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Abstract

Recently, within the VISDEM® project, a novel variational approximation framework has been
developed for inference in partially observed, continuous space-time, diffusion processes. In this
technical report all the derivations of the variational framework, from the initial work, are provided
in detail to help the reader better understand the framework and its assumptions.

“VISDEM: Variational Inference in Stochastic Dynamic Environmental Models, an EPSRC funded research
project (EP/C005848/1) involving Aston, UCL, Surrey and the Met Office.
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1 Introduction

Motivated by numerical weather prediction models (for a review see [5, Ch.1]) the VISDEM project
is working to establish a framework for tackling inference, in the form of state estimation (data
assimilation) and parameter estimation, for such large and complex models in a fully probabilis-
tic manner. Extending advances in machine learning, VISDEM develops a variational Bayesian
framework for inference in continuous-time stochastic dynamical systems [4], in the presence of,
typically, discrete time observations. It is anticipated that in the future this will allow more accu-
rate estimation within such systems, possibly leading to better predictions and be computationally
efficient, while making fewer restrictive approximations than other existing computationally fea-
sible methodologies. In particular, within the VISDEM framework, emphasis will be placed on
estimating unknown model parameters, as well as model state, thus making full use of the avail-
able observations. Results of the initial work, on estimating the state of a dynamical system, are
presented in [1], and advances for estimating the unknown model parameters can be found in [2].

The rest of the report is organised as follows. First, in Section 2, we briefly introduce the basic
setting. A general expression for the SDE that governs the diffusion process is given, as well the
expressions for the posterior measure and the likelihood of the observations. Section (3), then
provides the definition of the variational free energy as well as the approximating process, which in
our case is considered to be a Gaussian process. Furthermore, all the equations from the smoothing
algorithm are defined and derived accordingly. Finally, in Section (4), we provide the derivations
for the parameter estimation. These parameters are: (a) the first two moments of the initial time
state, (b) the drift parameter(s) and (c) the system noise covariance coefficient(s). The report
concludes with a discussion.

2 Basic Setting

In order to fix ideas and make the derivations more clear to the reader we need first to introduce
the basic setting on which the variational approximation framework is based on.

We consider a finite set of d-dimensional noisy observations {y,,}*_,, that are generated by a
D-dimensional latent process X(t) (henceforth X;).

e We assume that the time evolution of this D-dimensional stochastic process X;, which rep-
resents the process about which we wish to make inference, is described by an It6 Stochastic
Differential Equation (SDE):

dX, = fo(t,X,)dt + B'/2dW,, dW, ~ N (0, dtT) (1)

where, fo(t,X;) € RP is (usually) a non-linear function, ¥ = diag{o?,03,...,0%} is the
system noise covariance matrix and W, € R” is the standard Wiener process.

e A discretized version of (1) can be provided by the Euler-Maruyama representation of a SDE.

Hence we have:
Axy = X1 — Xk = fo(x) At + V AtZey, (2)

where At is the time increment and € ~ N(0,I). As At — 0 this becomes equivalent to the
continuous time version (1).

e The posterior measure, in the presence of independent and identically distributed (i.i.d.)

observations is given by:
M

dppost 1
S = 5 m 9
= [ ymfXe) (3)

m=1
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using the Radon-Nikodym notation, where M denotes the number of noisy observations and
Z is the normalisation constant, or marginal likelihood, or evidence (i.e. Z = p(y1.nm))-

e As usual, the multivariate Gaussian likelihood is given by:
p(Ym‘Xtm) = N(Ym|HXtm , R)a (4)

where, H € R4*D is a linear transformation between the latent state vector X, and the
observation y,, and R € R9*? defines the observations noise covariance matrix.

A more thorough study and presentation of stochastic differential equations, as well as different
discretisation schemes, can be found in many text-books. Here we cite three of the most commonly
used [6], [7] and [3].

3 Approximate Inference

e The variational free energy, is defined as follows:

(Y,X|0,%) >

where p(-) is the true posterior process of the system and ¢(-) is the one that we use as an
approximation. Also X = {Xy,top <t < t,} is the path of a continuous time D-dimensional
stochastic process and (-) , indicates the expectation with respect to process q(-).

Alternative, we can see the variational free energy as the KL divergence between the approx-
imate process ¢(X) and the joint distribution of the latent states and the observations of the
true system p(Y,X), as follows:

B p(Y,X]6,%)
A0 = -(» ),

L L P X)
ot

B L 4(X)

_ / o(X)In A dX

KL[g(X)[[p(Y, X)] (6)

where we have omitted the conditioning on the (hyper)parameters @ and 3 for notational
simplicity.

e The free energy provides an upper bound to the negative marginal log-likelihood:

Starting with the product rule of probabilities we have :

p(X,Y) = p(X[Y)p(Y) =

~ p(X,Y)
r(Y) = XY

we apply the natural logarithm on both sides:
lnp(Y)=1In u =

Inp(Y)=lnp(X,Y) — lnp(X[Y)
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then we add and subtract the same quantity by introducing a new distribution ¢(X):

—lnp(Y) = InpX|Y)-lnp(X,Y)
Inp(X]Y) —Ing(X) —Inp(X,Y) + In¢(X)
L XY) XY
q(X) q(X)

multiplying both sides by ¢(X) we have:

—¢(X)Inp(Y) = ¢(X)In

and integrating over X gives us:

) ) - LpXY) o 2% Y)
/q(X)l 10(Y)CZX—/‘1(X)1 a(X) X /q(X)1 a(X) ==

—Inp(Y) = KL[g(X)[[p(X, Y)] = KL[g(X)[|p(X[Y)] =

since p(Y) has no dependency on X which leads to:
—Inp(Y[0,%) = F=(q,0) — KL[g(X[Z)[|p(X|Y,8,%)] < Fx(q,0) (7)

because from the definition of the KL divergence we know that KL > 0. Note we have added
the conditioning on the (hyper)parameters @ and X here for later clarity.

3.1 Optimal approximate posterior process

We define an approximate time-varying linear process, with the same diffusion coefficient as
the process which we are approximating, X'/2:

dX; = g(t,X;)dt + ZV/2dW,, dW, ~ N(0, dtT) (8)

where we assume: g(t,X;) = —A(t)X; + b(t), with A(t) € RP*P (henceforth A;) and
b(t) € R (henceforth b;). Note that both parameters A; and by, are time dependent
functions.

The Gaussian marginal at time ¢ is defined as follows:
q(Xy|3) = N(Xy[m(t),S(t)) (9)

(henceforth ¢;), where m(t) € R (henceforth m;) and S(t) € RP*P (henceforth S;), are
respectively the marginal mean and marginal covariance at time t.

The derivation of the free energy leads to the following result:

Fx(q,0) = / ' Esde(t)dtJr/ ' Eobs(t)ZcXt—tn)dtJrKL[qOHpo} (10)

to to

where §(t) is Dirac’s delta function, KL[go||po] is a shorthand notation for KL[¢(Xo)|p(Xo)]
and the energy functions are defined in equations (11) and (12) below:
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Proof:

From equation (6) we have:

fz(‘]a 0)

Lg(X)[p(Y, X)]

o
/
/

dX

)
I))

g

q(

p(Y,X)
X))

p(Y|X)p(X)

q(X)In
q(X)In
q(X)In

) Inp(Y|X)dX

(6a) (6b)

(6a) This integral is simply the KL divergence between the approximate prior process g(X)
and the true prior process p(X) defined in (1). We can write this integral as:

KL(X) (X)) = [ o) 22

o0

however to make the derivation more clear we will change the above notation to the one
that follows to emphasise the discretization of the sample paths on the time interval
(note a continuous time derivation is also possible).

KL [g(x0.~) |[P(x0:n)]

[ fomn
- q<xw>miiiz§%z T
= [ dronm e+

Joof tsonn T [ s o
= /q(XO)ln;§§Z§dXO+

L{gol|po]

/ / oy TT [ 2052253

= KL [go]|po] + //XONIHH[ ZEE;

1=0

q0||p0 / / XO H q X1+1|X7, Z 111

] dxo: N

q(xj+1%5)
p(xj+10%;)

dxo.n

we arrive here from the fact that both processes are Markovian. Hence we can factorise
the marginal distributions as a product of conditional distributions (i.e. the transition

probabilities). That is:

N-1

g(xo.n) = q(x0) [ aleis1lxs)

=0

The same is true for p(xo.n).
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Continuing our derivation we obtain:

X X
KLgllp] = KLIgollpo] + Z / / H (i ) In L) g

p(xj11]%;)

Xit1|X
L [qollpo] + Z/ /quk\xk 1)q(x;+1|x;) In q( g\Xj+1|X5) Ix;) %

p(xj111%5)

N—
H q(Xmt1[Xm )dx1:N

At this point we can make the following substitution:

/. . / ﬁ q(Xp|xp—1)dx1.5-1 = q(x5) ,
k=1

since this is equal to the marginal distribution g(x;).
Hence we have:

e 211%,)
KLgll] = Kqu|\po+Z / [ et 0 L
J ]

N—-1

H q(Xm1 |Xm)dxj2N
m=j5+1

A careful look on the right hand side, of the previous expression, after the [ln m] ,
J+11%4

reveals a set of integrals that evaluate to one. That is:

/Q(Xj+2\xj+1)dxj+2/Q(Xj+3\xj+2)dxj+3'"/Q(XN|XN—1)dXN

=1 =1 =1

So we are left with the following expression:

N—-1
q(Xi11|x4
KLlanlll + 3 [ ax) [ o) in 15
j=1

p(xj11]%;)

KLIq||p]

KL[g(xj+41x;)[|Psae(x;+11%;)]

N—-1
= KLgol|po] + Z/ q(x;)KL[g(xj41[x)[[Psde (xj41]x;)]dx;
=1

N—-1
— KLigollpo] + Z< xj+1|xg>|psde<xj+l|xg>}>
J=1

a(z;)

The above KL divergence, provided that both processes p and ¢ are Gaussians, is given
by the following formula (see [9, Mathematical Appendix]):

1 _
KL [q(xj41x5)[Ip(xj411%x5)] = §ln\zp2q1|+

(7505

From equations (1) and (8) we can see another critical assumption; that both processes
have the same system noise covariance 3. Hence we can make the following substitution
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the the previous expression: ¥, = 3, = X.

1 -
KL [q(xj 1)) [IP(ej41 %)) = 5 In[Z270 +

%tf [2_1 ((mp —mg)(m, —m,) " +3 - Eﬂ

_ ;t; [02_1 ((fe(XjH) —g(x;+1))(fo(xj11) — g(xj“)T))] A

1

— 5 (o) — s ) TR o) i) ) A

Hence for the whole discretized path psq. we have:

KL[g|lp] = KL qollpo] +

N—-1
% D ((folxk) — g(xk) "= (Fo (xx) — g(xx))),, At
k=1

dk

And in the limit of At — 0 we have:

KL[qusdE] - %/t ' <(f9(t,Xt) — g(t,Xt))TE_l(fg(t, Xt) — g(t, Xt))>lh dt+KL [qO”pO]

The energy from the SDE is thus given by the following expression:

((fo(t, Xy) — g(t,X0)) =7 (o (1, Xy) — &(t, X1))), (11)

DN =

Esde (t) =

t

(6b) Then we calculate the log-likelihood, noting that this is now formulated in continuous
time. Hence we have:

lnp(Yt\Xt) = In (N(Yt|HXt, R))
= In ((277)—3 IR|™2 exp {—;(Yt —HX,)"TR™(Y, - th)})
d

1 1
—5In(2m) — S [R| - S(Y, - HX,)"R™(Y; - HX})

Finally, we calculate the integral:

d 1
/q(Xt) Inp(Y:Xy)dX; = —3 In(27) — 3 In|R| -

1 /q(Xt) ((Y: - HX,) "R (Y - HX,)) dX,

[\

d 1 1
= -3 In(27) — I IR| — 3 (Y, —HX;)"R™(Y, - HX,))

qt

e The energy from the observations, at time ’t’; is the following:

Egps(t) (Y, —HX,)'R™Y(Y, - HX,)) + gln(27r) + %ln IR| (12)

1
_5 qt

where Y = {Y, ,to <t < ty} € R? is a continuous-time observable process. The discrete
time nature of the actual observations adds the delta function in equation (10).
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3.2 Smoothing algorithm

The time evolution of the Gaussian measure (9) can be described by a set of Ordinary
Differential Equations (ODEs). These are given in (13) and (14) and derived accordingly.

e ODEs of the means (with respect to time ¢):

m; = —Atmt + bt (13)

dm,
dt °

where m; is a shorthand notation for
Proof:

dmt = <Xt + dXt> <Xt>
= <Xt> (dXy) — (Xy)

= g(t X, )dt + £V/2dW, ) (from (8))
= (g(t,X,))dt + =2 (dW,)
N——

=0
= (-AX;+bydt
= —A,(X,)dt+ bdt
= —Atmtdt + btdt

e ODE:s of the variances (with respect to time t):
S, =—-AS,—SA] + X (14)

where S; is a shorthand notation for %.
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Proof:

ds,

<(Xt —my; + dXt — dmt)(Xt —my; + dXt — dmt)T> — <(Xf — mt)(Xt
(X; —my + dX; — dmy) (X, —m/ +dX; —dm/)) - S,

(X, X! —Xym/ + X;dX] — X;dm/ ) +

< mtX + mtmt mth + mtdmt >

(dX; X, — dXym, + dX;dX,] — dX;dm] ) +

(- dmtX +dmym, — dm,dX, +dm;dm; ) — S,

(XeX[) = (Xemy ) + (XedX,) — (Xpdm, ) +

< mtX > <mtm;r> — <mth;r> + <mtdm;r>
(dX; X ) — (dXem] ) + (dXdX[ ) — (dX;dm, ) +

< dmtX > <dmtmt > <dmthT> <dmtdmt >— S;

mym, +S; —mym, —mym,; A dt — S;A] dt + m,b/ dt +
mym, A/ dt — m;b/ dt — mym/; + mym, + mym, A/ dt —
mtb:dt mtmt A dt + mthdt Atmtm:dt —

A;S,dt + bym, dt + A;m,m/ dt — bym, dt + dt +
Am;m/ dt —bm, dt — A;m;m/ dt + b,m, dt + O(dt?)

—A;S;dt — S; A/ dt + Zdt + O(dt?)

—mt)T>
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where we have used the facts:

(XeX[)
(Xim/)

(m.X/)
(mm,)

<mtdm;r>

(dXdX])

(dX;dm, )

(dm.dX; )

m;m, (16)

<Xt(—Atmtdt + btdt)T>
(X,(~m] AT + by )dt)
(-Xym, A ) dt + (X;b/ ) dt

—mym, A/ dt + m;b/ dt (17)
m;m, (18)
m;m, (19)
my <dXtT>

mt(—Atmtdt + btdt)—r
TAT T
m;(—m, A, dt + b, dt)
—mym, A/ dt + m;b/ dt (20)

my <(—Atmt + bt)—r> dt
m; <—mtTAtT + th> dt
—mym, A/ dt + m;b/ dt (21)

<(g(t, X, )dt + SV2AW,) (g (t, X, )dt + EI/Qth)T>

g(t, Xy )dt + SV2dW,) (g(t, X,) Tdt + dW, /?)
t

(gt X0)g(t, X)) ") (d*) + (g(t, X,)dtaw] =/2)
O(dt2) ~0

+ <El/2thg(t, Xt)Tdt> + <21/2ththTEl/2>

=0

B2 (AW, dW] ) B2 + O(dt?)
~—_————
= dtI

S2qIst? 4 O(dt?)
dtE + O(dt?) (22)

<(g(t, X, )dt + SY2dW,) (— Aymydt + btdt)T>
04 O(dt?) (23)

<(7Atmtdt + bedt) (g(t, X, )dt + 21/2th)T>
0+ O(dt?) (24)



Derivations of Variational Gaussian Process Approximation Framework

11

<dmtdm;r >

<dmtmtT>

(dX;X/)

(X;dX])

((—Aym¢dt + bydt)(—Aymedt + bydt) )
O(dt?) (25)

<(—Atmtdt + btdt)mtT>
—A;mym, dt + bym, dt (26)

—A;mym, dt + bym, dt (27)
(dX;) m;
—A;mym, dt + mym, dt (28)

((g(t, X)dt + 22dW,)X] )
(g(t, X)X/ dt + TH2aW,X] )
(g(t, X)X ) dt + B2 (dW,X])
—_—
((~AX; +Db)X, )dt
—A (XX )dt+ by (X[ ) dt
—A;mym, dt — A;S;dt +b;m, dt (29)

<Xt(g(t7 X, )dt + EI/Qth)T>

<th(t, X,)Tdt + Xtdwjzl/2>

(Xg(t, X)) dt + (X dW/[ ) 21/2
[

=0

(X(—A Xy +by) ") dt

— (X, X[ )A]dt +(X;)b/ dt

—m;m, A/ dt — S;A/ dt + m;b/ dt (30)

e In order to ensure the above constraints (13) and (14), are satisfied, we formulate the following

Lagrangian.

ty .
ﬁg;} = fg(q, 9) — / tr{\I/t(St + A;S; + StA;r — 2)}dt —

to

ty
/ Al (i, + Aymy — by)dt (31)

to

where A; € R and ¥, € RP*P are time dependent Lagrange multipliers, with ¥; being

symmetric.



Derivations of Variational Gaussian Process Approximation Framework

e Taking the functional derivative of (31) w.r.t. A; we have:

Va,Los

ty .
VAt (fg (q, 0) - / tr{lllt(St + AtSt + StA;r - 2)}dt -

to
ty
/ A (hy + Aymy — bt)dt>
to
ty A
= VAL.’FE((],G) — VAt / tI‘{‘I’t(St + AtSt + StA;r — E)}dt —
to

ty
vAt/ Al (i, + Aymy — by)dt

to

tf ty
— vAt< Eyqe(t)dt + Eobs(t)Z(S(t—tn)dt—i—KL[qOHpo})—

to to
ty ty
2V A, / tr{W;A;S;}dt — Va, / Al Aymydt
to to
- vAtEsde(t) - 2\I'tSt — Atm;r (32)

where we have used the fact that ¥, and S; are symmetric.
e Taking the functional derivative of (31) w.r.t. by we have:

ty .
Vb, Lo = Vb, (f):(q, 0) — / tr{\I’t(St + A;S; + StA;r — 2)}dt —

to

ty
/ /\tT(mt + Atmt — bt)dt>
to

ty .
Vb Fs(0.0) — Vi, / (WS + AS, + SAT — )}dt —

to

ty
Vb, / Al (thy + Aym, — by)dt

to

ty ty
_ Vbt( / Eyae(t)dt + / Eobs(t)Z(S(t—tn)dt—l—KL[qop0]> +
to to n

ty
\%™ / A/ bydt

to

= vthsde(t) + At (33)

At this point we can derive the functional derivatives of the energy E4. with respect to the
variational functions A; and by.

e To achieve this we need to differentiate (11) w.r.t. by :

Vo Buac) = o (5 (Rt X0) — (0 X0) T2 o1 X0) — (0. X)), )
= 5 (T [(0(1,X0) — (6 X)) 57 (f0(1,X,) — (0, X)),
1 T
= 5 be fg t Xt) + AtXt) b ) E <(fg(t,Xt) + AtXt) — bt)
= —om (<fe<t X,) - &(t.X),,)
= =7 ((fo(t, X)), + As (X2),, —br) (34)
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e Also from (33) and (34) we have:

Vthsde(t) = —X\
Vb, Esqe(t) = —X71 (<f9(t,Xt)>qt + Ay <Xt>qt - bt)

from the above equations we have:

A =2t (<f9(t, X)), + A (Xy),, bt) =

bt = <f9<t, Xt)>lh + Atmt — EAt (35)
where (35) is the update variational function of by.

o We follow the same procedure by differentiating (11) w.r.t. Ay:
1
vAtESde(t) = VA,, (2 <(f9(tv Xf) - g(tv Xt))Tzil(fe(L Xf) - g(ta Xt))>qt >

_ ;<VAt [((fe(tjxt) —by) - (—AtXt)>TE_1<(fo(t,Xt) —by) - (_AtXt)>1>

@
= Loy H{(fo(t, X) + AXy — )X )
e (t, X)X + AX X[ — b X[ >qt
(Rt X0)XT ), + A (XX[), = b (X[), )
1 ((£5(t, X, XT> + Ay (mym, +8,) — btmj)
—1

({8
(
(
(e
({0
(
(

)
)

fg t Xt) + At(mtmt —|— St) — btm;r + <f9(t,Xt)m;r>qt — <f9(t,Xt)m;r>qt)
)

-1 fg t Xt — Atmt + bt)

-1

(

(fo

(fo

(fo(t, X, XT> ~ (fa(t. X,)m[) +AtSt) —

(

(fo(t,X,)(X, —my)T) +AtSt) Vb, Esae(t)m,
(

(Vo fo(t,X0)),, St + AtSt> — Vb, Eyge(t)m,

Il
MMMMMMMMMN\

-1 ((thfg(t, X))+ At) S, — Vb, Esae (t)m/ (36)

qt
where we have made use of the Equation (35) and the following identity:

(thfg(t, Xt)>lh = <f9(t,Xt)(Xt — mt)T>qt St_l (37)

The proof of the above identity (37) is given below:
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3.2.1 Proof

+oo
<thf9(t,Xt)>qt = / vxtfg(t,Xt)q(Xt)dXt
+oo
_ / vxt<fe<t,xt>q<xt>>—fe<t,xt>vxtq<xt> iX,

_ / V., {fg(t,Xt)q(Xt)} IX, +
=0

+oo
[ ol Xa(X0)87 (X, — mi)ax,

— /+Oo fo(t, X ) (X — my) 'S, q(X,)dX,
= (fo(t,X,)(X; —m,) ") S; (38)

We must note however, that in order for the above integral, I1, to be zero we must make the
strong assumption that the unknown function fg(¢,X;), “moves” slower then the Gaussian
approximation process ¢(X;), as X; — oo.

e Taking the functional derivative of (31) w.r.t. m; we have:

ty .
VmLos = Vm, (]:2 (¢,0) — / tr{‘I’t(St + 2A,;S; — 2)}dt —

to

ty
/ )\;r(mt + Atmt — bt)dt>
to

ty .
= th]:z(q, 0) — th tr{\Ilt(St + 2AtSt — 2)}dt —

to

ty
th / Aj(mt + Atmt — bt)dt
to

— vmt</t'f Esde(t)dtJr/tf Eobs(t)z5(ttn)dtJrKL[qollpo}) -

to to
ty
Vi, | A+ X Aym, — X\ byt

t
(;.f tf tf

= Vi, | Fsae(t)dt — Vi, A mydt — Vi, X! Aymydt
to to to
ty ty . ty

= Vm, Eeaqe(t)dt + Vi, / Af mydt — Vo, / A} Aymydt
to to to

(39)

Setting this equal to zero and then rearranging leads to an ODE that describes the time
evolution of the Lagrange multiplier A;. Hence we have:

thﬁg,z =0=

ty ty . ty
Vo, / Eqae(t)dt + Vi, / A mydt — Vi, / A Amydt =0
to to to

Vin, Esae(t) + Ae — Al A =0
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At =~V Foae(t) + Al A, (40)
where we have used the fact (from product rule for differentiation) that:
d CdA] T+ dmy

R T _ - 7
dt(}‘t m) dt m; + A dt

and also the assumption that at the final time, ¢, there are no consistency constraints, that
is:

A, =¥, =0
e Working the same way as above and taking the functional derivative of (31) w.r.t. S; we
have:
ty .
Vstﬁ‘g}z = Vst (fz (q, 0) - / tr{lI’t(St + 2AtSt - 2)}dt —
to

ty
/ A (riag + Aymy — bt)dt)
to

ty .
— Vs Fu(0.0) - Vs, / (TS, + 2A,8, — )t

t
ty ’ ty
= Vs, ( Eae(t)dt+ | Eopo(t) Y 6(t — t,)dt + KL[qOHpO]) -
to to n
ty .
VSt / tI‘{\I’t(St + 2AtSt}dt
t
if ty . ty
= VSt Esde(t)dt - VSt / tI‘{‘I’tSt}dt - 2VSt / tr{\IltAtSt}dt
t t t
' o 4
= VSt Esde(t)dt + VSt / tr{\IltSt}dt - 2VSt / tr{\IltAtSt}dt
to to to

(41)

Setting this equal to zero and then rearranging leads to an ODE that describes the time
evolution of the Lagrange multiplier ¥;. Hence we have:

Vstﬁg,): =0=

tr tr . tr
Vs, | Bue(t)dt + Vs, / tr{W,S, }dt — 2Vs, / tr{ W, AS; bt = 0
to to to
Vs, Fage(t) + ¥, — 2W,A, =0
W, = —Vs, Eyae(t) + 20, A, (42)
where we have used the fact (from properties of trace differentiation) that:
d d
ﬁtr{‘l’tst} = tr{%(‘I’tSt)}
av, dsS;
= tr{—S;+¥;,—
"o ST
av, dsS,

= tr{ﬁst}thr{\IltE}

and in addition, we made the same assumption about the final time as above.

Along with the set of ordinary differential equations, (40) and (42), which describe the time
evolution of the Lagrange multipliers, whenever there is an observation we apply the following
jump-conditions.
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e First we consider the A; jump-condition which is given by the following expression:

)\: = )\;L - vm,, Eobs (tn)

Then we calculate the functional derivative of Egps(t,) w.r.t. m,, which plays the role of the

jump-amplitude:

vmt Eobs (t) =

Finally we have:

Vm, (1 <(Yf - HXt)TRil(Yt - HXt)>Qt T

d 1
5 —1In(27) + 3 In |R|>

2

“Vom, (<YtTR‘1Yt - Y/R'HX, -X/H'R'Y, + X/H'R'HX,) )

Vo, (YIRlYt -Y/R'Hm, —m/H'R'Y, + tr {H'R™'HS,} +

(-2Y/RT'H+2H'R'Hm,)
~-H'R 1Y, - Hm,)

AtH) =A(t,))+H RY(Y,, —Hm,,) (43)

e Then we consider the ¥; jump-condition which is given by the following expression:

‘II’IJ’I_ = \Il; - VStEobs(tn)

Again the functional derivative of E,ps(t,) w.r.t. S¢, plays the role of the jump-amplitude.

Hence we have:

vSt Eobs (t) =

Finally we have:

Vs, (; (Y, — HX,) TR-(Y, — HX't)>qt + gln(Zw) + %m |R)
;v (((Yt —HX,) "R (Y, — HXt)>q,,)

; ((YTR Y, - Y/RT'HX, -X/H'R'Y, + X/H'R'HX,) )
;v (YTR 'Y, - Y/R'Hm;, —m/H'R'Y, + tr [ H'R'HS,} +

m, HTR‘let>

1

5 Vs, (YJR—lYt —2Y/ R 'Hm, + tr ([H'R'HS;} +m/ H' R~ let)
1
§HTR—1H

V(tH) =¥t )- -H R'H (44)

n
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4 Parameter Estimation

Before computing the necessary gradients for estimating the parameters we need to integrate (31)
by parts in order to make the boundary conditions explicit. Hence we have:

e Integrating (31) by parts leads to the following expression:

ty . ty
Eg’z = -7:2((]7 0) — / tr{\Ilt (St + 2A.tSt — E) }dt — / A: (mt + Atmt - bt>dt
t() t()
tf .
= fg(q,@)—/ tr{\I’tSt} —|—tr{2\IltAtSt} —tr{\I’tZ}dt—
to

y
/ Ay + A Am, — A/ bt

to

ty .
== fz(q70)—/ Ccllttr{‘I’tSt} —tr{\IltSt} +tr{2‘IltAtSt} —tr{‘IltE}dt—
to

tf .
/ 1(>\jmt) — A m; + AJAm, — X/ bydt
t

ty .
= Fx(q,0) - / {‘I’f <2Atst - 2) - ‘I’tst}dt -
" - d d
/ {)\ (Atmt ) Ajmt}dt —/ tr{‘I’tSt} + — (X my)dt
to to dt dt

= Fx(q,0)— tr{\Ilt<2 ) —‘i’tst}dt—
s T \ T “d T
)\t Atmt - bt — At my; dt — % tr ‘IltSt + (At mt) dt
to to
= Fsl(q,0) — tr{lIlt <2AtSt ) — \i'tst}dt -
tf .
/ {Aj (Atmt — bt) — Ajmt}dt —
to

)\;; mtf —i—)\z)mto {\Iltf Stf } —|—tI‘{‘I’tO Sto } (45)
——
=0
this arrives from the fact that at the final (algorithm) time, when the cost function has been

minimised, the consistency constraints should be fulfilled. That means that both Lagrange
multipliers are equal to zero.

4.1 Initial State

The initial approximate posterior process ¢(Xg) is equal to N(Xg|myg, Sp), where the initial
true posterior process p(Xy) is chosen to be an isotropic Gaussian: N (Xo|po, 70I).
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e Taking the

Vi, Lo =

e Taking the

Vs,Lo,s

derivative of (45) with respect to mg leads to the following expression:

ty .
= Vmo (fz(q, 0) - / tr{‘Ilt <2AtSt - 2) — \I’tSt}dt
t
ty ’ .
—/ {)J (Atmt - bt) - A:mt}dt—k)\gmo +tr{\IIOSO}>
to

= vmofz(q’9> + Vm, (A(—l)—mO)
= Vi KL[g(Xo)[|[p(X0)] + Ao

= Ao+ %vmo (m l7oI - Sgt| + tr{(TOI)l [(mo — po)(mg — po) " + So — 701 })
= %ot 3 Vm (tr{mnl (o — o) o o) )

T ;tr{ ( 7o)~ [(m — o) (mo — )] )}

= o+ ;tr{vmo (T (mg — po)(mp — uo)T>}

= Ao+ ;tr{ﬁ '2(mg — uo)}

= Ao+ 75 (mo — po) (46)

derivative of (45) with respect to Sy leads to the following expression:

ty .
= VSO (fz(q,@) - / tr{‘I’t <2AtSt — E) — ‘I’tSt}dt
to
tf .
—/ {Aj (Atmt —bt> —Ajmt}dt+>\§mo +tr{\IIOSO})
to

= ngfz(q, 0) + Vsutr{‘I’OSO}
= Vs,KL[g(Xo)|[p(Xo)] + ¥o

1
= ¥+ ivSo <1n|7'01 Sy 4 tr {(roI) ™! [(mo — o) (mo — o) T + So — 7ol })

1 1
= WYy+ §VSO In |7'OI . Sal| + ivSUtr {(TQI)ilsQ}
1 1

= \1107 5851+§(TOI)71

1
= Wy+ 3 (70—11 — SEI) (47)
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4.2 Drift Parameter

The gradients that are associated with the drift parameters @ depend only on the energy
that comes from the SDE term in the posterior. Hence we have:

VoLle s

ty .
Vg (fz(q, 9) - / tr{\Ilt <2Atst - E) — \IltSt}dt
to
tf .
—/ {}\tT (Atmt—bt> —)\;rmt}dt—f—A(—ero‘f'tr{\I’oso})
to

VoFs(q,0)
Vol [ Bttt [ Eun) 30600 - )it + KL(Xo) o))

Ve Fge (t)dt
to

ty
/ Vo Eaue (t)dt (48)
to

To compute the above integral (48) we must first find the derivative of Fgge(t) w.r.t. 0 as

follows:

v@ Esde (t)

V(5 (o~ )5 o~ ), )

3 (Vo (o~ )= (fo -~ 8)]),,

;<v ( Sy — nglggT21f9+gT21g)>qt

% (Vo(fg 7o) — Vo(fg = 'g) — Vo(g =7 'fo)),,

% ((Vofg )= o + g B! (Vofo) —g" =7 (Vofs) —g" = !(Vofo)),,

% (265 71 (Vofp) — 26" (Vefs)),

< <fg(t, X;) — glt, Xt)> Tz* (vgfg(t, Xt)) > (49)

qt

where we have used the shorthand notations fy for fo(t,X;) and g instead of g(¢, X;).

4.3 System Noise Covariance Parameter

The estimation of the system noise is of great importance because the system noise along
with the drift parameter determines the dynamics of the system.
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e The gradient of (45) with respect to the system noise covariance 3 is given by:

ty .
Vgﬁgyg = VE (fz (q, 0) — / tr{\Ilt (QAtSt — 2) — lI’tSt}dt

to

ty .
—/ {AZ (Atmt — bt) — Ajmt}dt + Agmg + tr{\I'OSO}>
to

ty
= szz:(q,B)—i—Vg/ tr{lIltE}dt

to

ty ly
= / VgESde(t)dt+ / Vztr{‘I’tZ}dt

to to
ty ty
= szsde(t)dt + ‘I’tdt

to tO
and the gradient of E4. with respect to ¥ is given by:

VZEsde(t> = Vsx [; <(f9 - g)Txil(fe - g)>qt]

3 (Vs [(fo— )= (o~ g)])

= (S g -g) S

qt

qt

= 3 (Bt X0) — (6, X)) (o, X) — (1 X)), BT (50)

because matrix X is symmetric.

5 Discussion and Conclusions

This technical report presents the derivation of the equations necessary for the formulation of the
variational Gaussian process approximations to the posterior distribution over paths for a par-
tially observed diffusion process. The algorithms to implement these equations will be described
elsewhere, and it is anticipated that several sub-optimal variants of this method will be developed
in future work, to scale the framework to realistic sized systems. In particular the work on the
inference of the hyper-parameters using marginal likelihood could be extended to accommodate
Bayesian treatments using a variety of frameworks including variational Bayes estimates and sim-
pler maximum a posteriori estimates. The work remains in its infancy and many more empirical
experiments will be required to validate the method across a range of systems.

Acknowledgements

Finally, in order for many of the derivations to become more analytically clear the use and help of
Matrix Cookbook [8], is acknowledged. Also the mathematical appendix of [9], was used for the
expressions of the KL divergence between two Gaussian processes.



Derivations of Variational Gaussian Process Approximation Framework

A Special Case

A.1 Double Well System

As a special case of the derivations provided, we consider the one dimensional double-well system.
This is a highly non-linear dynamical system that has two stable states (+ ). The drift function
of this system is:

fo(Xe) = 4X,(0 — X7), 0> 0, (51)

The energy from the stochastic differential equation (11), is:
Esde(t) = <(f9(t,Xt) _g(t7Xt))T2_1(f0(t>Xt) _g(tvxt))>qt

»! <(f9(tv Xt) - g(t7 Xt))(fe(t7 Xt) - g(ta Xt))T>

qt

N = N =N =

Y
>~
o
£
\
I
N
\
0
>
2
+
&
Q//
no
~_—
2

2

1

= 52—1 (40 + A Xy — 4X2 — bt> >
qt

1 2

= 52_1 Xy — 4X§’ — bt> > , by setting ¢; = (40 + A;)
qt

1
= 52—1 (3 X? — 4 X} — by Xy — 4y X[+ 16X7 + 4b X7 — by Xy + 4b X} + bf>qt

1
- 52—1 (FX? — 8 X} — 2byey Xy + 16X, + 86, X} + bf)qt

1
= 3> 1 (Cg (XP),, —8ee (X, —2bicy (Xy),, +16 (XP) +8b (X7)  + bf) (52)

where (Xt>qt7 <Xt2>qt’ <Xf’>qt, <X{l>qt and <Xt6>qt, are respectively the expectations of the 1st,

2nd, 3rd, 4th and 6th order moments with respect to the Gaussian distribution g;.

The gradient of Fs4. w.r.t. the marginal means is given by:

1_
Vi, Esde(t) = Vom, (22 1<c§ (X2),, — 8¢t <Xt4>qt—2btct (X)), +16(X7), +8b <X§’>qt+bf)>

_ %z}—l (gvmt (X2). =86 Vi, (XE), = 2yce + 16Vom, (XP) + 85 Vim, <X§>qt)
(53)

Working in the same way, the gradient of Ey4. w.r.t. the marginal variances is given by:

1
Vs, Esae(t) = Vs, <221 (cf <X§>qt — 8¢ <Xt4>qt — 2bct (X,y),, + 16 <X§>qt + 8b; <Xt3>qt + bf))

1 ,
— 5271 (cgvst (XP),, —8aVs, (X{), +16Vs, (X7) +80,Vs, <Xf>qt> (54)
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The gradients of Fs4. w.r.t. the variational parameters A; and by are given by:

e From Equation (34), we have:

Vbt Esde (t)

e Also from Equation (36),

vAt Esde (t)

(falt, X)), + As (X0),, —bt>

46 (X X3>qt + A (X)), — bt)

‘1

-2 ((to(

_ 21(4Xt9 X2 q+At<Xt>qt—bt>
-7 (16
=

(40 + A0) (X,),, — 4(XP), — ) (55)
we have:

= E_l ((vxtfe(t7xt)>lh + At) St B VthSdE(t)m;r

=71 (40 - 12(XP), + Ar) St = Vo, Boae(t)m] (56)

where we have used the fact that:

(VaBo(t.X0)), = (Vo (45,00~ X2))),

= (Vx (40X, - 4X7))
= (40 -12X7))
= 40 -12(X?)

When estimating the (hyper)parameters we need the functional derivatives of E,4. with respect to

6 and X. These are given by:

e From Equation (49) we have:

VG-E‘sde (t)

< fa t,X;) — (t,Xt)>T2_1 (Vefe(t7xt)>>

= »! <V9f9 t,X4) fg(t,Xt) - g(t7Xt))T>

qt

qt

THAX (40X, — AXT + A X = b)),

(
= 27N(160X7 — 16X, +44,X] — 4tht>qt
- “H(40 + A XP - 4X) - tht>qt

_ 4zl(<4e+At> (X, -4, ~hix,) 0

where we have make use of the fact that:

Vofo(Xt) = Ve

Vo <49Xt — 4X§>

— 4X,

4X,(0 — XE))
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e Similarly, from Equation

vE-Esde (t) =

(50), we have:
_%E_l <(f9(t7Xt) - g(t7Xt))(f9(t7 Xt) - g(t7Xt>)T>qt =t
_%2—1 <(4€ + ANX; — 4Xt3 — bt>2> »-1

1
—52—1 <c$X3 — e X} — bper Xy — deg X+ 16X0 + 4b, X7

*thtXt + 4th? + b$> 271

qt

1
—5 (X} = S X — 2bie X, + 16X7 + 80 X7 + b7) B

1
s (Cg (X2), — 8er (XP), — 2ye (X,),, +16(X?P)

qt

+8by (X7), .+ bf) ! (58)

A.2 Gaussian Moments and related derivatives.

Uncentered moments, up to and including 8" order, of a univariate Gaussian random variable X,
were m; and S; are respectively the mean and variance at time ’t’.

(X0,
(X&),

=1
= my

= mf + S

= m? + 3m:S;

= m} +6m?S; + 357

= m)+10m3S; + 15m;S?

= m{ + 15m}pS; +45m?S? + 1557

= my +21m}S; + 105m}S7 + 105m,S;

= mf +28mSS + 210m}S? 4 420m?S? 4 1055}
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From here, it is easy to derive the related derivatives with respect to the means and variances at
time ’t’. Hence we have:

B

<l<l<l<l_§l<l<l<l<l
/\/\/\/\:g/\/\/\/\

Vs, <Xt0>(11,
Vs, <Xt1>qt
Vs, (X7),,
Vs, <Xt3>(1t
Vs, <Xt4>(h
Vs, (X0),,
Vs, <Xt6>qt
Vs, (X/ >q,,
Vs, <Xt8>‘1t

0

1

2my

3(mj + S)

4m? + 12m.S,

5mi + 30m2 Sy + 1552

6m? + 60m;S; + 90m, S}

Tm¢ + 105m¢ S, + 315m7SE + 10557
8m! + 168m?>S + 840m3S? + 840m,S?

Working the same way we differentiate with respect to the variances at time t’ and we obtain:

0
0

1

3my

6(m? + S;)

10m3 + 30m;.S;

15m} 4+ 90m?2S, + 4552

21m7 + 210m3 S + 315m;S?

28m?S + 420m}S + 1260m2S? + 42083
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