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Abstract

Multi-agent algorithms inspired by the division of labour in social
insects are applied to a problem of distributed mail retrieval in which
agents must visit mail producing cities and choose between mail types
under certain constraints. The efficiency (i.e. the average amount of
mail retrieved per time step), and the flexibility (i.e. the capability
of the agents to react to changes in the environment) are investigated
both in static and dynamic environments.
New rules for mail selection and specialisation are introduced and are
shown to to exhibit improved efficiency and flexibility compared to
existing ones. We employ a genetic algorithm which allows the var-
ious rules to evolve and compete. Apart from obtaining optimised
parameters for the various rules for any environment, we also observe
extinction and speciation.
From a more theoretical point of view, in order to avoid finite size
effects, most results are obtained for large population sizes. However,
we do analyse the influence of population size on the performance.
Furthermore, we critically analyse the causes of efficiency loss, derive
the exact dynamics of the model in the large system limit under cer-
tain conditions, derive theoretical upper bounds for the efficiency, and
compare these with the experimental results.

1 Introduction

In the field of distributed systems, communication costs between ele-
ments of a system can significantly limit its performance [1]. As such
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the idea of self-organising systems is an attractive one because such
systems inherently remove the need for the communication necessary
for centralised control. Models of social insect behaviour based on
the idea of stimergy, developed by Grassé [2], have been a source of
inspiration in designing such self-organising systems, providing good
solutions with high degrees of flexibility and robustness [3]. These
stimergic models have the additional advantage of removing the need
for direct communication between the elements of a system as their
behaviour is solely dependent on their perception of the environment.

In this paper we extend a social insect inspired method for solu-
tion of a problem of distributed mail retrieval based on the problem
studied by Price et. al in [4]. This problem involves agents repeatedly
travelling to cities which can produce and store a set of different types
of mail. Each Agent is associated with a mail processing centre and
must choose a piece of mail stored at a city to take for processing
under the constraint that switching mail types causes a penalty in
processing time.

The model we use to solve this problem, known as the threshold
model [5], [6], was inspired by task allocation in social insect colonies.
It has been successfully applied to other problems which require ro-
bust, decentralised control including the scheduling of truck painting
[7], [8], which involves similar constraints, and the real world example
of conserving battery life in a remote sensor network [1].

The idea of thresholds as a method for task allocation was de-
veloped by Bonabeau et al. in [5] in order to show how the flexibil-
ity of insect colonies to different circumstances can be explained by
the autonomous flexibility to engage in tasks of the individuals which
comprise them. They proposed a model, known as the fixed response
threshold (FRT) model, which stated that the tasks that an individual
was capable of engaging in could be broken down into types and that
each instance of a task has some stimulus associated with it which is
indicative of its demand for completion. Each colony member has a
set of thresholds which determine their preference for engaging in each
type of task. Upon encountering a task an individual will compare the
stimulus s of the task with the corresponding threshold θ, and use this
to determine the probability of uptake of that task. The probability of
uptake should be high for s >> θ, low for s << θ, zero for s = 0 (no
demand for the task), and 1

2 for s = θ, and is defined by a threshold
function Θ(s, θ).

In the original formulation of the model it was assumed that each
agent had a genetically determined set of thresholds which were con-
stant over an agent’s lifetime. However, while this was able to account
for such features of social insect colonies as increased uptake of tasks
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by nonspecialist individuals upon the removal of specialists in these
tasks, it was unable to account for the initial distribution of special-
isations or the re-specialisation of colony members to meet changes
in the distribution of stimulus. In order to account for these features
Theraulaz et al., in [6], introduced a process of self reinforcement
whereby time spent performing a task would lead to a decrease in an
agent’s threshold for this task whilst time spent not performing this
task would cause the threshold to increase. Individuals possess an
update rule, U , which governs the magnitude of these changes. This
model is known as the variable response threshold (VRT) model. In
this paper a discretised version of this model is used and increases in
thresholds at times when the individual is inactive are discounted. As
such an agent with thresholds θ = (θ1, ...θn) will, upon completion of
a task of type i, update its thresholds as follows:

U(θ, i) = (u(θ1, i), ..., u(θn, i)) (1.1)

where
{

u(θj, i) < θj if i = j,

u(θj, i) > θj otherwise,
(1.2)

with θj restricted to some range [θmax,θmin]. These changes are related
to both the size of the threshold and the time taken to complete the
task.

This paper builds upon work by Bonabeau et al. [9] who use a
problem of mail agents serving a zonal demand to demonstrate the
applicability of the threshold model to a non-static task allocation
problem. This problem was then developed by Price et al. [4], [10],
into the constrained, distributed, mail retrieval problem which we shall
study in this paper. They showed that the threshold model gives a
good solution to the problem when compared to other algorithms,
particularly under a change of mail production probabilities.

We investigate the performance of the system with large popula-
tions and, in order to make this computationally viable, we propose
an alteration to the problem in which each city may have a set of mail
to be taken, but the information about this mail is local and cannot be
determined from outside the city. The main focus of our work shall be
the sources of loss of efficiency in the system and these are statistically
analysed from a population dynamics perspective. The flexibility of
the system is also tested by the introduction of a dynamic environment
in which mail production probabilities are continuously varied.

In order to minimise this loss we introduce a set of new update
rules which define agents’ task specialisation behaviour. We then use
these rules as “species” in a genetic algorithm to determine the best
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rule in a given circumstance and to optimise the parameters of these
rules. A new set of threshold functions better suited to this genetic
optimisation are also introduced.

The rest of of the paper is organised as follows:
In the next section 2, we introduce the model and the various strategies
to solve it. In section 3, we perform a theoretical analysis that in the
large system limit under certain conditions describes the dynamics
of the model exactly, and provide a theoretical upper bound for the
performance of any algorithm. In section 4, we present and discuss
the numerical results and compare them with both the exact dynamics
and the theoretical bounds. Finally, in section 5, we summarise our
main findings, discuss the limitations of the current setting, and give
an outlook to future work.

2 The Model

2.1 The Mail Processing Problem

In order to study the VRT model a problem which can be used to
examine its reaction to various profiles of stimulus must be used. A
good candidate is the problem of distributed mail retrieval studied
by Price et al. in [10],[4] in which agents using VRT rules have been
shown to perform well and to exhibit some of the key features model.
We study a modified version of this problem in which there are a
set of Nc mail producing cities each of which is capable of producing
and storing one batch each of Nm different types of mail. There are
also a set of Na mail processing centres whose task it is to process
these batches of mail. In order to achieve this, each centre has one
associated mail collection agent whose task it is to travel to a city and
return with a batch of mail for its centre to process.

Each mail type requires a different processing method and at any
point in time the processing centre of agent a is specialised in one
specific type σ′a. When processing a batch of this mail type the centre
can do so efficiently, taking a time tp. However, in order to process a
batch of a different mail type m, the centre must undergo alterations.
This changeover σ′a → m (including the processing of the batch) takes
a time tc > tp.

In order to reduce the direct impact of these changeovers, each
processing centre has a mail queue in which it can temporarily store
mail while processing other batches. This queue is capable of storing
up to Lq batches of mail and, while it has space in it, a centre’s agent
will continue to collect mail from cities. A processing centre must
process the mail in its queue in the order in which it arrived, such
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that all the freedom in the system is concentrated in the behaviour of
the collection agents. Therefore, we define the effective specialisation
σa of the agent as the last collected mail type, because σ′a will be σa

by the time the next collected mail is processed.
Time evolves in discrete steps of ∆t = 1 in which:

1. Each centre processes the top batch of mail (if any), thus emp-
tying one space in its queue, or proceeds with its changeover.

2. Each agent a randomly picks one city c to visit, unless its queue
is full.

3. Each city now has a set Ψc of visiting agents, and the order in
which the agents are allowed to act is determined randomly.

4. Each agent acts by examining the (remaining) waiting batches
of mail at the city in a random order choosing or rejecting them
on an individual basis, until either a batch is chosen or all have
been rejected.

5. Then each agent returns to its processing centre and deposits
the chosen batch (if any), into the queue.

6. Finally, the cities increase the stimuli of left-over batches and
produce new batches.

No centralised control of the agents is permitted and so the aim of
the problem is to give agents a set of autonomous rules in order to
maximise the amount of mail processed. We refer to this in terms of
average mail processed per agent per time step, or efficiency. It is
clear that this efficiency is limited by several factors. The agent must
strike a balance between maximising the proportion of times it takes
mail when it visits a city and minimising the amount of time which
it spends not visiting cities due to its centre having a full queue. The
likelihood of having a full queue increases with the agents likelihood
to take mail of a type different from that it took previously. It is clear
that in an ideal situation, an agent would always take mail of the type
that it took previously. However, this ideal situation is impossible
unless the agent rejects all types of mail other than the one previously
taken, which in turn is not ideal as it increases the number of times the
agent returns empty handed and in extreme cases may even lead to a
deadlock situation in which all mail of a certain type is rejected by all
agents. In [10], [4] it was shown that agents using rules based on the
VRT model exhibit good performance in these tasks when compared
with several other algorithms, particularly when flexibility is required.

For each agent a, the uptake of each mail type is defined as a
distinct task, and depends on: its threshold function Θ, its vector of
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thresholds θa = (θa,1, .., θa,Nm), the vector of the queue of its pro-
cessing centre qa = (qa,1, .., qa,Lq) which can store a backlog of up to
Lq batches of mail. The threshold function also requires a stimulus
s, and this is taken to be the waiting time of the batch at the city.
Therefore, each city c has a vector wc = (wc,1, .., wc,Nm) where wc,m

is the waiting time of the batch of mail type m. Note that wc,m = 0
indicates that there is no batch of that type of mail present, either
because no such batch was produced, or because another agent has
already taken that batch. Upon production of a batch of mail type m,
its waiting time is initialised to wm = 1, and at the end of each time
step the waiting times of remaining batches of mail are increased by
1. The aim of this formulation is that for an appropriately chosen up-
date rule an agent will tend to a low threshold for one mail type only,
thus giving it a high probability of taking mail of the same type on
consecutive occasions, minimising changeovers and the probability of
its queue filling up. On the other hand, if long waiting times for other
mail types are encountered, the strong stimuli may still cause changes
in agents specialisations, and the population can adapt to meet the
current level of demand in the system.

Further, two different types of environment are considered:

• A static environment, in which a city automatically produces a
new batch of mail for every mail type that has been taken at the
end of each time step.

• A dynamic environment, in which the probability of batches of
mail type being produced varies over time.

The dynamic environment is specifically designed to test the flexibility
of the system, and we have chosen to vary the probability of taken mail
batches being produced in a sinusoidal fashion. All mail types have
the same wavelength (e.g. to mimic seasonal variations), but have
a different phase. Hence, all mail types have periods of both high
and low production with certain mail types being dominant at some
times and scarce at others. For both environments the probability of
creating a taken batch of type m at the end of cycle t is given by:

πm(t) =

{

1, static
1
2 [1 + sin( t2π

ξ − m2π
Nm

)], dynamic
(2.1)

where ξ is the wavelength. In the dynamic environment an agent may
be forced to compromise in its strategy of specialising in one type of
mail as there will be periods during which its preferred mail type is
rare.

It is clear that the problem is to minimise the loss of efficiency.
Therefore, it is important to identify the different mechanisms that
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lead to efficiency loss. If an agent of effective specialisation σa fails
to process mail during an iteration, this can be categorised into four
cases:

(ℓ.1 ) The agent is inactive due to a full mail queue at its processing
centre.

(ℓ.2 ) Mail type σa is available at the city, but the agent rejects all mail
nonetheless.

(ℓ.3 ) Mail type σa is not available at the city and the agent rejects all
other mail.

(ℓ.4 ) There is no mail at all available by the time of the agent’s action.

While it is possible to minimise ℓ.4 by increasing ℓ.1 -ℓ.3 (i.e. by
lowering the overall acceptance rate of mail), this is clearly not ideal.
In particular, ℓ.3 and ℓ.4 are due to the non-uniform number of
agents visiting cities. In the current model we have no control over
this and focus mainly on the other sources. The most unnecessary
source of efficiency loss is clearly ℓ.2 as the uptake of mail of its
own specialisation has no negative consequences for an agent. A good
update rule, therefore, should drive an agent’s thresholds to a state
in which θa,σa is very low. One should note that ℓ.1 and ℓ.3 are
finely balanced against each other as a greater uptake of mail of non-
specialised types leads to an increase in agents with full queues. This
relationship is clearly non-linear as a increase in the number of inactive
agents leads to an increase in average stimulus, hence to an increase
in the uptake of non-specialist mail and an even further increase in
the number of inactive agents.

2.2 Methodology

As the self organising behaviour exhibited by social insects appears
in (large) colonies, it seems natural to consider the performance of
the model with a large population of agents. Not only does the large
system size have the advantage of removing finite size effects (such as
large fluctuations both inside and in between different runs), but An-
derson et al. [11], [12] have also shown that a specific form of collective
behaviour involving direct cooperation between agents is only efficient
in large systems. Furthermore, Dornhaus et al. [13] hypothesise that
the simulation of honeybee behaviour that they have investigated, did
not produce realistic behaviour because of the small size of the system
used. Hence, in this paper we consider the behaviour of the system
mostly from a population dynamics perspective where the average be-
haviour is of greater importance than the individual performance of
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an agent. Nevertheless, we also investigate the influence of (small)
system size on the overall effiency and fluctuations thereof.

2.2.1 Update Rules and Threshold functions

It is clear that for a given threshold function, the efficiency of an
agent critically depends on its thresholds, while its flexibility to adapt
to new situations critically depends on its ability to modify its thresh-
olds. The strategy used by an agent to modify its thresholds is de-
termined by its so-called update rule. One of the main goals of this
paper is to investigate what kind of update rule is best suited to the
problem at hand, and to investigate whether optimal update rules can
be found autonomously by competition between the agents. There-
fore, we compare the performance of some existing and some newly
introduced update rules. We now proceed with a short overview.

The Variable Response Threshold (VRT) rule was proposed in
[6] and was applied to the current problem in [4], [10]. The change in
threshold ∆θm over a period of time t, is given by:

∆θm = −ε∆tm + ψ(t− ∆tm) (2.2)

where ∆tm is the time spent performing task m, where ε, ψ are posi-
tive constants, and where θm is restricted to the interval [θmin,θmax].
For the current model, eq. (2.2) can be discretised, taking into account
the fact that thresholds are only changed when a task is performed.
Therefore, when the update rule is called, over a single time step, t
will be 1 and ∆tm is 1 if mail type m was taken and 0 otherwise.
Hence, the VRT rule can be rewritten as

u(θm, i) =

{

θm − ε if i = m,

θm + ψ otherwise.
(2.3)

A drawback of the VRT rule is that the thresholds must be artificially
restricted to the range [θmin,θmax]. Additionally, in the event of a
changeover, for small ε and ψ agents are unlikely to change their
thresholds enough to have a high chance of picking the new mail type
in the next time step, thus increasing ℓ.2 . In order to overcome these
flaws and to see if better efficiency could be obtained, we introduce
some new update rules.
The Switch-Over (SO) rule restricts the thresholds to [θmin, θmax] in
a very simple manner by fully specialising in the most recently taken
mail type, and fully de-specialising in all other mail types:

u(θm, i) =

{

θmin if i = m,

θmax otherwise.
(2.4)
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In some sense the switch-over rule can be seen as an extreme case of
the VRT rule with ε, ψ ≥ θmax − θmin. Such values, however, are not
in the spirit of the VRT, and so it makes sense to consider them as
separate cases. We introduce SO as we expect it to minimise ℓ.1 and
ℓ.2 in a static environment, while a drawback is that ℓ.3 could be
maximised.
The Distance Halving (DH) rule, is another method for keeping the
thresholds restricted to the appropriate range by halving the Euclidean
distance between the current threshold and the appropriate limit, θmin

if the corresponding mail type has been taken and θmax if it has not.

u(θm, i) =

{

θm+θmin
2 if i = m,

θm+θmax
2 otherwise.

(2.5)

We introduce DH as we expect the agents to become generalists, thus
potentially decreasing ℓ.3 , as it takes several time steps to fully spe-
cialise, while it can effectively de-specialise in a single time step.
The ((Modified) Hyperbolic Tangent ((m)tanh) rule is intro-
duced in a similar spirit to the VRT rule, and allows for a more
continuous variation of the thresholds whilst removing the need for
artificial limits. Although SO and DH solve the problem of the artifi-
cial limitation of the thresholds, they always result in sharp changes
in the thresholds. In the (m)tanh rule, the thresholds are a function
of some hidden variables hm:

θm = θmin + (θmax − θmin)
1

2
(1 + tanhhm) (2.6)

By definition the θm are restricted to the appropriate range (although
we have chosen the 1

2(1 + tanh), it is clear that any sigmoid func-
tion would do the trick). The update rule now works on the hidden
variables in a manner similar to the VRT:

u′(hm, i) =

{

hm − α if i = m,

hm + β otherwise,
(2.7)

for some positive constants α and β. As for the VRT, low α and β
values may suffer from slow re-specialisation, however, the speed of
re-specialisation is independent of θmin and θmax. Furthermore, the
rule may lead to the problem of saturation. For large hidden variables,
the tanh rule produces insignificant changes to the actual thresholds.
As the whole basis of VRT-like models is that engagement in a task
leads to an increased likelihood of repeating the task, this problem
must be addressed.
Therefore, we modify the tanh rule by making a distinction between
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positive and negative hidden values, and introduce re-specialisation
coefficient η ∈ [−1, 1] such that

u′(hm, i) =























hm − α if i = m and hm ≤ 0,

η hm − α if i = m and hm > 0,

hm + β if i 6= m and hm ≥ 0,

η hm + β otherwise.

(2.8)

It is identical to the tanh rule for η = 1, but is more similar to the SO
rule for η close to −1.
The Bienenstock, Cooper and Munro (BCM) rule [14], pro-
posed as a modification of the Hebbian learning rule for neurons, was
designed as a mechanism for selectivity in the increase in synaptic
weights. It takes into account the history of stimuli at a neuron, and
updates synaptic weights based on both the history and the current
stimulus. This method can be modified to an update rule compati-
ble with the mechanism defined by eq. (2.8) which also addresses the
problem of saturation. The thresholds are updated as follows:

u′(hm, i, w) =

{

hm − ν(w(t) −HBCM (t))w(t) if i = m,

hm − ν(w(t) +HBCM (t))w(t) otherwise,
(2.9)

where ν > 0 is a constant, w(t) is the current stimulus and where the
stimulus history HBCM (t), is defined as some function of the stimuli
of recently taken mail averaged over a predefined number of batches
(th). In this paper, we use the function as proposed in [14]:

HBCM (t) =

th
∑

i=1

wτ (t− i) (2.10)

for some constant τ . The selectivity, which the system was designed
to produce, is not a necessary feature of the update rule such that
the constraint τ > 1 can be removed. Initially, when the agent has
not taken enough mail to fill the history, it will be assumed that the
missing batches have 0 stimulus. Note that BCM does not strictly fit
the definition (1.2) as selection of a piece of mail with a low waiting
time can lead to an increase in the threshold for the mail type. It
is, however, a well established strategy which we have included as an
alternative to the mtanh rule. For well chosen parameters, the hid-
den variables should be kept at levels that are high enough to keep
the current thresholds extremised, but low enough to allow mail with
sufficient stimuli to cause a switch in specialisation.
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It is clear that the overall efficiency and flexibility of an agent not
only depends on its (capability to update its) thresholds, but also on
threshold function Θ(s, θ) itself. Therefore, we compare the perfor-
mance of the standard and some newly introduced threshold functions.
We now proceed with a short overview.

The Exponential Threshold Function (ETF), is the standard
threshold function as proposed by [5], and is defined as:

Θ(s, θ) =

{

sλ

sλ+θλ if s 6= 0,

0 otherwise.
(2.11)

which for λ ≥ 1 has all the desired properties. Note that it has
an exponential dependence on the parameter λ, which makes it very
sensitive to small changes. In order to check whether the obtained
results are not (partially) due to this sensitivity, and to see whether
efficiency can be improved, we consider two other threshold functions.
The Scaling Threshold Function (STF) is piecewise linear, and
its slope depends on both the value of the threshold, and on λ ∈ [0, 1]
(its gradient relative to the threshold):

Θ(s, θ) =











0 if s ≤ λθ
s−λθ

2(1−λ)θ if λθ < s < (2 − λ)θ

1 otherwise

(2.12)

The Gradient Threshold Function (GTF) is also piecewise linear,
and makes the slope (governed by the parameter λ) independent of
the threshold:

Θ(s, θ) =











0 if s = 0 or s ≤ θ − 1
2λ

λ(s− θ + 1
2λ ) if θ − 1

2λ < s < θ + 1
2λ

1 otherwise

(2.13)

2.2.2 Genetic Algorithms

For any given environment, the behaviour of the system is governed
by the update rules and threshold functions of the agents, and the
parameters therein. Genetic algorithms (GA) seem a natural way
of optimising the model as it is inspired by the behaviour of social
insects, and have proven their worth in such settings: e.g. Bonabeau
et al. [15] have used a GA to cause a stimergic system to build a
structured architecture autonomously (where previously the system
required guidance towards particular structures), while Campos et al.
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[7] have successfully used a GA to optimise a threshold model on a
similar problem, to name but a few.

Our motivation to employ a GA is threefold:
Firstly, rather than optimising all parameters manually (which is a
daunting task due to the large number of possible combinations), we
have opted to employ a GA. In particular for each individual update
rule, we expect the GA to find parameters with the optimal trade-off
between ℓ.1 and ℓ.3 .
Secondly, Ga’s allow for inter-species (i.e. inter-update-rule) compe-
tition which enables us to find an optimal rule-set whilst we optimise
the parameters rather than requiring us to optimise each rule-set and
then choose the best one.
Finally, a GA can in principle provide novel self-organising behaviour,
although completely novel behaviour is not expected due to the rela-
tive simplicity of the current model. Riolo [16] has shown how a GA
will tend to a peak of fitness in the environment. As the system causes
cooperation due to the modification of the environment, it is possible
that the existence of one part of a population in one location of the
fitness landscape will cause a new peak of fitness to emerge at another
point and that a population with two (or more) clusters in these areas
will lead to a better mean fitness.

In this paper, we use a similar approach to that of Holland [17].
However, in our case genes are not represented by bit-strings but are
the set of parameters associated with each update rule. Hence, the
mutation mechanism Holland describes has been replaced by addition
of Gaussian noise to the parameter, and the cross-over mechanism
merely consists of swapping constants, which is unordered due to the
arbitrary arrangement of the genes. As different update rules have
different (numbers of) parameters, inter-species cross-over does not
occur.

The GA assigns to each agent in the population an update rule and
a threshold type which are referred to collectively as an agent’s species.
Each agent is then assigned the full set of (randomly or otherwise
initialised) parameters, which are referred to as its genes. The agent’s
variables are then initialised and the algorithm will be run for a set
number of time steps.

A new generation of agents is bred by selecting an agent from the
initial population and choosing to breed it with a probability given
by its fitness. This parent agent will either copy itself to the new
generation or undergo a cross-over with probability pc. In the case of
a cross-over, a second parent agent (from the same species) is chosen in
a similar manner. The first cross-over member of the new generation
randomly selects its genes independently from each of its parent agents
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with probability 0.5, while the second takes the unpicked genes. We
also initialise a small proportion of the new generation randomly in
order to avoid the persistence of a suboptimal population due to low
diversity. Once a new generation of the same size has been created
each gene of each new agent mutates with probability pm by adding
some Gaussian noise of zero mean and small variance. This process is
repeated until some predefined condition is met.

3 Theoretical Analysis

In general, the mail retrieval problem is hard to solve exactly as it
depends on continuous variables (the thresholds), such that the num-
ber of micro-states of the agents is infinite (not countable). In other
contexts where this problem occurs, such as continuous models on
sparse random graphs (see e.g. [18] and references therein), popu-
lation dynamics can be used for the theoretical analysis. For agent
based models, however, this is paramount to simulating the model.
On the other hand agent based models are theoretically solvable when
the number of discrete micro-states is finite. It turns out that we
can analyse some non-trivial cases (combination of update rule and
threshold function) of the current model exactly. Furthermore, using
similar (but much simpler) techniques we can derive theoretical upper
bounds for the efficiency for any update rule/threshold function.

For the SO rule, specialised agents only have thresholds in {θmin, θmax},
and thresholds are entirely determined by the effective specialisation.
Therefore, a micro-state A of an agent is determined by the thresh-
olds ~θ associated with its specialisation σ, and the state ~qL of the mail
queue at its processing centre:

A ≡ (~θ, ~qL) (3.1)

where L ∈ {0, .., Lq} is the length of the queue and ~qL = {q1, .., qL} are
the remaining processing times. Note that if an agent is specialised
in mail type m then θm = θmin while all other θn = θmax, and that
q1 ∈ {1, .., tc} and qi ∈ {tp, tc} (i > 1), as their processing has not
yet started. Hence, the set SA of all possible agent micro-states has
cardinality |SA| = Nm (1 + tc

∑Lq

L=1 2L−1) = Nm (1 + tc(2
Lq − 1)).

The micro-states C of the city are already discretised, and consist
of the waiting times of the mail types:

C = (~wNm) = {w1, .., wNm} (3.2)

Although the number of such states is infinite (waiting times have no
upper limit), this is not a problem when the threshold function is such
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that Θ(w, θ) = 1, ∀w > θmax. Only states in {0, .., θmax, (>θmax)}Nm

need to be considered, and the set SC of all possible city micro-states
has cardinality |SC | = (θmax + 2)Nm . For the threshold functions that
we have considered, this is the case for sufficiently high λ (e.g. GTF
with λ > 0.5) because then:

Θ(w, θ) =











0 if w < θ or w = 0,

0.5 if w = θ and w 6= 0 ,

1 if w > θ.

(3.3)

Defining the states of the agents as ~s(t) = {sa(t), a = 1, ..,Na} and
the states of the cities as ~S(t) = {Sc(t), c = 1, ..,Nc}, at any time t
the global state of the system is completely determined by the agent
profile ~µ(t) = {µA(t), A ∈ SA} and city profile ~η(t) = {ηC(t), C ∈ SC},
where

µA(t) ≡
1

Na

Na
∑

a=1

δsa(t),A , ηC(t) ≡
1

Nc

Nc
∑

c=1

δSc(t),C . (3.4)

In the large system limit, as a consequence of the Central Limit The-
orem, ~µ(t) and ~η(t) become deterministic quantities, for which we can
derive the exact time evolution. It is convenient to break up the time
evolution into four distinct steps:

a.1 changes to the ~µ during mail uptake.

c.1 changes to the ~η during mail uptake.

a.2 changes to the ~µ during processing of the queue.

c.2 changes to the ~η during mail production.

During the mail uptake the change in the agent profile can be described
by multiplication with a matrix T(~µ(t), ~η(t)) which explicitly depends
on both ~µ(t) and ~η(t) due to the competition between agents at the
cities. The change to the agent profile during the processing of the
queue, can be described by multiplication with a constant matrix Q.
The change in city profile during mail uptake can be described by
multiplication with a matrix L(~µ(t)), which explicitly depends on ~µ(t)
due to competition between the agents. Finally the change in city
profile during mail production can be described by multiplication with
a matrix P(t) which is time dependent for the dynamic environment
only. Combined, this leads to the following exact time evolution:

{

~µ(t+ 1) = Q T(~µ(t), ~η(t)) ~µ(t) ,

~η(t+ 1) = P(t) L(~µ(t)) ~η(t) .
(3.5)
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As the derivation and exact expressions of the matrices T, Q, L and
P are rather involved, we refer those to appendix A. The theoretical
time evolution and numerical simulations are compared in the follow-
ing section, and are in excellent agreement.

The exact solution of the dynamics of the model is only possible for
the SO update rule and a threshold function with Θ(s, θ) = 1, ∀s >
θmax. However, following a strategy similar to the one above we can
derive update rule- and threshold function- independent theoretical
upper bounds for the efficiency of an infinite population in ideal cir-
cumstances, i.e. when no mail is lost due to ℓ.1 -ℓ.3 . This situation
would occur when t ≤ Lq and when agents never reject mail such
that the efficiency is only limited by ℓ.4 . Then, both the agent profile
and the mail waiting times become irrelevant and the efficiency is a
function of the profile of the following simplified city micro-states:

C = ~bNm = {b1, .., bNm} , (3.6)

where bi ∈ {0, 1} is the availability of mail type i at the city. The
set SC of all possible states has cardinality |SC | = 2Nm . Defining the
states of the cities as ~S(t) = {Sc(t), c = 1, ..,Nc}, at any time t the
global state of the system is completely determined by the city profile
~χ(t) = {χC(t), C ∈ SC}, where

χC(t) ≡
1

Nc

Nc
∑

c=1

δSc(t),C . (3.7)

The change in city profile during mail uptake can be described by
multiplication with a matrix L′, while the change in city profile dur-
ing mail production can be described by multiplication with a ma-
trix P′(t) which is time dependent for the dynamic environment only.
Combined, this gives the following exact time evolution for the city
profile:

~χ(t+ 1) = P′(t) L′ ~χ(t) . (3.8)

Then, the efficiency E(t) (the probability that an agent takes mail at
time t) is given by

E(t) =

Nm
∑

k=1

χk(t)

(

1 − PRa/c
(k) +

k −Ra/c

Ra/c
(1 −

k
∑

i=0

PRa/c
(k))

)

,

(3.9)
where χk(t) ≡

∑

~b∈SC
χ~b

(t)δ
|~b|,k

is the probability that a city has ex-

actly k pieces of mail available, Pλ is the Poisson distribution with
parameter λ, and Ra/c is the ratio of agents to cities. The details of
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these derivations and the exact expressions of the matrices L′ and P′

can be found in appendix A. A comparison between the performance
of the various update rule/threshold function combinations with this
theoretical upper bound is presented in the following section.

4 Results

In this section we discuss the numerical results. First, we describe
the general tendencies of how the efficiency and loss sources depend
on the model parameters such as the system size Na, the agent to
mail ratio Ra/m, the number of mail types Nm, and the wave length
ξ for the dynamic environment. It turns out that qualitatively the
general tendencies are rather insensitive to the choice of update rule
and threshold function, and their respective parameters (as long as
these are chosen reasonably). Therefore, we present these for the SO
rule and the ETF threshold function, and only mention other rules if
they exhibit qualitatively different behaviour.

The second part of this section is dedicated to the optimisation of
the parameters, and the selection of the best possible combination of
update rules and threshold functions in terms of the overall efficiency.

4.1 General tendencies

As there are many parameters to cover, we have opted to investigate
the influence of different factors on the efficiency systematically, by
varying one parameter at a time and keeping the rest in the standard
setting: unless specified otherwise we simulate the system with Na =
5 × 104 agents and Nm = 2 mail types, using the ETF threshold
function with λ = 2. In order to have a fair comparison between
different environments, we take Ra/m = 1 in a static environment,

while in the dynamic environment we take Ra/m = 0.5 (as πm(t) = 0.5
over a period). We fix the various parameters to the following values:
θmin = 0, θmax = 50, ε = ψ = 5, α = β = η = 0.5, and for the
BCM rule ν = τ = 1 and th = 20. A standard run consists of 500
iterations over which the average efficiency per agent is monitored,
and the standard dynamic environment has a period ξ = 50. Note
that all simulations are implemented in C++ and are performed on a
linux-PC cluster.

In order to investigate the dependence of our results on the system
size, we we vary Na, while keeping Nm and Ra/c fixed. In general we
find that the average of any measured quantity quickly (Na ≃ 5×102)
converges to its asymptotic value (for Na = ∞) with increasing system
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size, while both inter- and intra-run variance decreases to below the
line width of the plots at values Na ≃ 104. With these findings in
mind, we have decided to fix the system size at Na = 5 × 104, for
which simulations can be run in reasonable time, and for which a
single run suffices to determine any quantity with sufficient accuracy,
omitting the need for error-bars in most figures that follow.

Only for genetic algorithms we use repeat runs when the algorithm
is particularly sensitive to the emergence of particular individuals (a
sensitivity that is not directly related to the system size). The signifi-
cant finite size effects for relatively small system sizes (Na ≤ 102) are
illustrated in Figure 1. The increased average efficiency for small val-
ues of Na can be explained by considering that each agent on average
competes with (Na − 1)/Nc agents, which is monotonically increasing
with Na for fixed Ra/m and Nm and saturates for high Na values.
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Figure 1. The average efficiency (solid line) as a function of the system

size Na with fixed Ra/m = 1 and Nm = 2, in a static environment, using

the tanh update rule, averaged over 1000 runs (2 ≤ Na ≤ 30), 500 runs

(30 ≤ Na ≤ 200), or 50 runs (Na > 200), and error bars of ±1 s.d. (dashed

lines).

As a rule of thumb, we consider an agent to be fully specialised
in a mail type if its threshold for this type is less than a distance
of 1% of the possible range from θmin while all other thresholds are
within 1% of θmax. The qualitative behaviour of the mtanh rule,
as shown in Figure 2 (top), is typical for all update rules although
the speed of convergence, and the asymptotic values depend on both
the update rule and threshold function. We see that the algorithm
accounts for the genesis of specialisation. The system tends towards
a stable asymptotic regime in which most agents are specialised and
the specialists are equally split between mail types. The fact that ℓ.1
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is almost negligible while we still have some ℓ.2 is indicative of the
high value of θmax. With the S0 rule and θmin = 0, ℓ.2 becomes
impossible once an agent has taken a piece of mail. Agents with all
initial thresholds close to θmax may never, over the course of a run,
encounter a batch of mail with a strong enough stimulus to accept it.

In the dynamic environment (see Figure 2 bottom), we observe
variations in efficiency over the course of a wavelength. The positions
of the minima and maxima may at first sight seem strange as the to-
tal probability for mail production remains static and the points of
maximum efficiency occur where a non-uniform distribution of mail
is expected. However, at the end of an iteration in which mail type
m is predominantly produced it is also more likely for this mail type
to be left over. This in turn lowers the probability of this mail type
being produced in the next iteration compared to when π1(t) ≈ π2(t).
Hence, while the a priori total probability of mail production prob-
ability is static, the effective total probability of mail production is
maximal when π1(t) − π2(t) → 0. The qualitative behaviour of ef-
ficiency and losses, as shown in Figure 2 for the SO rule, is typical
for most update rules. However, the specialisation that drives this
behaviour varies between rules. In particular, those rules based on
hidden variables ((m)tanh, BCM) tend to specialise in a manner sim-
ilar to the mtanh rule, while the other algorithms (VRT, SO and DH)
behave qualitatively similarly to the SO rule.
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Figure 2. Top left: evolution of the efficiency and loss sources during a single

run in the standard static environment using the SO rule. Note that ℓ.1 is

negligible everywhere and ℓ.2 tends to 0, while ℓ.3 and ℓ.4 (and hence the

efficiency) quickly tend to their long time values. Top right: the population

of agents tends towards an equal split in specialisation with almost all agents

specialised. Bottom left: evolution of the efficiency and loss sources during

a single run in the standard dynamic environment using the SO rule. The

values of the loss sources and the efficiency fluctuate around their average

values, which are qualitatively similar to those in the static environment.

Bottom right: the difference in specialisation behaviour between the SO and

the tanh rule. Note that the tanh rule tends to a static, uneven (initial con-

dition dependent) set of specialisations, while the SO rule efficiently adapts

to changes in the environment.

The tanh function, like any sigmoid function, is effectively con-
stant (i.e. saturated) for sufficiently large arguments. The saturation
region is reached when an agent using the tanh update rule repeat-
edly takes the same mail type. Once in this region, the update rule
becomes incapable of effective self reinforcement on which the VRT
model relies, and incapable of reacting to changes in the environment.
A similar problem can be encountered in neural networks with sig-
moidal nodes, in which Hebbian learning drives synaptic weights into

19



the saturation region of the function rendering the relative sizes of
these weights meaningless [19] thus removing the selectivity of the
node. The BCM rule, which was designed to deal with this lack of
selectivity, attempts to keep the hidden thresholds at relatively low
levels and thus avoid saturation. We follow a slightly different strat-
egy with the mtanh rule for which the hidden thresholds are allowed
to increase arbitrarily, but can also decrease quickly when necessary,
thus rendering self reinforcement practical again.

The tanh rule is the only rule inherently unable to dynamically
adapt its thresholds due to the saturation effects described above,
while the other rules can do so if given suitable parameters (i.e. a
lowering of η in the mtanh rule). To highlight the effects of saturation
for the tanh rule, we let the system equilibrate for 1500 iterations
in the standard static environment to allow agents to specialise fully.
Then we remove that half of the population that is most specialised in
e.g. mail type 2, and equilibrate the remaining system (with halved
Ra/m) for a further 1500 iterations. The results, shown in figure 3,
show that in contrast to the SO rule, which adapts very quickly to the
change, none of the specialised agents using the tanh rule re-specialise.

Stability is reached when the average stimulus of mail type 2
reaches a high enough level to force changeovers a significant propor-
tion of the time, leading to high levels of ℓ.1 . The mtanh rule is able
to somewhat adapt to this by lowering the thresholds of agents taking
type 2 mail most often, causing some to re-specialise. Once enough
agents are re-specialised that the average stimulus of type 2 mail drops
to a level where frequent changeovers are unlikely the re-specialisation
slows significantly meaning that an optimal set of specialisations will
not be regained.
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Figure 3. Efficiency and loss sources in a static environment with removal

of specialised agents. The SO rule (top left) almost immediately returns to

the optimal split in specialisations. Due to saturation, the tanh rule (top

right) is unable to re-specialise, resulting in a dramatic increase in consec-

utive changeovers (ℓ.1 ). Although the mtanh rule (bottom left) is capable

of re-specialising, it does so far less efficiently than the SO rule and initially

reacts similarly to the tanh rule. Bottom right: evolution of the fraction of

specialised agents for the various rules.

In figure 4, we compare the upper bound with the actual efficiency
and the loss sources of the SO rule (for Nm = 2), as a function of
Ra/m. In the static environment (left), the difference in efficiency at
low Ra/m is due to high average waiting times which become close
enough to θmax to overwhelm agents’ selectivity and force multiple
changeovers and high levels of ℓ.1 . At high values of Ra/m it is clear
that θmax is too high as we know that a smaller population could serve
the demand, such that a drop in ℓ.1 would be acceptable in order to
decrease ℓ.2 and ℓ.3 . The behaviour in the dynamic environment
(right) is similar to that of the static environment. However, the
variable nature of the environment causes an increase in both ℓ.1 and
ℓ.3 as the agents’ specialisation, being reactive, lags behind the state
of the environment. Agents that fail to react cause an increase in ℓ.3 ,
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while agents that do react, must undergo a changeover thus increasing
ℓ.1 . The decrease in ℓ.2 in the dynamic environment is merely due to
an increase in average stimulus as a consequence of the overall decrease
in efficiency.
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Figure 4. : efficiency and loss sources of the SO rule as a function of Ra/m

for Nm = 2, for the static (left) and dynamic (right) environment. With

the exception of very low values of Ra/m, where ℓ.1 dominates, the effi-

ciency follows the same trend as the theoretical upper bound. As expected

loss sources ℓ.2 -ℓ.4 increase with Ra/m while ℓ.1 becomes negligible. In

the dynamic environment, the increases in ℓ.1 and ℓ.3 are more pronounced.

Figure 5 shows the efficiency as a function of Nm. At low values of
Nm the efficiency initially increases due to the distribution of agents
between cities becoming more uniform, while at high values of Nm

this is offset by an increase in ℓ.1 . Agents have to examine more mail
before they find their specialised type leading to increased chances of
changeovers. Note that we do not compare efficiency with the theo-
retical limit as the assumptions used to derive the limit (such as a low
frequency of switch-overs) are completely unrealistic in this case.
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Figure 5. efficiency and loss sources of the SO rule as a function of Nm

for Ra/m = 1 in the static (left), and Ra/m = 0.5 in the dynamic (right)

environment. Loss sources ℓ.2 and ℓ.4 tend to 0 as Nm increases. Effi-
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ciency initially improves before increases in ℓ.1 and ℓ.3 cause it to decrease.

In the dynamic environment, ℓ.1 and ℓ.3 are increased, while ℓ.2 is reduced.

Figure 6 shows the average efficiency and loss sources as a func-
tion of the wave length for the dynamic environment. The peak in
average efficiency at relatively short wavelengths has the same origin
as the peaks of instantaneous efficiency seen inside a single run in the
dynamic environment: persistence of mail. At short wavelengths the
state of the environment changes so quickly that left over mail from the
previous iteration is less likely to be of the type that is predominantly
currently produced. Hence, the effective mail production is increased.
The relatively low efficiency at the initial value ξ = 2, is caused by the
discrete nature of the iterations. The sine wave part of equation 2.1
becomes sin((t−m)π) = 0 for Nm = 2, such that the mail production
probability probability is effectively constant with πm = 0.5.
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Figure 6. : efficiency and loss sources in the dynamic environment as func-

tion of the wavelength ξ. After an initial increase in efficiency (matching that

of the theoretical limit) due to a decrease in ℓ.4 , it then gently decreases to

the long wave length value, due to a increase in ℓ.3 and ℓ.4 . Both ℓ.2 and

ℓ.1 (which is negligible) are virtually independent of ξ.

4.2 Genetic optimisation

As explained in section 2.2.2, we employ a Genetic Algorithm (GA)
to obtain the optimal parameters for the various update rules and
threshold functions. In our simulations, a standard generation of the
GA consists of 500 iterations over which the average efficiency of each
agent is monitored which then counts as its fitness. It turns out that
for all update rules θmin = 0 is optimal, and that the optimised SO
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rule outperforms the other update rules in virtually all circumstances.
The only update rules that can compete with it are those that can
effectively mimic its behaviour by extreme choices of parameters. As
this against the spirit of the nature inspired VRT rule, we have lim-
ited its parameters to ε, ψ < θmax

2 . Otherwise, we leave all other pa-
rameters unconstrained and generate an initial population with equal
proportions of all update rules and threshold functions.

The GA then optimises the different species of agents, while at
the same time letting them compete with each other. In the static
environment (see figure 7 top), the GA quickly finds a good tradeoff
between ℓ.1 and ℓ.3 . This is obtained by dropping θmax to a much
lower value than intuitively expected (and used in the standard set-
ting). The remaining efficiency gain is mainly a consequence of the
increasing fraction of the population with a good rule set. Note that
the BCM update rule quickly tends to extinction due to its strong
parameter sensitivity, such that so only a small fraction of its starting
population has good fitness. Even with continuous re-introduction of
BCM agents the population does not recover, which shows that it is
unlikely to be the best rule in this environment. The two best update
rules are the SO and the mtanh rule (with η < 0 and large ε, ψ, thus
approximating SO). The SO rule, however, has the added advantage
of not being able to mutate away from this behaviour. All other rules
tend to extinction due to suboptimal efficiency.

The threshold function populations evolve for reasons almost ex-
actly opposite to the extinction of BCM. The STF increases initially
due to a higher proportion of its initial population having reasonable
fitness as, for this threshold function, high θmax and low λ, minimising
ℓ.1 while having a reasonable chance of low ℓ.2 . This reasonable but
suboptimal behaviour leads to less of a drive towards the optimal be-
haviour seen in the other two rules, with low θmax and high λ, almost
a step function at θm. This means that while the subsection of the
STF population with optimal behaviour is increasing, the decrease in
the suboptimal subsection is shared between each of the functions giv-
ing an overall decrease in the proportion. Overall, it is clear that the
GTF is most suited to becoming a step function and least suited to
suboptimal θmax which explains it having the largest initial decrease
followed by the greatest rate of increase.
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Figure 6. : evolution of the efficiency and loss sources during a GA opti-

misation of the population of agents in the static (left) and dynamic (right)

environment. Efficiency is optimised by balancing the various loss sources.

The setup used for the GA in a dynamic environment was identical
to that used in a static environment and the initial generations show
almost identical behaviour, albeit with slightly higher θmax due to
the higher average waiting times. However, in this environment an
improved tradeoff between ℓ.1 and ℓ.3 is possible with higher θmax

and lower λ, which decreases ℓ.3 to give a higher chance of keeping up
with the state of the environment while keeping a reasonable chance of
avoiding unnecessary changeovers and so keeping ℓ.1 to a reasonable
level. The update rules are largely independent of this strategy, such
that SO & mtanh with negative η still give the best performance. As
the STF is least likely to mutate away from this strategy, it becomes
the dominant threshold function.
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Figure 7. : Evolution of the fractions of agents using the various update

rules (left) and threshold functions (right) for the static (top) and dynamic

(bottom) environment. In both environments, all update rules eventually

tend to extinction, except the mtanh and SO rule which effectively become

the same. The relative fractions are determined by the initial conditions and

sensitivity to mutations.

In the static environment the optimal threshold function is basically a step

function H(θmax − s), i.e. the Heaviside function. The continuing evolution

of the relative fractions is due to a varying sensitivity to mutations. In the

dynamic environment the optimal threshold function is the STF with finite

slope. The suboptimal ETF and GTF become step functions, and eventually

die out.
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Figure 8. : comparison of the theoretical solution (lines) for an infinite sys-

tem, with simulations (dots) in the standard static (left), and the dynamic

(right) environment. Note that all agents were initialised with specialisation

in mail type 1.

In figure 8, we show the excellent agreement between the exact
theory for infinite system size and simulations of a large but finite pop-
ulation with corresponding settings. Note that we have opted to show
the efficiency, but any other quantities such as fractions of specialised
agents can also be calculated and are in equally good agreement.

static static final dynamic dynamic final
VRT 0.501 (0.687) 0.555 (0.761) 0.412 (0.630) 0.451 (0.690)
SO 0.586 (0.804) 0.623 (0.854) 0.467 (0.714) 0.485 (0.742)
GA 0.626 (0.858) 0.632 (0.867) 0.508 (0.777) 0.509 (0.779)

Theory N/A 0.633 (0.868) N/A 0.504 (0.771)

Table 1: The average efficiency of the different methods in the static and

dynamic environment and the average efficiency after convergence (final),

both in absolute numbers and as a fraction of the theoretical upper bound

(in brackets). The SO rule already provides a large improvement over the

VRT rule, while the genetically determined rules and parameters increase

the speed with which high efficiency is reached but have less effect on the

final efficiency. The best results obtained by the theoretical model are very

close to the final results of the GA.

In Table 1, we illustrate the effect on the efficiency made by the
introduction of new update rules and genetic optimisation in compar-
ison to the original VRT model, which already outperforms a range
of other general purpose algorithms [4, 10]. Efficiencies are averaged
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over 500 iterations (including the initial specialisation period), while
final efficiencies are averaged over 100 subsequent iterations. GA re-
sults are given using the best performing rule sets at the end of 100
generations (SO update rule with the GTF in the static environment
and the STF in the dynamic environment) with parameters taken av-
eraged within their “species” in the final generation. The theoretical
results are given for the optimal values of θmax, which were deter-
mined by exhaustive search. In particular in the static environment,
the comparison between the final GA results and the theory shows
that the GA leads to a combination of update rule and threshold
function that is approximately that for which theoretical results can
be derived. Moreover, it finds approximately the same θmax and has
nearly identical efficiency. In the dynamic environment, however, the
best GA rule set uses a different threshold function and has slightly
improved efficiency.

5 Conclusions and Outlook

In this paper, we have studied an agent based model for distributed
mail retrieval. The efficiency and flexibility have been investigated
both in static and dynamic environments. We have introduced new
rules for mail selection and specialisation and have used a genetic al-
gorithm to optimise these further. We have shown that some of the
new rules have improved performance compared to existing ones. The
best ones give increased efficiency of 24.8% in a static, and 23.3% in
a dynamic environment, compared to a method (VRT) which already
outperformed a variety of other algorithms [10]. Nevertheless the per-
formance may still be limited by our choice of the functional forms of
the new rules.

We have shown that a nature inspired update rules such as the
VRT can be competitive in all environments, especially when used
in combination with a genetic algorithm to optimise its parameters.
Nevertheless, it can be outperformed by specialist rules in each envi-
ronment, and exhibits a lack of robustness against random mutations.
Similarly, we have shown that the nature inspired ETF is a compet-
itive strategy in all environments but can again be outperformed by
specialist rules in each environment.

We have introduced a new dynamical environment to measure the
flexibility of the various rules in terms of the efficiency in that environ-
ment. Furthermore we have systematically investigated the influence
of the various model parameters such as system size, number of mail
types, ratio of agents to cities, and wave length. We have identified the
various loss sources, and have demonstrated that the random choice of
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cities to visit by the agents forms the main limitation on the maximal
attainable efficiency, and we have derived this limit theoretically. We
have demonstrated that a near optimal strategy can be exactly anal-
ysed theoretically in the large system limit, and we have validated the
analytical solution with experimental results.

Although speciation and extinction do occur in the current model
using a genetic algorithm, proper self-organising behaviour such as
cooperation between the agents is not observed. The main limitation
of the current model is again the random choice of cities which does
not really allow agents to develop cooperative strategies, and direct
competition is the only driving force behind the evolution of species.
Therefore, a study of the model in which agents can adapt their pref-
erence to return to certain cities (memory effects) is in progress. Also
in progress is a version of the model with genetic programming, in
which agents are allowed to develop their strategies completely freely
only driven by genetics, without us imposing any functional form.
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A Details of the Theoretical Analysis

Exact time evolution

As discussed in section 3, the exact time evolution of the algorithm
can be calculated when the total number of states is finite, and can
be divided into four distinct phases. For the mail uptake stage, we
note that agents only visit cities if their mail queue is not full, but
that their behaviour at the cities is otherwise only depends on their
specialisation ~θ. Therefore, we define the marginal densities of active
agents with a given specialisation as:

µa
~θ
≡

∑

~qL (L<Lq)

µ~θ,~qL
(A.1)

and the total number of active agents is given by Na
a = Na

∑

~θ
µa

~θ
.

In the current model, agents visit cities randomly such that the prob-
ability that a subset of k agents visits any given city, is given by

(

Na
a

k

)(

1

Nc

)k (Nc − 1

Nc

)Na
a−k

≃ PRa
a/c

(k), (A.2)

where Ra
a/c ≡ Na

a /Nc is the ratio of active agents to cities, and Pλ is
the Poisson distribution with parameter λ, which can be truncated to
arbitrary precision. We also introduce short-hand notations 〈n〉 for
an arbitrary subset of mail types, 〈n〉k (≡ {n1..nk}) for a subset with

k distinct mail types, and 〈n〉lk−1 the corresponding subset with mail
type nl removed.

a.1

Now, we can write down the probability Um(~θ, ~w, i) that an active
agent with specialisation ~θ in position i > 1 at a city with initial
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waiting times ~w, takes mail of type m in recursive form:

Um(~w, ~θ, i)=
∑

~θ′

µa
~θ′



U0(~w, ~θ
′) Um(~w, ~θ, i−1)+

∑

n 6=m

Un(~w, ~θ′) Um(~wn, ~θ, i−1)



 ,(A.3)

where ~wn ≡ ~w|wn→0. The corresponding probability that the agent
takes no mail is given by U0(~w, ~θ, i) = 1 −

∑

m Um(~w, ~θ, i).

The Um(~w, ~θ) (≡ Um(~w, ~θ, 1)) are given by:

Um(~w, ~θ) =
Θ(wm, θm)

Nm





Nm−1
∑

k=0

1
(Nm−1

k

)

∑

〈n〉k(6∋m)

k
∏

i=1

(1 − Θ(wni , θni))



 ,

U0(~w, ~θ) =

Nm
∏

m=1

(1 − Θ(wm, θm)) . (A.4)

Using these definitions, we can now easily write down the total prob-
ability Um(~θ) that an active agent with specialisation ~θ takes mail of
type m:

Um(~θ) =
∑

~w

η~w

∑

k=1

PRa
a/c

(k − 1)

k

k
∑

i=1

Um(~w, ~θ, i) , (A.5)

while U0(~θ) = 1 −
∑

m Um(~θ) is the probability that it takes no mail.

Note that the inactive agents all have U0(~θ) = 1 irrespective of their
specialisation. Then, the matrix T that describes the change in ~µA
during the mail uptake stage is given by:

T
(~θn,~q′K),(~θm,~qL)

= U0(~θn) δn,m δ~qK ,~qL
+ δK,L+1

L
∏

i

δq′i,qi
× (A.6)

(

Un(~θn) δn,m δq′K ,tp + Un(~θm) (1 − δn,m) δq′K ,tc

)

where ~θn is the set of thresholds (θi = θmin if i = n, and θi = θmax

otherwise) for specialisation n.
The efficiency is given by:

E =
∑

~θ

µa
~θ

Nm
∑

m=1

Um(~θ) (A.7)

c.1

Similarly, we can write down the probability G〈n〉k
(~w, i) that exactly

the subset 〈n〉k of mail types is given out by a city with waiting times
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~w and i visiting agents, in recursive form:

G〈n〉k
(~w, i) =

∑

~θ

µa
~θ

[

k
∑

l=1

Unl
(~w, ~θ) G〈n〉lk−1

(~wnl
, i−1)+U0(~w, ~θ) G〈n〉k

(~w, i−1)

]

(A.8)
with G〈n〉k

(~w, i) = 0, when k > i or wm = 0 for any m ∈ 〈n〉k, and
with G〈n〉0

(~w, 0) = 1. The total probability G〈n〉(~w) that exactly a
subset 〈n〉 of mail types is given out by a city with waiting times ~w is
given by:

G〈n〉(~w) =
∑

i=0

PRa
a/c

(i)G〈n〉(~w, i) (A.9)

Then the matrix L which describes the change in ~ηC during the mail
uptake stage is given by

Lη~w,η~w′
= G〈n~w′−~w〉

(~w′) (A.10)

where 〈n~w′−~w〉 is the set of indices n for which w′
n 6= 0 and wn = 0.

a.2

The matrix Q that describes the change in ~µA during the queue pro-
cessing stage is relatively straightforward to write down:

Q
(~θ,~qL),(~θ′,~q′

L′)
= δ~θ,~θ′

×











1 , L = 0

δL,L′ δq1,q′1−1

∏L
i=2 δqi,q′i

, L > 0, q′1 > 1

δL,L′−1
∏L

i=1 δqi,q′i+1
, L > 0, q′1 = 1

(A.11)

c.2

The matrix P that describes the change in ~ηC during the mail produc-
tion stage is again relatively straightforward to write down:

P~w,~w′ =

Nm
∏

m=0

[

δwm,w′
m+1

(

1+(πm−1)δw′
m,0

)

+ δwm,w′
m

(1−πm)δw′
m,0

]

(A.12)
where the πm are time dependent for the dynamic environment only.

Efficiency Upper Bound

Now we derive the upper bound for the efficiency in ideal circum-
stances, i.e. no mail is lost due to ℓ.1 -ℓ.3 , and the efficiency is only
limited by ℓ.4 . Note that all agents are active (Na

a = Na), and have
an identical set of thresholds ~θ = {θn(= θmin = 0),∀n = 1..Nm}.
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The city states C = ~w can now be simplified to C = ~b where
bi = 1 − δwi,0. The matrix P′ that describes the changes to the χ~b

(t)
during mail production phase, is identical to the matrix P in eq. A.12
with all ~w’s replaced by ~b’s. Similarly, the matrix L′ that describes
the changes to the χ~b

(t) during the mail uptake phase, can be derived

like L in eq. A.10 with all ~w’s replaced by ~b’s.
Since agents act in arbitrary order, the probability U(k, i) that an

agent takes mail when visiting a city with k available mail types and
i visiting agents in total, is given by:

U(k, i) =

{

k
i , if i > k ,

1 , if i ≤ k .
(A.13)

Therefore, the total probability that an agent takes mail (i.e. the
efficiency) can be expressed as:

E(t) =

Nm
∑

k=1

χk(t)
∑

j

PRa/c
(j − 1) U(k, j) , (A.14)

=
Nm
∑

k=1

χk(t)



1 − PRa/c
(k) +

k −Ra/c

Ra/c
(1 −

k
∑

j=0

PRa/c
(j))



 .
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