construct several wavelet functions with
the approach is illustrated by using the wavelets given gpod localization properties, in both time and frequency, under
[5]. Numerical tests are performed in Section VI, wherthe requirement that they constitute a frame.
a procedure to reduce random noise is considered. FinallyDefinition 1: A set of vectorde;); j € Z in a Hilbert space

neN

Ill. FRAMES

conclusions are drawn in Section VII. H is called a frame if there exist numbeds B > 0 such that
for all vectors|f) € H
Il. NOTATION
, , , ALY <7 Ul HIP < B, (14)
We assume that the possible signals to be considered are jez

elements of a Hilbert space, and we adopt the Dirac notati

[1] for such elements. In this notation, a vecjois represented The numbersd, B are called the frame bqunds [61, [13]
) : ) Although a frame need not be a set of independent vectors,
as|f) and its dual agf|. Given a complete set of discrete

orthonormal vectorg|j); (kj) = 6k ;i k. j € Z} or a set it is clear that these vectors constitute a complete set of vectors

of §-normalized continuous orthonormal vectdts); (¢'|t) = 'Sljr?gfefghrg frllat'\?gégi Jl}f >€ ;I ((:)a r‘]j bg sZaInmngg a|éf ) =
6(t —t'); t, ¥ € R}, the resolution of unity is expressed as y P

the operators 11y =Y Giledles)- (15)
=% 1)l (6) e
J€Z Definition 2: If |¢,); j € Z is a frame inH, then the frame
operatorf’ is the linear operator front to 12(Z) defined b
- [ @ ° op @) Y
GIELS) = (¢511)- (16)

Through these operators, two functional representations of a

Hilbert space can be introduced. Simply by inserting the urftfollows from (14) thatZ" is bounded and, therefore, so is its
operator as in adjoint ['*: [2(Z) — H. According to its definition, the frame

o operator can be written as
(lf)y = (gl il

i€z F=Y" 1i)#il (17)
and jez
) = [ (ol 9) and the adjointi™ as
we are automatically led to two representations of the Hilbert F=3" il (18)

space. Equation (8) gives a representatiori3y, ), which is jez
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In terms of /%, (15) can be recast in the form Hilbert—Schmidt theorem [11]131]13?,k has a complete set of
R eigenvectors that satisfy the conditions
1f) = £7)o) (19) -
.. FJF;|1/}n> :)‘N|z/}n>§ <1/}k|1/}n> = 6k,n§
and the frame condition (14) as n=1, -, J (25)
Al < F*F < BI. (20)

with eigenvalues\,, > 0;n =1, ---, J.
Since this set of orthonormal vectors is complete, it provides
a representation for the orthogonal projection operator onto

i) The set of vectors(J)H| — G I(FE) e Zis a I1%(Zy). On the other hand, theA*set of_ vectdes,) € S
frame with boundsB~!, A~! called the dual frame of obtained through the magp,.) = Fj[i,) is also orthogonal
6;): 7 € Z. since {p,|pr) = <¢n|FJFJ|¢k> = MOk WhICh also

implies that the eigenvectorgs,,) corresponding to zero

eigenvalues give rise to vectols,) of zero norm. It is

_ TH ' clear then that the elgenvect0|r$n> correspondlng to zero
1 Z (@5 11)13). (21 eigenvalues span the space () = {|c) € P(Zy); F¥le) =
0} and the vectorp,,) for \,, # 0 span Rafi) = {|f) € S;

These propositions are a consequence of the frame conditjgh = 7% |c); for some|c) € 1*(Z;)}. This fact means that it

(20), which ensures that the operaiot /' has an inverse. In is sufficient to restrict; to act only on Nul£%)+, which is

this paper, we address the problem that arises when one intefp@Sorthogonal complement of '\(W*) so that the inversion

to obtain the dual vectors in a subspace spanned by a fiifesuch a map can be made _possible.

number of frame elements if. Let £’ be the restriction of™ to Nul(#%)+. The normal-

Let Z; C Z be a subset of/ elements ofZ, and let jzed vectors

S be the subspace generated by the vectgs$; j € Z;. .

If the subspace is constructed in this arbitrary manner then, 5.} = lon)  F7'1hn) (26)

although for all|f) € S the upper bound in (14) will be nh AL/2 o AL/2

satisfied, the lower bound may become too small to be useful

in practice. In such cases, the operator (19) has no inverseniith \,, # 0 are the eigenvectors of the operafafﬁj with

a strict sense. However, as is discussed below, by restrictgresponding eigenvalues,, as readily follows. The spectral

the domain of transformation (19) to a particular subspace @composition ofF*’FJ is then

12(Z ) the inversion of such a map is rendered possible, but it

may result in an ill-conditioned problem. In the next section, . a J

The proofs of the following propositions are given in [5]:
i) E*Fisinvertible, andB~1] < (F* )1 < A~1].

i) Every |f) € H can be written as

JjEZ

we discuss the problem of solving (19) for those cases in which FyEr= > 2 (@] (27)
the operatott™ is not bounded from below, and we show that n=1, An7#0
the same approach also provides an appropriate orthonorm (lj the corresponding decomposition for its inverse is
representation.
4 1
P B a
IV. THE INVERSION PROBLEM AND A MORE EFEN™ = 3 fea) I (@nl. (28)
ECONOMICAL ORTHONORMAL REPRESENTATION n=1, An 70
Initially, we construct the operatdﬁ] from S to [?(Z;) as Moreover
Fr= 3" i)l (22) . SN
; ! B = 3 [@)A (l (29)
n=1, A, 5#0

Then, its adjointFj,k from [2(Z;) to S is given by Lo

since (29) satisfies (26). The numbets = Ay /% are called

= Z 1) (| (23) the singular values of; and [z,) and |¢,) its left and
jeZs right smgular vectors, respectlvely The inverse operﬁﬁf’)r

from Rar(£%) to Nul(£%)L results in
so that for any vectoff) € S, we have
J

|f) = E3le) (24) P t= 3T g

n=1, An7#0

= @l (30)

for somelc) € 1?(Zy).

In order to enable the inversion of the mapping (24), we lodkoth (28) and (30) render the representation of a vec-
for the eigenvectors of the operatE‘r]Fj,k 12(Z;) — 13(Z;). tor |f> € S in terms of the set|p;); g € Z; since
This is a bounded operator, &5 and £} are from hypothesis £75'~' = Fy(FyFy)~t, and then,(jle) = GIET S =

A

bounded, and which is also self-adjoint. Therefore, from tr(gz|FJ( SEDTH .
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The vectors This problem can be overcome without additional work

T =L e B B =1 g fet =1 simply by adopting the orthonormal representation for the
(05l = GlET ™ = UL (FTE) ™ = (65](F7Fy) subspaces, which is provided by the set of vectofs,,); n =

. ! . 1, ic7 31 1, .-+, r. As already discussed above, this is an orthonormal
= Z\: ) <J|¢">/3_n<‘pn|’ JE 4y (31)  set of vectors spanning R@; ), and therefore, the orthogonal
n=1, A, #0 i~

projection onto Raf¥’;) can be written as
produce a representation pf) as given by

11y =" Gl = > (Bl H)1e) (32) Pr=>" [7.)(%,] (38)

Jj€Zs J€Z;

which looks identical to the expansion |gf) into biorthogonal gnd for all |f) € S, we have

bases. However, when an eigenvalue is zero, then the set

|$;); 4 € Zy does not constitute a basis, and therefore, the set r

(¢,; 7 € Z; is not a biorthogonal setThis appears clearly 1) = (@l NIB0)- (39)
when the inner productép;|¢) are calculated as n=l

. J The latter is a unitary transformation so that it conserves the
(Bileny = D Glen) (Wulk). (33) norm of |f). In effect, as(@,[B) = 6n.m, then|||f)]| =
n=1, An#0 1 = >'_ &> = 1, and hence, the orthonormal
The right-hand side of (33) is equaldg ;, only if the sum runs representat@on (39) always satisfies (36). Qn the contrary, the
over all Z;. Since, in (33), the sum is restricted kg £ 0, it '€Presentation (32) in terms of vectdrs;); j € Z, may not
follows that <¢;j|¢k> £ 8; when Nu(ﬁj}) £ {0} satisfy (36), no matter how reasonably large the “economy
The existence of zero eigenvalues also implies that tREMPer£ is chosen.

representation (32) is not unique sincefit|c) = |f), then  Thus far, we have assumed that the sigifalbelongs tos,
any other vecto) = |¢) + |c°) with |°) € Nul(ﬁj) and which is the subspace generated through the frame elements

|c) € Nul(£%)L will give the same representation fgf) since |#i); 5 € Z;. 11 |f) ¢ S and|f) is approximated byf) such
F%|c’) = 0. Thus, by choosingc®) = 0, the solution of

minimum normmay be obtained. As a solution of this type is 5 7 '

suitable for the problem we are addressing here, the lack of )= EZ: (851F)os) (40)
uniqueness in the general case is not a difficulty. However, sezy

it may happen that when the spectrum of the operatat’;’ or | £*) such that

has a fast decay rate, then the representation (32) becomegf )

“‘noneconomical.” This is evident from the computation of r
(¢;|f) in which the eigenvalues appear in the denominator /) = Z @B (41)
. n=1
G5 = S Gl 5 @l SeZi @4)
JE —~ J1¥n AL/2 Prll s J 4 both (40) and (41) yield the same approximation [ffy and

is the approximation i that minimizes the distance {g).
where the vectorgy,) are now ordered so that, # 0 for |n fact, for [f) ¢ S, |f) — |f*) € SL, and then, we have
l1<n<randi, =0forr+1<n < J.If we define as (d;lf) = (¢,]f*) for all j € Zy; therefore

“economical” any representation ¢f) € S and|||f)]] = 1
such that for some sgb;); J € 21 D=2 @ilhles = 3o Gille =11 @2)
=2 bile) (35)
i€ by (32) applied to|f*). Moreover, if we take an arbitrary
and vector |g) € S since (f* — flg — f*) = 0, we have
12 (9—flo-HN=4-fF+fF-fla-f+r-1f=
ng:J S (9 (9 — f*lg— ")+ (f" = fIf* — f); therefore, the distance

_ o _ _ llg — f)]] is minimized if |g) = |f*).
with £ > 1, which is a given number that defines “economy,” \we want to stress that if the dual frames in the Hilbert space

it is seen that due to the existence of small eigenvalues, {#7| are used to build a different approximatipff’) as
representation (32) may not satisfy (36). In fact, it follows !

from (34) that |17y = Z (1)) (43)

N LY. 2 jicz

S ldine =3 el (37 e

ez T then when|| /|| = 1, the norm3_ ., [{#|/)|? is bounded
and hence, the small eigenvalues force (37) to result in a vdry the numberd—!; however, the approximation (43) does
large number. not minimize the distance tpf).
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V. WAVELET SUBSPACE where N is the number of samples that are taken in dis-

At this point, we fix the subspac§ by choosing a finite Crétizing the(0, T7 interval.

set of wavelet functions as those proposed in [5]. We restrict 10 calculate the singular valugs, of this matrix, we have
the domain of the possible square integrable functions #§€d the double precision routine fo2wcf of the NAG FOR-
the interval [0, 7]. Since, in a decomposition of the typeTRAN Ilbrary [9] (se_e [12] for fuII_detalls on the algorithms
(5), the coefficients are characterized by two indices, tftat the routine applies). On ordering the singular vaféieas

subspace of the square integrable sequences to be considered
arel>(Zy @ Zy), whereZy, C Z andZy C Z are defined as
Zy ={me Z;my <m <myM=my+1—my} (44) according to the algorithm that is used to calculate the singular
S values, those to be considered as zero are the ones that satisfy
r= in <n<nyg N = - . L
Zy={neZimsn<miN=mn+l-mn} (45) the relation [9], [12]
The identity operator in such a subspace is then written in the

Bi2fo> 22228 (51)

form 8. < /L TOL (52)
Iy = Z Z |m, n){m, n| (46) where TOL is a number that should be chosen as approx-
meZy nEZn imately the largest relative error in the matrix elements.
with However, as we discuss below, when the specifiirdoes not
have a clear cut, the singular values to be disregarded, in order
(m, |k, j) = bm, kOn, j; m, k€ Zy; n, j € Zn. (A7) 1o “regularize” the representation in terms of wavelets, can be

The frame elements to be used are proposed in [5, p. 79] Set by looking at the orthogonal representation and setting to
zero all the singular values corresponding to coefficients of

<t|¢nl,n> = ¢nl,n(t) = aa(nl/Q)d)(aanlt - ﬂbo) (48) small size.
_The two identical approximations ¢f) in the subspacs,
|f), and|f*) are evaluated as

|f>: Z Z <(/~)m,n|f>|¢m,n> (53)

where

$(t) = Cl=37(t+ 1) +9(t) — 37t - DI. (49

C is chosen a€’ = 6,/ 2% to makel||¢)|| = 1, and MmEZy nCZn
4 é(t + 2)3; —2<t< =1 where
2, A - . 1 .
3¢ <1+§>’ —1st<0 (Bmnlf) = > Z > (m, ”|T/)l>)\—l<1/}l|k7 INPr,511)
,y(t) — 9 " k€Zu je€ZNn I=1
-2 (1-2); o<tk 54
377 < 2)’ =ts (54)
-1t —-2)% 1<t<2 and
. 0 otherwise. 7
On fixing the parameter, = 2 andby = 1, the vectorde,, ,.) 1) = (@lHle) (55)
constitute a frame iL?(R) with frame boundsA = 2.338 54 =1

and B = 2.66717 for m,n € Z [5]. Since the infinite \ynere
set is truncated to a finite one and since we are working in )

2 i — .
L ([0, _T]), the lower bound4 has lost its relevan_ce. .|ndeed, @|f) = 3 Z Z (hilk, ) r. 51 1) (56)
in the inversion process we have presented _earller, it plays no U keZm j€ZN
role. However, it is appropriate to stress the importance of the
fact that the infinite family|¢,,..); m, n € Z constitutes a There is still the question concerning the problem of determin-
frame in L?(R). As a frame is complete, we can be certaifind the subset&; andZy . Since we address this problem by
that by increasing,; and Zy, we can obtain a representatiorfakmg into account the errors in the data, this question is the
for any function inL2([0, T) within the desired degree of subject of the next section, where simulations are performed.
approximation.

In order to gain accuracy in the_determination of the v|. THE SUBSETS Zys, Zx, AND NUMERICAL TESTS
eigenvalues to be considered as different from zero, WeI Il th | _ h the dat _ ianal
calculate directly the singular values and singular vectors n Iat de examples given here, the data are noisy signais
of the operatorFy,,. The numerical representation of thig®'muated as
operator is evaluated by the matrix elements

A (1) = (610D + (e ti= (=)
Ll

Baiy= D2 D (Eildmn)im, nlk, j) i=1.... Ny A

meEZy nC€Ln

=, j(ti); i=1-, Npsk€ Zn where(t;| f.) are the sampling values of the clean signal, and
JEZN (50) (t;|e) are random Gaussian identically distributed variables
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with mean zero and variane€. From the sampling data, the

inner products in (54) and (56) are calculated as #(1)
Nt
<¢m,n|f> = Z(d)m,n|ti><ti|f> (58)
=1

where the right-hand side acts only as an approximation to the
left-hand side in the form of a Riemman sum. In Fig. 1(a), the
mother waveletp(t) is plotted, and Fig. 1(b) and (c) shows
¢_2 3(t) and¢p_s 3(t), respectively. These figures exemplify
the fact that the functions,, ,(t) become sharper as:
decreases. This feature renders the functions for large negative
value of m susceptible to reproducing random noise, and

hence, in order to make the contribution of noise insignificant, b—25(1)
i.e., to leave the noise outside the subspgc&e must setn1, ' Ir B

in Zs, as large as possible. The upper boumg need not be
precise, and it can be overestimated without causing undue
effects. The bounds; andn, for Z, are merely estimated 0
so that the interval0, 7] is covered by the support of the
functions involved. Thus, the crucial choice is with respect

to m1. In order to fix its value, it is necessary to specify 1 L ! I
the degree of approximation to which the input signal has -2 -1 0 1 2
to be reproduced. An appropriate criterion should take into t
account the imprecision associated with the data. We propose, (0)
therefore, to fixm; as the maximum value for which 9
EQIA = INIPY = B = INIPY <o (59) ¢-aalt) 15 - -
is satisfied.E{.} denotes the expectation operator, and for 1r I
practical purposes, it may be taken as the mean value oper- 0.5+ .
ation. 0
In the absence of noise; = 0 and (59) is reduced to
[f*Yy=|f) = |/f)- The discrete version of (59) is given by 05 r ]
-1 1 1
]\TT ]\TT
1 . 1 . 2 10 1 2
= Y (LN =GN == D (N = (tl ) <o t
Nr Nr ©
(60) _ o
Fig. 1. (a) I\\/Iotherwavela])(t{). (b) Waveletp,,, » (t) form = —2, n = 3.
In the simulations below, we start initially withy, = —1, (& Waveletom n(t) form = =3, n = 3.

i.e., we set as initial value the first negative valuerof from

which point a few iterations are needed to determine the larghe NAG FORTRAN library [9]. The thicker line of Fig. 2(b)

value ofm; such that (60) is satisfied. represents the original clean signal for comparison, and the
First, we present two standard signals: a truncated ramp Wilinner line represents the reconstruction obtained through

discontinuities on each side and a chirp pulse. In both caspsth the wavelet and orthonormal representation for FOL

T =1 and the standard deviation of the noise is fixed as— 12 [cf. (52)]. The valuem; was found to be equal te2.

20% of the maximum value reached by the clean signal. Thisrig. 3 shows the coefficients of the wavelet representation.

corresponds ter = 0.15 for the ramp, which is defined as  Although only a few coefficients are significant, they are very

0, 0<t <% large numbers. Ir_1 this case, the spectrum of th_e_ operator
=4t t<rcs Iy, has an obvious cut, and therefore, the decision as to
ATy 4="=4 which of the singular values should be considered zero is not
0; % <t<1 very sensitive to the TOL number in (52). The same number

7 = 13 of singular values to be considered nonzero is obtained

and ¢ = 0.20 for the chir
“ P for values of TOL that range fronie — 9 to 1e — 12. If r

0; 0<t< i is decreased to be 12 or 11, the coefficients are still large
£.(8) = { sin(2rt + 20mt2); zl; <t< % numbers, but the approximation of the signal becomes much
) 3 poorer. A set of coefficients of small size is obtained for
0; 3<t<1

r = 10 (see Fig. 4); however, as is shown in Fig. 5, the
Fig. 2(a) shows 500 samples of noisy data correspondingapproximation, which is obtained by this set of coefficients,
the ramp, which are generated by using the routine g05ddfisfnot a satisfactory representation of the original signal. On
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- |

any

-0.2 |
-0.6 1 L 1 1
0 0.2 0.4 0.6 0.8 1 Fig. 4. \Vertical axis showing the wavelet representation coefficients
¢ ¢m,n = {¢m,n|f) obtained by cutting the singular values at= 10
@) in order to regularize the solution.
T T T T
&hH b 7 T T T T
1 .
)
0.6 - i
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Fig. 2. (a) Input noisy data corresponding to the ramp example and
thicker line plots the original signal. The thinner line plots the reconstructi
obtained through both the wavelet and orthonormal representations.

(?—Jpg. 5. Thicker line plots the original signal. The thinner line plots the
eﬂ)proximation obtained if the singular values are cut in order to obtain the
set of regularized coefficients of Fig 4.

T T T T
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-1.5e407

Fig. 3. \Vertical axis shows the wavelet representation coefficients
¢m,n = {¢m, n|f) corresponding to the ramp example.

0 2 4 6 8 10 12 11
{

the other hand, the circles in Fig. 6 correspond to the valulgis 6. Orthogonal representation coefficients= (7| f) corresponding to

of the coefficients of the orthonormal expansion, and this §& " ramp example. A

clearly a more economical representation. Moreover, it can

be seen that those coefficients for= 11,12, and 13 have ]

significant value, and therefore, the corresponding singul¥ough the present approach for TGL1e — 12. After five

values should be considered nonzero in order to achievdtgfations,m; is fixed to —5. Fig. 8 shows the coefficients

good approximation of the signal. for the wavelet decomposition, and they clearly have the
Fig. 7(a) shows the noisy data corresponding to the chiggme feature as above, namely, that they are very large

pulse generated by using the same routine as in the previtgnbers. The coefficients of the orthonormal representation

case. In this case, we deal with 1000 samples. In Fig. 7(aye shown in Fig. 9. As can be seen in that figure, in this case,

the thicker line corresponds to the original clean signal famoefficients corresponding fo> 48 are all of very small size

comparison, whereas thinner line indicates the result obtainiedcomparison with the most significant ones. Thus, singular
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1.5 T T T 150 -

e 4L ‘ ' | 100

50
0.5 -

Fig. 10. \Vertical axis showing the wavelet representation coefficients

0 0.2 0.4 0.6 0.8 1 Cm.n = {(¢m,n|f) obtained by cutting the singular values at= 48
t in order to regularize the solution.
(@)
1.5
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(b)

) ) ) Fig. 11. Thicker line plots the original signal. The thinner line plots the
Fig. 7. (a) Input data corresponding to the chirp example. (b) Same detajjsproximation obtained if the singular values are cut in order to obtain the
as in Fig. 2(b). set of regularized coefficients of Fig. 10.

1e+09 -

5e+08 values corresponding to > 48 may be cut without affecting

resolution in the representation of the signal. In Fig. 10, it
is shown that by cutting the singular values rat= 48,

a “regularized” solution in terms of wavelets is obtained.
The signal approximation that is obtained through this set
-1.5e+09 g of coefficients is shown in Fig 11. It is seen then that the
15 - orthogonal representation we propose here is also a tool to
tackle the usually difficult problem of deciding which singular
values should be considered to be zero.

0
-5e+08

-1e+09

Fi In the next example, the time domain was expanded to [0, 3],
and 1500 samples were taken. The signal to be reconstructed
10 . [ . [ is composed of the following sinusoids on multilevel echelon:
Cy 8 + -
6L 4 sin(16m7t); 0<t«l
fe(®) =< 3+sin(ldnt); 1<t<2
4T ! 7 6 +sin(12nt); 2<t < 3.
L ﬁ
0 ﬁy% \ K\ﬁvﬁgﬂu&v@yﬂfwwm ' ves In this case, we consider the variance of the noise changes
.| vf ; | with time as
-4 | | | 1 i 1 !
0 10 20 30 40 50 60 70 80 00=02 0<t<1
l c=<¢02=04; 1<t<2
Fig. 9. Same details as in Fig. 6 for the chirp example. 03 =07; 2<t<3.
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Condition (60) is satisfied byn; = —4 as this is the maximum . T . r w
my value for which we have 4 8
6 |5
500
salxo, 1 Y (L) = (il f)? 4t
=1
1000 9 | 4
txpz Y, () =l MAAM\A
=501 0
1500 . V \( V V V V V V
+xpa Y, (L) — @l 2 ' : ‘ J '
+=1001 0 0.5 1 1.5 2 2.5t 3
< X[, 501 + X[1, 295 + X[2,395 (61) @

where xy, ¢, iS the characteristic function of thi, 5] (s
interval, which is defined as

L Lt <t !
X[t1,t2] = 0; otherwise.

o

The noisy data and the achieved reconstruction for FOL V{\VAVAVAV[\VAVI\V
le — 12 are shown in Fig. 12(a) and (b), respectively. The

coefficients corresponding to the wavelet and orthonormal rep- 0 0:., ' _
resentations are plotted in Figs. 13 and 14. Similar comments t

can be made as in the previous example. If the cut in the (b)

spectrum of singular values is decided by setting 61 taking Fig. 12. (a) Input data corresponding to three sinusoids on multilevel eche-
into account that fod > 61 the orthogonal coefficients arelon. (b) Same details as in Fig. 2(b).

all of small size, the regularized solution, which is shown in
Fig. 15, is obtained. It is important to remark that to truncate
the singular values at = 61 corresponds to setting TOL

le — 4. This value of TOL is very much larger than the error
in the calculus; however, setting the value of T@lle — 4, 50407 |
based on the analysis of the orthogonal coefficients, gives rise ,
to a regularized solution. The thin line in Fig. 16 shows the 0 Ry
approximation obtained by such a regularized solution, and as
can be seen, this is a slightly worse approximation than the®¢*071
one obtained by using the whole spectrum of nonzero singular_1e
values.
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VIl. CONCLUSIONS

. . Fig. 13. Same details as in Fig. 3 for the case of three sinusoids on multilevel
A mathematical scheme for data compression and Nnoig§eion.

reduction has been presented. As a starting point, the use

of well-localized wavelets is proposed in order to generate

a representation subspace capable of reproducing the original

signal and excluding additive noise. We are led to conclude that there exists an ill-condition
Our proposal is different from the normal frame approacdhspect inherent in the inverse problem that arises when one

in that we do not use the dual frames in the Hilbert spacalculates the dual vectors in a subspace spanned by a finite

to construct the approximation of the signal in the workingumber of frame elements ih?[0, 7]. The representation

subspace. Instead, we calculate the dual vectors in such a snbterms of such a vectors gives rise to solutions with a

space. We warn about the implications of the last proceduxery large norm. An alternative orthonormal representation for

The concomitant inverse problem has been addressed, arttieagenerated subspace has been proposed in this paper that

solution, in the sense of a minimum norm, was found. Theonserves the signal norm and that, therefore, overcomes the

causes and effects of the undesired behavior of such a solufiboonditioning problem. Both the orthonormal and wavelet

have been examined. representations have been shown to yield identical approxima-
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w r w | r which this can be done; it also indicates when this is not
80 . possible (Example 1).

A procedure to reduce the effect of zero mean Gaussian
noise has been examined. As expected, the reconstruction of
the original signals improves as the variance of the noise
decreases. The discontinuity that appears in the ramp example,
which is not present in the original signal, disappears when
! the noise standard deviation is reduced to 5% of the peak
_40 _l 4 uncontaminated signal.

4]
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