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ABSTRACT

We have recently proposed the framework of indepen-
dent blind source separation as an advantageous approach to
steganography. Amongst the several characteristics notedwas
a sensitivity to message reconstruction due to small perturba-
tions in the sources. This characteristic is not common in
most other approaches to steganography. In this paper we
discuss how this sensitivity relates the joint diagonalisation
inside the independent component approach, and reliance on
exact knowledge of secret information, and how it can be used
as an additional and inherent security mechanism against ma-
licious attack to discovery of the hidden messages. The paper
therefore provides an enhanced mechanism that can be used
for e-document forensic analysis and can be applied to differ-
ent dimensionality digital data media. In this paper we use a
low dimensional example of biomedical time series as might
occur in the electronic patient health record, where protection
of the private patient information is paramount.

Index Terms— ICA, Sensitivity, Watermarking, Nonorthog-
onal Joint Diagonalisation

1. INTRODUCTION

The use of embedding hidden messages in digital data for the
protection of private information (such as in the electronic pa-
tient health record) or for forensic analysis (including proof-
of-ownership, or last-access logs) relies on algorithms with
in-built security. However most steganographic approaches
to data embedding have no explicit security in that at least the
location of the embedded message, if not the actual message
itself can be discovered or removed by a skilled attacker [1,
2, 3, 4]. Hence a steganographic system which automatically
embeds last-access details of any user would lose its relevance
if a skilled attacker can discover and hence change the secret
message. By ‘skilled’ we mean that any steganographic sys-
tem must accept the ‘Kerckhoff principle’ in cryptography.
Specifically, the security of the system must accept that the
‘attacker’ has full knowledge of the methods, design and im-
plementation details of the system. The only missing infor-
mation to the attacker is some extra private information or a
secret key mechanism. For a good steganographic system, we

additionally require that the attacker needs this key to high ac-
curacy (ideally perfectly) in order to reconstruct the message.

We follow [5] in our use of the term ‘security’, in that we
discriminate between robustness of a watermark (the ability
of a watermark to withstand standard signal processing oper-
ations), and security (the ability of a watermark to withstand
intentional tampering). In the electronic patient health record
where a patient’s private and confidential data is the content
of the embedded message, it is important an attacker is unable
to locate enough bits of the message to attempt a reconstruc-
tion. The attacker will only have access to the watermarked
cover and possibly have access to similar, though not identi-
cal, examples of non-watermarked covers (and hence would
be able to assess statistics of the covers for example). In this
sense we focus on the issue of security in a watermarked-
only-attack [6].

In this paper we wish to focus on a specific embedding
approach and expand on a recently observed phenomenon of
inherent sensitivity in one specific class of data hiding meth-
ods. We will show the source of this sensitivity, and providea
practical illustration of the use of this sensitivity as additional
security to an attack to try and recover a random secret mes-
sage. Since most steganographic methods are designed for
images in which there is significant redundancy in data, we
deliberately focus on time series data since it is much more
difficult to embed secret messages in one-dimensional data
streams. We have a specific interest in the protection of per-
sonal and private data in biomedical time series such as EEG
and ECG time series as part of an individual’s electronic pa-
tient health care record, but our approach has relevance to
audio and other low dimensional data streams. The methods
can also be applied to higher dimensional data such as images
and video without modification.

Blind Source Separation (BSS) is a well known signal
processing technique used in analysing a mixed set of data
generated from multiple sources. The application of one of
the popular BSS techniques, the ICA (Independent Compo-
nent Analysis) method, for watermarking applications has
previously been presented in [7, 8], and has also been used as
an attack framework in [3] for images by exploiting the in-
formation that the embedded message is usually statistically
independent of the natural statistics of the cover.



It relies on a simple linear model in which ani-th obser-
vationxi ∈ R

N is generated from a set ofP underlying latent
sources{sp ∈ R

N} combined by a set of mixing coefficients
{aip}: xi =

∑

p aipsp. With a set of observations this is
equivalent toX = AS + n wheren is a possible single ad-
ditive Gaussian noise source. The source separation problem
cannot be solved if there is no knowledge ofA or S from just
the observation data (the covertext)X. Simultaneous estima-
tion of A andS is the blind source separation problem, and
the independent component analysis solution to the BSS prob-
lem assumes that (1) the sources are statistically independent,
(2) at most one of the sources is Gaussian distributed, and (3)
the mixing matrix is full rank.

Projecting the observation vectorsX onto the inverse of
the mixing matrix,W yields the latent sources in the ideal
caseWX → S.

We have previously [10, 11, 12] demonstrated for time
series and images, the use of independent component analysis
as a useful framework for information hiding. We have shown
that hiding information in the independent sources has good
robustness and data integrity. This is intuitively clear since
the focus of such methods is to decompose a signal into its
statistically independent underlying sources. If the sources
are statistically independent they do not interfere with each
other, unlike for example, in an orthogonal decomposition of
a system such as a Fourier analysis. Hence slightly changing
one of these independent components should not distort the
other components since they are independent of each other.

However, we have also previously observed that there is
a sensitivity to message reconstruction. Specifically, in at-
tempting to recover the hidden message in the ICA approach
it is important to use exactly the same separating matrices ob-
tained in constructing the source vectors. This extreme sen-
sitivity to message reconstruction is not intuitively obvious,
since we do not observe the same sensitivity when we use
an equivalent PCA or spectral approach for example. How-
ever, very recently [13] a possible mathematical explanation
for this observation has been presented which we exploit in
this paper as a significant advantage of the ICA approach to
information hiding from a security and forensics perspective.

We will see that although the ICA method is stable to
small perturbations in the observations in extracting the un-
derlying statistically equivalent sources, it is not stable in
message reconstruction. Hence an attacker who knows the
method and attempts to reconstruct the correct but unknown
separating matrix themselves from similarbut not identical
observation data (such as the exact set of original patient
EEG data for example) will be unable to reconstruct the hid-
den message, such as private patient information or previous
access data.

2. STATEMENT OF THE SENSITIVITY PROBLEM

A secret message is embedded in the transform domain de-
fined by the ICA framework using a specific unmixing ma-
trix W calculated explicitly from a specific original covertext.
The unmixing matrix remains as a private key and theexact
covertext is not publically available.

Using this unmixing matrix allows the construction of the
latent sources, and hence have access to the basis vectors
modified to incorporate the message.

In most ICA based watermarking techniques the set of
mixed observationsX are taken from a coverc, andW is
used as the key to obtain a transformed set of vectors fromX,
S. S is used as the embedding space form. F defining the
embedding function,k samples ofS are selected as the prob-
able embedding locations ofm. The selection ofk is based
on the application ofc andm.

F(S(k),m) → S̃.

At the decoder the modified sourceS̃+Wǫc is used to retrieve
an estimate ofm, m̂.

From an attacker’s perspective this provides both a for-
ward and a backward problem. The forward problem is:
Given an estimate ofW, Ŵ, how closely can the mixing
matrix and the latent sources be estimated?. The important
backward problem is then:Given an estimate of the mixing
matrix. how accurately can the unmixing matrix be deter-
mined and is this sufficient to locate the hidden message?.

The backward problem is the important one because the
attacker only has access to the watermarked cover (and pos-
sibly representative examples of unwatermarked covers), so
an unmixing matrix needs to be applied to recover the basis
vector sources which carry the secret message. Once the ba-
sis vectors are uncovered, traditional methods can be applied
to the sources to hunt for the message. The essential ingre-
dient is whether a small error in knowledge of the covertext
leads to small errors in construction of the mixing matrix, and
whether small errors in the mixing matrix lead to small er-
rors in the unmixing matrix. This is the crux of the sensitivity
problem.

This paper demonstrates how small perturbations toX

can result in large perturbations in the estimation ofW. It
will be demonstrated how the relationship between the per-
turbations inX andW provides a security mechanism for
watermarking applications.



3. THE APPROXIMATE ICA APPROACH

Given observationsX, the ICA algorithm estimates the sep-
arating (unmixing) matrixW and the probable statistically
independent sourcesS. AssumeŠ is an ideal true set of sta-
tistically independent sources which are not observable, then

Šp×N = [š1, . . . , šP ],

Pr(∩P
p=1

šp) =
P
∏

p=1

Pr(šp).

Let Ǎ ∈ R
P×P , such that

X = ǍŠ,

whereǍ is the unknown mixing matrix. (We are now assum-
ing a square mixing problem for simplicity of notation).

Once the secret message is embedded in the sources, they
are no longer statistically independent and the previous as-
sumptions of separability of the source distributions is only
approximate. This slight relaxing of the independence as-
sumption has a strong consequence for algorithms attempting
to diagonalise the resulting cumulants, as discussed later.

3.1. Estimation Problem

The estimated separating matrix̂W by the ICA algorithm
should ideally be the inverse of the unknownǍ. Let ξ repre-
sent the threshold of the perturbation ofX, due to uncertain-
ties in its exact determination by an attacker.

X + ξ → X̂.

X
ICA
→ ǍŠ.

X̂
ICA
→ ÂŜ.

It was observed in [10] that if||Ŝ − Š|| = ǫc and

DEmb + ǫc ≫ ζ.

whereDEmb is the cover distortion due to the embedded mes-
sage, then the hypothesis of correct message retrieval would
be zeroHǫc = 0.

The sensitivity problem is therefore defined as ‘the prob-
lem of defining bounds forξ which in turn will define the
bounds forǫc which will affect the decisionHǫc ’.

The query is thus, what affects the accurate reconstruction
of W given only observations of data, or approximations of
the moments of the data distribution?

4. MATRIX JOINT DIAGONALISATION

Many problems in signal processing can be posed as an issue
of jointly diagonalising a set of matrices. Specifically, given
a set ofn × n symmetric matrices{Ci}, i = 1 . . .N , find a
non-singular matrixB such thatBCiB

T are as diagonal as
possible. When we construct these matrices from observed
data, we do not expect to be able to exactly diagonalise all
these matrices, and so we are dealing with an approximate
joint diagonalisation problem.

Many domains consider a restricted form oforthogonal
joint diagonalisation where the matrix is constrained to beor-
thogonal. ICA does not generally have this constraint unless
an additional requirement of prewhitened covariance matri-
ces are used, which then imposes an additional constraint on
the possible diagonalisations of other matrices. So generally,
ICA can be considered as a non-orthogonal joint matrix diag-
onalisation problem as follows.

When we consider the generation of observed data vectors
from the independent sourcesx = As, the requirement of in-
dependence of thes imposes constraints on the form of the
possible matricesA that can be estimated from knowledge of
the distribution ofx. In particular the covariance ofx, Rx sat-
isfiesRx = AΛsA

T whereΛs is the diagonal covariance of
s — diagonal, since the source vectors are independent. Sim-
ilarly, it is a property of independent random variables that all
higher order cumulant matrices of independent sources must
also be diagonal.

Hence, given a set of observation vectors from which we
can construct a finite set of higher order cumulants, the ICA
method is equivalent to finding a decomposition ofX such
that its projection jointly diagonalises all higher order cumu-
lants.

Hence ICA as a problem is generically equivalent to the
problem of non-orthogonal joint diagonalisation of matri-
ces. What does this have to do with the sensitivity issue in
steganography?

Recently [14, 13], Afsari analysed the mathematics of
approximatenon-orthogonal joint diagonalisation. He con-
cluded that the exact joint diagonalisation becomes particu-
larly sensitive when noise is added to the ‘clean’ matrices,
or when the sought joint diagonaliser is close to being ill-
conditioned. He showed that the problem is particularly
severe in the case that the number of matrices used is small
and high dimensional. We also note that this issue of sensi-
tivity surrounding joint diagonalisation in ICA methods was
also previously discussed by Hori and Manton [15] in the
context of a critical point analysis.

We reproduce the principal results here [13]. Specifically,
consider the case ofestimatingthe cumulants from observed
data. Then the cumulant matrices are approximate.So con-
sider the perturbation problem where the true cumulants are
perturbed by uncertainties

Ci = AΛiA
T + αNi α ∈ [−δ, δ]



whereΛi are diagonal,Ni are symmetric error noise matrices
and α denotes a small noise contribution. Forα = 0 the
problem has an exact joint diagonaliser ofA−1. However for
α 6= 0 we have the approximate diagonaliser:

B ≈ (I + α∆)A−1

where∆ ∈ R
n×n and diag(∆) = 0. ||∆|| measures the

sensitivity of the joint diagonalisation problem to noise.
For an orthogonal joint diagonaliser, it can be shown that

∆kl =
Skl

∑N
i=1

(λik − λil)2

whereS = −
∑N

i=1
[(AT NiA)o, Λi], with [X, Y ] ≡ XY −

Y X andXo ≡ X − diag(X) . The term inS provides the
amplification of the noise, and sinceA is assumed orthogonal,
this term is finite.

However, for a non-orthogonal diagonaliser, a perturba-
tion analysis shows that∆ satisfies

Mkl∆kl = Tkl, 1 ≤ k < l ≤ N

whereT = −
∑N

i=1
(A−1Ni(A

−1)T )oΛi and

Mkl = γkl

[

1/ηkl ρkl

ρkl ηkl

]

1 ≤ k 6= l ≤ N

and

γkl = (

N
∑

i=1

λ2

ik)1/2(

N
∑

i=1

λ2

il)
1/2, ηkl =

(
∑N

i=1
λ2

ik)1/2

(
∑N

i=1
λ2

il)
1/2

and

ρkl =

∑N
i=1

λikλil

(
∑N

i=1
λ2

ik)1/2(
∑N

i=1
λ2

il)
1/2

The point about the above is that, the noise contribution
of ∆ is magnified byT which can be very large ifA is ill-
conditioned, sinceT is controlled by the estimated unmixing
matrix which can have large errors. So a small perturbation
in the estimated cumulant matrices can lead to large errors in
the joint diagonaliser.

In the context of steganography and an attacker trying to
discover the hidden message, the attacker knows everything
about the method but is faced with trying to reconstruct a joint
diagonaliser from similar but not identical data to the ones
used to construct the original unmixing matrixW. This ma-
trix is large and there are only a few matrices (this depends
on the optimisation algorithm used, but many blind source
separation algorithms only consider low order cumulants and
hence only a small number of matrices are approximately di-
agonalised) and hence the problem is ill conditioned.

This is not the case for fixed feature space methods which
do not aspire to independence, but only to orthogonalisation
for example (such as PCA or Fourier methods). Hence we

would expect to see a difference in the ability of an attackerto
recover a secret hidden message in a system using statistically
independent basis functions versus a system using orthogonal
basis functions to hide the message.

We now demonstrate this difference.

5. TIME SERIES EXAMPLE

We show how gradual increases in the magnitudes of pertur-
bations to a signal lead to smooth changes in the condition
number of the relevant covariance matrices (as would be ex-
pected), but at a critical threshold the ability to recover aran-
dom message abruptly switches for the method based on in-
dependent components for small perturbation values. This is
due to a step-function change in the structure of the separat-
ing matrix. It will be shown that much larger perturbation
values are required for an orthogonal basis vector expansion
method,hence an attacker will not need to estimate the secret
key separating matrix as exactly for the orthogonal method as
opposed to the independence method.

The experimental protocol is as follows:

1. A one-dimensional EEG signalc of twenty seconds du-
ration is considered as the cover work. The EEG time
series is transformed into a matrix of observation vec-
tors, X using the dynamical embedding method de-
scribed in [12]. (Hence the finite observation vectors
xi are overlapping windows of samples fromc.)

2. The ICA approach is used to decomposeX into a set of
independent sourcesS and a separating matrixW. W

is used as one of the secret keys needed to retrieve the
watermark.

3. One of the sources,swm thus obtained is watermarked
using the QIM method of message embedding. (the
QIM method is not crucial to the argument. Other mes-
sage embedding approaches can be used.) Lets̃wm rep-
resent the watermarked source.S̃ represents the water-
marked source matrix.

4. The watermarked EEG̃c is reconstructed fromX̃

which is obtained by applying the inverse of the sepa-
rating matrix,A = W

−1 to S̃.

5. To estimate the sensitivity of the ICA methodc is per-
turbed by a zero mean random noise signal,η to ob-
tain c̄. The variance of the noise signal representsǫc
and several increasing values of noise power are used
to simulate the effect of an attacker using different data
to estimate the separating matrix.

6. c̄l obtained for each value ofǫc is transformed into a
matrix of observation vectors,̄Xl wherel indexes the
different noise levels.



7. The condition number of the covariance ofX and each
X̄l is calculated.

8. The norm of the difference betweenX and its perturbed
versionX̄l, ξ is calculated.

9. The ICA is applied to each̄Xl to obtain a set of mod-
ified ‘best-guess’ sources̄Sl and separating matrices
W̄l. The ICA is initialised using the eigenvectors of
the covariance ofX in order to obtain the same order
of the estimated sources.

10. The condition number of the covariance ofW and each
W̄l is calculated.

11. The norm of the difference betweenW and its per-
turbed versionW̄l is calculated.

12. An estimate of the sources̄Sw, S̄l is obtained by ap-
plying W and eachW̄l respectively tõX. An estimate
of the embedded message is retrieved froms̃wm of S̄w

and each̄Sl.

13. The Hamming distance between the original embedded
watermark and the estimated watermark is noted.

The same protocol is repeated, except that rather than use
the ICA framework to construct basis vectors, we use a stan-
dard PCA approach applied to the same observation matrices
X, and the same quantities calculated for comparison.

6. RESULTS

Figure 1 indicates the monotonically increasing change in the
observation matrix̄X with respect to the original matrix as
the noise power on the original cover time series is increased.
This is an attack which represents the attacker using very sim-
ilar but not identical data to estimate the only remaining un-
known: the separating matrix (or the matrix of PCA coeffi-
cients). Distorting the cover will induce a matrix norm dis-
tortion in the data matrices used in the ICA algorithm. For
smooth and small distortions, if the overall method isnotsen-
sitive, then the message should be recoverable since approxi-
mate knowledge should be sufficient.

We would naively expect that the message would remain
recoverable to an expert attacker until the noise power signif-
icantly distorted the original cover.

Figure 2 shows the change in structure of the PCA co-
efficient projection matrix and the ICA separation matrix as
the noise power is increased. The flat structure of the PCA
approach is due to the whitening effect and the orthogonali-
sation which preserves the structure. However the separating
matrix changes its structure for quite small values of noise
power, as exhibited by the increase in the matrix norm. We
would expect this change in matrix structure to be reflected in
the ability of an attacker to recover the hidden message.
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Fig. 1. Change in the perturbed input data matrixX due to
increased noise power on the original cover signal for both
the PCA and ICA experiments. The slight differences are due
to different random realisations of the noise.
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Fig. 2. Matrix norm of the difference between the original
and the perturbed coefficient projection matrix for PCA and
the separating matrix for ICA due to increasing noise power
on the original cover signal. The PCA difference remains flat.
The ICA difference increases showing a change in structure
of the separating matrix. This is expected for small noise.
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Fig. 3. The probability of bit error between the estimated re-
covered message as determined by the expert attacker and the
original message. Note the significant difference between the
ICA and PCA approaches. The message becomes randomly
unintelligible when the added noise power increases beyonda
small threshold. The message embedded in the PCA vectors
remains recoverable for much higher values of noise which
equates to a much less accurate estimation of the PCA pro-
jection matrix.
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Fig. 4. This figure illustrates the very small distortion consid-
ered in this experiment. The figure plots a small segment of
the original EEG time series and compares with the distorted
EEG. The middle figure is for a variance where the ICA er-
ror becomes randomised, but the PCA error remains at zero.
The bottom figure reflects the EEG distortion for higher noise
power when the PCA method starts to deteriorate,

Figure 3 shows the probability of bit error of the estimated
message compared to the original random message embed-
ded in the clean data. This figure depicts the marked contrast
between the orthogonalised basis vector approach and the in-
dependence basis vector approach. We note that at the point
where the structure of the separating matrix is changing, the
message basically becomes randomly correlated with the true
message: the attacker is unable to recover the message for the
independent vector approach.

Figure 4 is for reference only, indicating that for the noise
power we are considering sufficient to destroy the hidden
message, the structure of the original cover (EEG time series)
is essentially unchanged. As far as a clinician’s perception is
concerned, no physiological characteristics of the EEG have
been destroyed at this level of signal degradation. Hence, the
attacker would need to use data at least as accurate as the
distorted data shown in this figure if she is to have an success
at recovering the embedded private information by using the
data to estimate the separation matrix.

These results support the theoretical discussion in the
early part of the paper. We had hypothesised that a stegano-
graphic method which relied on the non-orthogonal joint
diagonalisation of a small set of matrices would have an in-
herent sensitivity in that it would be ill-conditioned. We have
now observed this effect for the ICA approach used in this
one-dimensional time series example. In addition, we also
surmised that a method which relied on a secret key derived
from a constraint of orthogonalised basis vectors would not
have the same sensitivity. This is also shown in the compara-
tive example of the PCA approach. (Note, the approach based
on fourier transforms is trivially open to an attacker sinceit
is not data-derived and the attacker is assumed to have all
knowledge of the method).

Although this paper has not discussed other features of
the nonorthogonal independent basis vector expansion of sig-
nal space, we have previously argued that it should also have
better tradeoffs of data rate robustness and imperceptibility in
the trade-off triangle.

This additional feature of sensitivity to estimation can be
used as a security measure for privacy protection, or alterna-
tively considered as a better forensic tool in that we can also
embed different messages in different independent compo-
nents. We can choose these independent components for their
stability characteristics. Embedding last-access information
of users who may have opened a digital document can now be
made more secure by using a private key based on the sepa-
rating matrix of the ICA approach. As we have demonstrated,
the approximate non-orthogonal joint diagonalisation is ex-
pected to be difficult in the ICA example, and hence even an
expert attacker is unlikely to be able to estimate the separating
matrix accurately enough to recover and therefore modify the
embedded message without destroying the cover itself.



7. CONCLUSION

We have discussed how the observed sensitivity of the ICA
method derived from the problem of joint diagonalisation of
estimated matrices leads to a sensitive estimation of the un-
mixing matrix W. Without almost exact knowledge of the
precise original data used to construct the true unmixing ma-
trix, the estimation of the matrix is an ill-conditioned prob-
lem. Since in our method, the unmixing matrix is used as a
key for extraction of the hidden message, the inability of an
attacker to estimate this key accurately is sufficient to prevent
recovery of the message. This system allows for Kerckhoff’s
principle, in that the attacker is allowed to know everything
about the method except the key, and we have seen that the
key cannot be accurately estimated enough even with knowl-
edge of how it was generated.

It was seen that for the orthogonal basis vector approach
as typified by the PCA method, the message could be recov-
ered with a much less rigorous ‘error bar’ on the correspond-
ing projection matrix of PCA coefficients. However, for the
method based on independent basis vectors, a very accurate
estimate of the separating matrix was required. When this
threshold of matrix difference norm was crossed, the degra-
dation of the message was a sharp transition, and not one of
gradual degradation.

The paper is a preliminary investigation only. We have not
explored all variants of independent component analysis or
alternative algorithm variants which might be more stable to
the perturbation sensitivity identified here. Similarly wehave
not investigated specific attacks which might compromise the
new suggested security mechanism proposed here. These are
topics for the future.

We have been motivated by this use of the ICA method
as a steganographic framework for exploitation in the future
electronic patient healthcare record, for security of personal
and confidential patient information likely to be embedded in-
side the actual raw medical data, and also for possible foren-
sics of retaining a record of last access logs on data files.
However the method has a much wider generality of appli-
cation.
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