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Abstract 

Grass is being considered as a potential feedstock for biogas production, due to its low water 

consumption compared to other crops, and the fact that it can be cultivated in non-arable lands, 

avoiding the direct competition with food crops. However, biogas production is limited by the 

characteristics of the feedstock; in particular its complex lignocellulosic structure. Hence, different 

pretreatment methods are being investigated for grass structure disruption before undergoing the 

anaerobic digestion process. The aim of this paper is to review current knowledge on pretreatment 

techniques used for grassland biomass. Pretreatment techniques were categorized into mechanical, 

microwave, thermal, chemical and biological groups. The effect of the application of each studied 

methods on the biogas yield and on the energy balance is discussed. A further comparison between 

the covered techniques was revealed.   
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  1. Introduction 

Grasslands play an important role in global agriculture, covering around the 26% of world’s total land 

area (2009) and the 78% of the Scotland’s agricultural area (2013). Grasses are the main plant 

species in verges along roads, railways and on river dikes, for that reason the hectares of grassland 

available are difficult to quantify. Besides its role as basic nutrient for herbivores and ruminants, 

grassland has a key role in the prevention of erosion, the immobilisation of leaching minerals and as 

carbon storage, helps in the regularization of water regimes and in the purification of pesticides and 

fertilizers. Also serve to furnish a habitat for wildlife, both flora and fauna and contribute to the 

attractiveness of the landscape [1–4]. 
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In recent years considerations on grassland use for bioenergy have increased considerably, mainly 

for biogas production and as solid fuel for combustion [5]. A well as for biogas production, grasses 

can be used in future for the production of lignocellulosic bioethanol, synthetic natural gas or synthetic 

biofuels. The main benefits of using grass for bioenergy production are its lower water consumption 

for growth than other crops and the fact that it can be cultivated in non-arable lands, without 

competing with food crops [6–8]. 

Over the past thirty years in Scotland, the grass over five years old increased in more than 48% due 

to the abandonment of farmland and grazing produced in turn by the decrease in animal husbandry; 

the same process is occurring in most developed countries. For that reason, grass should be 

considered as biomass feedstock for bioenergy production, and in particular for biogas production.  At 

present there is no anaerobic digestion plant in Scotland using grass as feedstock, very different is 

the situation in Northern Ireland where all the nine existing AD plants use grass for co-digestion 

alongside with other substrates, usually animal manures. In Germany, already 30–40% of the biogas 

plants operate with grass or grass silage as co-substrate, with an average of 8% by weight of grass 

silage in the total substrate, reaching in some case 50%  [9,10]. A useful tool in cases of biomass 

utilization plants and biomass to biofuel projects is the quantification of biomass potential; 

Christoforou et al. (2015) document the existing plant-derived biomass potential quantification 

methods and deliver a framework for the definition of biomass resources [11].   

In crop production, energy is required for tillage, crop seedlings, fertilising, herbicides application, 

harvest and transport. Furthermore, considerable energy is required for the production of herbicides, 

fertilisers and pesticides. On average, fertiliser production represents about 50% of total energy 

requirement, the 22% are required for machinery, about 15% for transport fuel and 13% for pesticides 

[12]. Due to the fact that grass is not cultivated but it grows naturally, the higher energy demanding 

processes (fertilizer and pesticide production and application) are not necessary, therefore the energy 

balance is presumed more advantageous although biogas yields are not as high as in other crop 

species. 

2. Biogas production from grass 

Anaerobic digestion is a microbial fermentation in the absence of oxygen resulting in a mixture of 

gases (mainly methane and carbon dioxide), known as "biogas" and an aqueous slurry or "mud" 

containing the microorganisms responsible for the degradation of organic matter [13]. The raw 

material subjected to this treatment is preferably any residual biomass that has high moisture content, 

such as food scraps, leftover leaves and herbs from garden or orchard cleaning, livestock waste, 



domestic and industrial wastewater, sludge from water treatment plants and urban waste. The main 

product of anaerobic digestion, the biogas, is a mixture of methane (50-70%) and carbon dioxide (30-

50%), with small proportions of other components (nitrogen, oxygen, hydrogen, hydrogen sulphide), 

whose composition depends on the raw material and the process parameters such as HRT or 

temperature [5,14–16]. Considering methane has a higher heating value (HHV) of ca. 37.8MJ/m3 and 

carbon dioxide has no energy associated with it, biogas has an energy content of between 19 and 

26MJ/m3 and it can replace natural gas in combined heat and power plants (CHPP) undergoing 

previously a purification process to reduce the CO2 content and eliminate contaminants as sulphides 

[17–20]. At the end of the anaerobic digestion, the nutrients remain largely contained in the digestate, 

thus, a nutrient-rich digester residue remains and it can be used as fertilizer. Legal requirements such 

as laws governing fertilizer, hygiene and solid waste must always be observed in the further use of 

the digestate as fertilizer. 

The grass composition, the harvesting time, the chopping size and the use of ensiling agents are 

important factors that influence the feedstock quality [10]. The results of fermentation tests indicate 

that the optimal cutting time of grass for anaerobic digestion should be around three or four days after 

that the grass used for dairy cattle feeding [21]. The percentage of cell wall components (cellulose, 

hemicellulose and lignin) increases with increasing maturity of the grass, whereas the percentage of 

cell contents (protein, lipid, sugars) decreases (Figure 1) [22]. To achieve high methane yields, crop 

substrates need a low lignin content as well as a high content of easily degradable components such 

as carbohydrates and soluble cell components [23,24]. Two key parameters in the biogas production 

from grassland: sugar and fibre content, can be optimized by selecting the suitable harvesting time 

[10]. Grass can be harvested once or twice per year with conventional haying equipment. Harvesting 

once a year has the economic advantage of being cheaper than cutting twice and fewer nutrients will 

be removed from the soil. In autumn the harvesting time is preferable at least one month after the first 

heavy frost as nitrogen and some potassium will move into the root system and the cutting height 

should be 6 to 8 inches. The cutting height when harvested during spring should be 8 to 10 inches, at 

this stage, sufficient carbohydrate reserves have been built up and allow for rapid regrowth [6,25,26]. 

Switchgrass harvested in spring has lower mineral (potassium and chlorine) concentrations than 

switchgrass harvested in autumn. Meadow foxtail grassland harvested monthly from June to March in 

northeast Germany resulted in specific biogas yields decreasing throughout the season from 547 

l/kgVS in June to 299 l/kgVS in February, the methane yields showed a parallel pattern from 298 

l/kgVS in June to 155 l/kgVS in February whereas the methane percentage stays constant in a mean 

value of 52 over the year [27].  



Growth rates of plants are regulated by the photosynthetic ability and a multitude of environmental 

factors. Grasses are classified into C3 and C4 species based on their photosynthetic pathway. 

Anatomical differences in leaf and bundle sheath cells occur between C3 and C4 grasses [28,29]. 

Typically, the optimum light intensity for C4 species is twice that for C3 species, for that reason C4 

grasses are common in tropical regions while C3 grasses are more abundant in European countries. 

Grasses are classified into annual species, which include many cereals, and perennial species, which 

include many forage grasses. Tropical grasses grow faster than trees and produce higher biomass in 

a shorter period. [30]. 

 

Figure 1. Values of grass components through maturity stages [31]. 

The type of grass used is another factor that affects the biogas production, depending on the grass 

specie, its composition vary, therefore the substrates available for anaerobic digestion are different for 

each grass type. Figure 2 shows the most common grass varieties for anaerobic digestion. The most 

important grass specie in Europe is perennial ryegrass; other important grass species are meadow 

fescue, Italian ryegrass, tall fescue, timothy and cocksfoot [3]. 

Biogas yield from a cultivated variety of canary grass was 406 Ndm3/kgVS meanwhile for a wild grass 

was 120 Ndm3/kgVS [32]. Similar results were obtained when compared lawn cuttings and wild grass, 

where wild grass showed a lower biodegradability and lower biomechanical methane potential (BMP) 

than lawn cuttings, owing to its low lignin and lignocellulose content and low crystallinity of cellulose 

[33]. Fresh grass most of the times results in bigger biogas production that ensiled grass. Mähnert et 

al. (2005) compared the methane and biogas production of seven types of fresh and ensiled grass, 

the results for biogas yield were: perennial ryegrass 904/929 l/kgODM (fresh/ensiled), cocksfoot 



800/718 l/kgODM, tall fescue 836/818 l/kgODM, red fescue 845/767 l/kgODM, meadow fescue 909/846 

l/kgODM, meadow foxtail 804/n.r. l/kgODM and timothy 828/591 l/kgODM [1,34,35]. 

 

 

Figure 2. Varieties of grass: a) Cocksfoot, b) Italian ryegrass, c) Meadow foxtail, d) Perennial ryegrass, e) Reed 

canary, f) Switchgrass, g) Tall fescue and h) Timothy-grass 

3. Pretreatment of grass 

Lignocellulosic biomass has a complex internal structure. It contains a number of main components 

(cellulose, hemicellulose and lignin) that have, in their turn, also complex structures (Figure 3) [36]. 

Before undergo anaerobic digestion the grass should be suitably conditioned in order to offer the 

microorganisms in the digester a larger target surface area and thus to improve and accelerate the 

degradation process [37–39]. 



 

Figure 3. Lignocellulosic biomass internal structure [40]. 

3.1. Physical 

Physical pretreatment refers to those methods that do not use external compounds such as 

chemicals, water or microorganisms during the pretreatment process. In this paper physical 

pretreatment methods studied are classified as: mechanical, ultrasound and microwave methods. 

3.1.1. Mechanical 

Chipping is a mechanical pretreatment that is widely used for big waste materials such as agricultural 

residues from straw, corn stover or any other crops and forestry residues as wood chips [41]. The 

objective of chipping is to reduce heat and mass transfer limitations caused by large size particles 

[42]. After chipping the final particle size of materials is usually 10–30mm [43]. Disk chippers are the 

most popular type of chippers, in disk chippers straight knives are attached to a revolving heavy disk. 

The disk rotates at speeds that vary between 400-1000 rpm [44]. Owing to the limitation of particle 

size reduction, this technique is less effective than milling and grinding in which it is possible to 

reduce the particle size up to 0.2 mm. For this reason, no chipping techniques were applied to grass 



for anaerobic digestion up to date. However, it was reported that reducing the particle size of 

feedstock beyond 0.4 mm does not improve the biogas yield [42,45–48].  

Grinding and milling are methods to treat compact and difficult-to-handle biomass such as hard food 

wastes, waste paper or wood [49–52]. The grinding method depends on the dimensions, mechanical 

properties, and moisture content of the biomass. Screw shredders, scissors, knife, and hammers are 

the most common appliances for grinding. Grinding pretreatment was applied to different feedstock 

such as alfalfa chops, corn residues and grain sorghum [53–55]. The hydrolysis yield of wheat straw 

subjected to a grinding process increased from 6% to 34%, the reduction of particle size favoured the 

contact between the enzymes with the substrate and revealed new zones which contained initially 

inaccessible polymers in coarse particles. Wheat straw particles were ground until passing through a 

sieve, the particle size reduction is caused by high-speed mechanical impacts and cutting the 

feedstock by knifes mounted in the rotor [56].  

Knife milling technique is usually used for wet feedstock where it is being continuously cut until it is 

small enough to pass through a sizing screen. The cutting process occurs by rotary equipment 

consisting of 4-6 knives mounted on a solid steel rotor spinning at between 500 and 600 RPM. Ball 

mills comprises a drum, where all contained materials are meant for crushing and grinding, such as 

balls of ceramic, small rocks, or balls made from stainless steel. This method reduce the 

polymerization degree and crystallinity of cellulose and the feedstock particle size and increases the 

bulk density allowing the treatment of more concentrated feedstock and reducing the reactor volume 

[43]. Another milling technique, “Hammer mill”, is based in a rotor with attached hammers that push 

the material against a breaker plate, the hammers impact the feedstock and it is thereby shredded 

and expelled through screens. Bitra et al. [57] successfully used a hammer mill to treat different types 

of biomass such as corn stover and wheat straw. In disc mills, biomass is fed through an orifice 

coaxially with the rotation axis; a moving grinding disc rotates against a fixed one and draws in the 

feed material. This type of mill can be built in a single or double disc version. The comminution is 

generated by pressure and frictional forces: the grinding disc meshing first subjects the sample to 

preliminary crushing due to the centrifugal force, and then moves it to the outer regions of the grinding 

discs where fine comminution takes place. The processed feedstock exits through a grinding gap, 

which can be adjusted for its collection. Disc mills use more energy that hammer mills but produced 

particles with smaller-size distribution [51,58]. 

Lindmark et al. (2012) pretreat ley crop silage with two machines originally used in the paper and pulp 

industry, the Krima disperser and the Grubben deflaker [59,60]. The deflaker system consists of two 

discs with teeth, one disc rotates and the other is stationary; the feedstock is pumped into the 



stationary disc passing the teeth which rip up the fibre structure and the fibre pulp is hurled to the 

outlet. As well as for the deflaker, the disperser is based in rotor discs, which grind the material as it 

passes through the narrow openings between the discs. During the treatment, the biomass passes 

through a screw and in a following step, the material is mixed with water before reaching the grinding 

sections. The operation of both systems is shown in Figure 4. The pretreatment with the Grubben 

deflaker increased the methane production of ley crop silage by 59% and with the Krima disperser by 

43%, compared to untreated material, this means an increase in the energy output per hectare of 

farmland by 3–4MWh  [61]. The Krima disperser resulted in a larger size distribution, resulting in 

particles of more than 8mm in size while the Grubben deflaker reduced about 90% of the material to 

less than 2mm in size.  

 

Figure 4. Grubben deflaker (left) and Krima disperser (right). 

The effect of the particle size was investigated in six hay samples collected from local farms in 

Estonia, the hay was comminuted with a knife mill and laboratory scissors before the anaerobic 

digestion. Final particle sizes of 0.5, 4 and 10 mm were achieved with the knife mill, while with the 

laboratory scissors the hay was cut into 2-3 cm pieces. The results show that there is a negative 

correlation between biogas yield and particle size as well as for lignin content [62]. 

Tsapekos et al. studied six mechanical pretreatment methods to treat ensiled meadow grass; the 

pretreatments are based in the combination of two out of four commercially available heavy plates, 

each with a different shaped pattern. Ensiled meadow grass was placed between the plates; the 

upper plate was manually pushed back and forth, using two hand grips, across the bottom plate for 

four times without applying any downward force on it; the friction cut the grass reducing its length, the 

operation principle is shown in Figure 5. The higher biogas production was achieved with the sample 

with more percentage of small particles (22% of 0-5cm particles), enhancing the methane production 



by approximately 25%. The least efficient pretreatment method resulted only in 8% biogas 

enhancement, which corresponds to the sample with a 45% of particles longer than 15 cm [63]. 

 

Figure 5. General principle of mechanical pretreatment in Tsapekos et al. study [63]. 

Extrusion is another mechanical process adapted from other industries such as metal and plastic 

forming. The feedstock is subjected to heating, mixing and shearing, causing the break of fibres and 

the plant cells lysing, as the feedstock leaves the extruder, the sudden drop in pressure causes 

evaporation of intracellular water that helps the substrate breakdown. The applied shear forces serve 

to continuously remove the softened surface regions of the substrate and expose the interior to the 

biological action, thus improving the overall rate of decrystallization [64]. Twin-screw extruders, where 

the screws rotate counter wise, are typically used; the major drawback is that the screws have to be 

changed regularly due to abrasion. Feedstock with solid content of 30 to 35% cannot be extruded at 

temperatures over 100ºC due to water evaporation and substrate drying [65]. Extrusion was applied 

as pretreatment for different biomass feedstock as barley straw, grass, pig and cow manure. A 

methane yield increase of 11.5-13.4% was achieved when maize was previously extruded [66].  

Extruded grass produced 62% higher methane yield after 28 days of digestion time and by 9% after 

90 days compared to untreated feedstock. The electrical yield (determined by comparing the electrical 

energy produced by un-extruded material and the electrical energy produced by extruded material 

after subtracting the electrical energy input for the extruder) also increases after 28 and 90 days of 

anaerobic digestion by 47 and 7 % respectively [67]. By means of an adjustable opening present at 

the outlet of the extruder it was possible to modify the extrusion intensity level .The methane yield was 

proportional to the extrusion intensity for ryegrass, where the pretreatment achieved an increase of 

7.1-8.5% for two different levels of extrusion. The energy efficiency, calculated as ratio of energy 

output to energy input, is also higher for the higher level of extrusion intensity with a value of 2.9 [66]. 

Extruded meadow grass (Figure 6) increase the biogas production by 27% compared to non pretreat 

material [68].  



 
Figure 6. Meadow grass before (left) and after (right) extrusion treatment [68]. 

3.1.2. Ultrasound 

Acoustic energy in the form of waves with a frequency above the human hearing range is called 

ultrasound. This high frequency of sonic waves causes cavitation inside the cells and regions with 

liquid vapour, so-called microbubbles are formed. Cavitation provides the physical effects of micro-

turbulence and velocity/pressure shockwaves. Frequencies on the order of KHz and high amplitudes 

induce cell lysis releasing the intracellular material, cavitation promotes chemical reactions to destroy 

organic matter due to the high local temperatures and pressures, creating extreme shear forces in the 

liquid and leading the formation of reactive radicals (H+ and OH-), furthermore, the hydrolysis of the 

biomass is accelerated and subsequently VFAs are more readily generated and transformed into 

methane. Schwede et al. found that micro-algae Nannochloropis salina samples with higher VS 

degradations resulted in lower specific biogas productions contrary to expectations, author mention 

this is a sign for possible loss of volatile organic material during cell disruption by ultrasounds [69–73]. 

Samson and LeDuy (1983) explained this effect by changes in the chemical composition of the culture 

media due to cell disruption [74], while Gonzalez-Fernandez et al. (2012) state that at different 

sonication energies, different types of organic matter were released. At low energies, no cell lysis 

occurs and COD solubilisation is due to exopolymer dissolution which did not increase methane 

production. In contrast, at higher energies the disruption of the cell contributed to enhanced methane 

production [75]. Ultrasound pretreatment has been used for many different types of biomass including 

cattle and chicken manure, olive mill wastewater and sludge [76–79] however up to date it has not 

been proved on grass. All the previously mentioned types of biomass has a high percentage of water 

in their composition and ultrasound pretreatment have been found be more effective when 

lignocellulosic materials are mixed with water [80]. This is due to the better sound transmission in the 



interface water-solid than in the air-solid one, therefore if ultrasound pretreatment will be applied to 

grass for biogas production, it is highly recommended to mixture the biomass with water before 

pretreatment.  

3.1.3. Microwave 

Microwaves are short waves of electromagnetic energy varying in a frequency from 0.3 to 300 GHz, 

industrial and domestic microwaves ovens operate at 2.45 GHz. These waves increase the kinetic 

energy of the water leading to a boiling state; the process polarizes macromolecules, causing 

changes in the structure of proteins and a rapid generation of heat and pressure in the biological 

system that produce cell hydrolysis, forcing out compounds from the biological matrix. A uniform 

microwave irradiation generates energy through the realignment of dipoles with oscillating electric 

fields to generate heat both internally and at the surface of the treated material, heating more quickly 

all parts than conduction methods. Also, microwave heating units feature instant on/off, so no 

equipment warm-up or cool down is necessary. Under microwave irradiation, lipids are hydrolysed to 

palmitic acid, stearic acid, and oleic acid; proteins are hydrolysed into saturated and unsaturated 

acids, ammonia, and carbon dioxide; and carbohydrates are hydrolysed into lower molecular weight 

polysaccharides [81–84]. Microwave pretreatment is used in different types of biomass in order to 

improve the biogas yield [85–88]. 

Microwave pretreated Pennisetum hybrid resulted in a specific methane yield decrease from 189.7 

mL/gVS correspondent to raw material to 163.6 mL/gVS after 3 min pretreatment [89]. Similar results 

were obtained with switchgrass, microwave pretreatment has no significant effect on the ultimate 

volume of methane produced, however, kinetics of methane production was increased; the time 

needed to reach the 80% value of ultimate volume of CH4 was reduced by 4.5 days [90]. (Table 1) 

summarizes the mechanical and microwave techniques above explained. 

Table 1. Physical pretreatments for grass biogas production.  

Pretreatment  Machine Feedstock Results References 

Mechanical Grubben deflaker Ley silage + 59% CH4 production [61] 

 Krima disperser Ley silage + 43% CH4 production [61] 

 
Knife mill and laboratory 

scissors 
Hay 

Negative correlation 

biogas yield/ particle size 
[62] 

 Heavy plates Meadow grass + 25% CH4 production [63] 



 Extruder Festulolium + 62% CH4 yield [67] 

 Extruder Reygrass + 8.5% CH4 yield [66] 

 Extruder Meadow grass + 27% biogas production [68] 

Microwave 400-1600 W Switchgrass Increase in CH4 kinetics [90] 

 1180 W Pennisetum hybrid - 13% CH4 yield [89] 

 

3.2. Thermal 

Thermal pretreatment is effective in the degradation of lignin and hemicellulose, heat break up the 

hydrogen bonds in crystalline complexes of cellulose and lignocellulose, causing the biomass to swell, 

thus increasing the accessible surface area. Thermal pretreatment is carried out in most cases in 

autoclaves, pressure cookers or jacketed reactors (laboratory scale); dry substrates need the addition 

of water before the treatment. It was shown that thermal pretreatment reduces the viscosity of sewage 

sludge when it is used as feedstock for anaerobic digestion [91], as viscosity is an important 

operational parameter in biological processes, reducing the biomass’ viscosity facilitates the reactor 

feeding. Inhibitory or toxic effects may be caused to bacteria, yeast and methanogens due to the 

phenolic compounds produced from the solubilisation of hemicellulose and lignin. Thermal 

pretreatment can be carried out alongside chemical addition; usually, the addition of an acid or an 

alkali improves the pretreatment’ effectiveness. The sanitisation of the feedstock is a further 

advantage of thermal pretreatment, applying high temperatures, the pathogens are eliminated. This 

effect is particularly advantageous when the biomass is stored and not used right following the 

pretreatment [89,92–94]. The effect of thermal pretreatment was extensively investigated in different 

biomass including sugarcane, algae, sugar beet pulp and sunflower oil cake [13,95–98]. 

Thermally pretreated Pennisetum hybrid resulted in a specific methane yield increase from 189.7 

mL/gVS correspondent to raw material to 198.3 mL/gVS after 30 min water vapour pretreatment [89]. 

Dry hay was pretreated by steam explosion at temperatures ranging from 160 to 220°C. Steam 

explosion pretreatment is based on steam injection to the sample followed by an abruptly pressure 

reduction, which make the biomass suffer an explosive decompression producing the hydrolysis of 

the hemicellulose into individual sugars. The maximum methane yield increment of 16% (281IN/kgVS) 

was resulted when the biomass was pretreated at 175°C for 10 min. Higher temperatures markedly 

decreased the methane yield, this can be attributed to the formation of substances inhibiting the 



microorganisms responsible for the anaerobic digestion process (e.g. phenolic compounds or furan 

derivatives) as well as to the loss of sugars due to pseudo-lignin formation [99]. 

A hyperthermophilic pretreatment at 80°C was applied to a mixture of shredded grass and sewage 

sludge. Under mesophilic conditions and with a retention time of 3 days, the methane yield increased 

from 212.6 Nml/g VS (raw mixture) to 309.7 Nml/g (pretreated mixture). Under thermophilic conditions 

and 4 days of retention time, the methane yields were 279.5 Nml/g VS for raw material and 339.9 

Nml/g VS for the pretreated mixture. The CODs increased significantly from 9.1 g/L correspondent to 

raw mixture to 19.4 g/L after pretreatment [100].  

3.3. Chemical 

Although cellulose has a crystalline structure and great resistance to acids and alkalis [101], these 

compounds are commonly used to solubilize the hemicellulose and lignin presented in the biomass, 

making them more available for enzymatic attacks. Acid pretreatment is indicated for hemicellulose 

solubilisation, whereas alkaline pretreatment was found more effective in lignin removal [93,102–104]. 

The most commonly alkalis used (sodium, ammonium, calcium and potassium hydroxides) have been 

used for the pretreatment of lignocellulosic materials, the alkali pre-treatment’s effectiveness depends 

on the lignin content of the biomass. This pretreatment produces the saponification and cleavage of 

lignin-carbohydrate linkages, increases the porosity and internal surface area of biomass, and 

decreases the degree of polymerization and crystallinity of feedstock. Chemical pretreatment 

technology is generally considered unattractive economically, but may be used in lignin rich biomass 

that otherwise could not be digested. The residual alkali remaining in alkali-pretreated biomass could 

help to prevent a drop in pH during the acidogenesis step. Acid pretreatment can be conducted either 

by a concentrated acid or by a dilute acid,  sulphuric acid is the most commonly used, hydrochloric 

acid, nitric acid, and acetic acid, have also been used. Concentrated acid is highly effective on 

cellulose hydrolysis; however it is an energy and cost intensive process. Concentrated acid is greatly 

toxic and corrosive, therefore special materials are required for the reactors construction. Dilute acid 

is a more economic choice and for lignocellulosic biomass pretreatment can hydrolyses up to 100% of 

the hemicellulose into its component sugars [48,94,105,106]. 

Calcium hydroxide (Ca(OH)2) pretreatment was applied to grass biomass at different loading rates; 

results showed that higher lime concentration results in better methane production. At 52°C, when the 

lime concentration is 0.8%, the methane production increased by 4%; and for a lime concentration of 

9.2%, the methane production increased by 14%. However, the best result was achieved at 10°C and 

7.5% loading rate, with an increase in methane production by 37% [107]. 



The Fenton oxidation process, in which Fe2+ reacts with H2O2 to generate ·OH, was employed to 

degrade organic compounds. The mixture of FeSO4 and H2O2 (Fenton’s reagent) at low pH 

decomposes organic compounds in a short time [108]. Pretreating three types of grass with Fenton’s 

reagent, the biogas productions were 25.2 Ndm3/kgTS for Sorghum, 26.1 Ndm3/kgTS for Sida and 

13.6 Ndm3/kgTS for Miscanthus [109]. 

3.4. Biological 

Biological pretreatment of biomass is based in three main actions, bacterial, fungi and enzymatic 

activity. Brown-, white- and soft-rot fungi are used to degrade lignocellulosic biomass. White and soft 

rots fungi attack cellulose and lignin, while brown rots attack mainly cellulose. White-rot was proved 

as the most effective among fungi for lignocellulosic biomass degradation. Pre-acidification, also 

known as anaerobic microbial pretreatment, can be used as pretreatment method for improving 

biogas production: in this process the first steps of the anaerobic digestion, hydrolysis and 

acidogenesis, occur separated from the final methane production step. Through the separation of the 

phases, it is possible to avoid the inhibitory effects on methanogens produced by the accumulation of 

volatile fatty acids. Enzymatic hydrolysis is another type of biological pretreatment. Although enzymes 

are already present in the digesters as they are produced by the digestion microorganisms, an 

enzyme or mixture of enzymes can be added in order to enhance the biomass degradation. Cellulose-

, hemicellulose-, and starch-degrading enzymes are the more frequently used for lignocellulosic 

feedstock. Enzymatic hydrolysis pretreatment can be an alternative to energy-demanding thermal and 

mechanical pretreatments and also to chemical pretreatments as enzymes are much more safety 

compounds than chemicals. However, biological processes are high time and space demanding, 

usually it is necessary 10-14 days of residence time, then, at higher residence time, higher reactor 

volume is required. Biological pretreatment can be used on its own or combined with other 

pretreatment methods if there is a high concentration of recalcitrant compounds [42,93,94,110]. 

Napier grass was pretreated with three microbial consortia MC1, WSD-5 and XDC-2 for different 

times, 3, 7, 13, 17, and 21 days. MC1 comprises thermophilic bacteria, mainly cellulose-degrading 

bacteria Clostridium straminisolvens. WSD-5 comprises fungal and bacterial communities, the most 

dominant fungi is Coprinus cinereus and bacteria is Ochrobactrum sp. XDC-2 was mainly composed 

of mesophilic bacteria in the genera Clostridium, Bacteroides, Alcaligenes, and Pseudomonas. The 

yields for treated grass were higher than for the untreated samples except the 21 days pretreatment 

with MC1 and XDC-2 consortia. The maximum methane yields for MC1, WSD-5 and XDC-2 

pretreated samples were 1.39, 1.49 and 1.32 times greater than for untreated samples [111].  



Ligninolytic fungus Phanerochaete flavido-alba was used to pretreat grass of verge before undergoes 

anaerobic digestion. Despite the pretreatment led to a decrease in all lignocellulose fractions 

(Cellulose, hemicellulose and lignin), biogas production was similar in non-inoculated substrates than 

in inoculated, but no explanation was given about this result by the authors. The same pretreatment is 

effective for wood fiber [112].  

In 1963 Dewar et al. showed that during ensiling considerable amounts of sugars were produced from 

hemicelluloses by acid hydrolysis over a 90-day period. These changes in biomass composition 

suggest that ensiling may be considered as a biological pretreatment method for cellulosic biogas 

production [113]. The ensiling process involves the production of organic acids and a decrease in pH 

that consequently prevents growth of fungi, yeasts and bacteria which may otherwise decompose the 

carbohydrate structure of biomass [114]. Biomass composition, biomass dry matter at ensiling, and 

microbial community are the main factors influencing ensiling. Combination of storage and 

pretreatment at ambient temperature and pressure as in ensiling holds a considerable potential cost 

and energy savings [113,115]. 

Ensiling assisted with two inocula, LACTISIL Grass plus (GP) and LACTISIL CCM (CCM) was applied 

as pretreatment for Festulolium Hykor grass. GP inocula consist of the lactic acid bacteria (LAB) 

Pediococcus pentosaceus and Lactobacillus plantarum, which are both homofermentative. CCM 

inocula consist of pure Lactobacillus buchneri which is heterofermentative. Ensiling had a positive 

effect on the sugar release by generally yielding higher amounts of sugar per biomass gram; 

however, the inocula did not affect the acid production of the ensiling. This no effect can be explained 

by the fact that the natural epiphytic organisms on the grass dominated the fermentation processes 

rather than the ones presents in the inocula. The maximum cellulose convertibility (CC) after ensiling 

was 70%, which means an increase of 40% relative to the dry grass. Table 2 summarizes the thermal, 

chemical and biological pretreatments applied to grass. 

Table 2. Thermal, chemical and biological pretreatments for grass biogas production.  

Pretreatment  Conditions Feedstock Results References 

Thermal Autoclave  Pennisetum hybrid + 4% CH4 yield [89] 

 Steam explosion 160-220°C Hay + 16% CH4 yield [99] 

 Oil bath  80°C Eleusine indica + 46% CH4 yield [100] 

Chemical Ca(OH)2 Grass + 37% CH4 production [107] 



 Fenton’s reagent Miscanthus giganteus 13.6 Ndm3/kgTS (biogas) [109] 

 Fenton’s reagent Sorghum Moensch 25.2 Ndm3/kgTS (biogas) [109] 

 Fenton’s reagent Sida hermaphrodita 26.1 Ndm3/kgTS (biogas) [109] 

Biological Microbial Consortium: MC1 Napier grass + 39% CH4 yield [111] 

 Microbial Consortium: WSD-5 Napier grass + 49% CH4 yield [111] 

 Microbial Consortium: XDC-2 Napier grass + 32% CH4 yield [111] 

 Ensiling Festulolium Hykor + 40% CC [116] 

 Fungus: P. flavido-alb Grass of verge No effect [112] 

 

4. Case studies  

Although the information available about the commissioned biogas plants are very scarce as the 

plants are runner by private companies or small farms who not offer much information, in this section 

are presented some examples of biogas plant working with grass as feedstock from United Kingdom 

and Germany. 

 Tuquoy Farm 

Settle in Westray, Orkney Islands in a family farm of cattle and sheep. The plant has three digesters 

of 175, 75 and 2 m3 respectively which operate at mesophilic conditions. The 2 m3 digester is only 

used for batch processing trial feedstocks. The digesters are fed with approximately 2,190 T/yr of 

slurry and 200T/yr of grass silage. In this case the grass represents only the 10% of the feedstock. No 

grass pretreatment is made. The gas is use in two 9kW CHP and a gas boiler and the 2200 T/yr of 

digestate produced annually is used on-farm. It is spread mainly on grassland and a barley crop, with 

fertilizer supplementation [117]. 

 Devon Farm 

The farm is mainly for grass silage production, with beef cattle and free range chickens. The 500 m3 

digester is fed mainly grass and some chicken manure. The digester is heated until mesophilic 

temperatures by a biogas boiler; the digestate is used on the grassland. Gas is scrubbed by injecting 

a small amount of air, then used in a 45 kW CHP. No grass pretreatment is made [117].  

 Swancote Energy 



Based in Bridgnorth, England; this biogas plant is operated by Swancote Energy Ltd. since 2011. The 

plant is formed by three digesters of 2.300 m3. The feedstock is mainly farm residues including food 

waste, potato peel, yoghourt sludge, maize silage and grass silage. The process temperature is 40°C 

and the HRT 50 days. The plant is provided with gas storage of 4.500 m3 that is used in a CHPP, the 

heat is used for running a pre-pasteurization system for the feedstock. The digestate is spread out on 

the fields of the plant owner. No grass pretreatment is made. [118]. 

 Oberlauterbach-Hallertau 

The plant operated by Bioerdgas Hallertau GmbH in the Bavaria region, Germany, was specifically 

designed for processing fibres-rich materials (lignocellulosic). The AD system is made of 3 horizontal 

digesters and 4 round digesters. The feedstock is composed of 65% hop silage and 35% maize/grass 

silage. The feedstock is pretreated by extrusion and magnets to remove metal contaminants that 

increases gas yield and reduces pollution on digestate. The mesophilic process temperature is 

approx. 40°C and the HRT 110 days. The biogas produced undergoes upgrading process so that 

biomethane is injected to the national gas grid (95 million kWh/yr) [119] 

 Klostermansfeld 

DSM Food Specialties B.V. operates this plant in Klostermansfeld, Germany. The plant is fed with 

corn silage, grass silage and grain. Hydrolytic enzyme MethaPlus® L100 is used as pretreatment. 

The results show an increase in both the energy production (12%) and the mixing properties 

alongside an increased process stability and reduced digestate through better substrate conversion. 

The plant operates at mesophilic temperature and with a HRT 106 days. The digester has a volume of 

1.600 m3, gas storage of 3.600 m3 and has a capacity of 834 kW through CHP. The digestate is used 

as fertilizer [120]. 

Table 3. Biogas plants with grass as feedstock. 

Plant Feedstock Pretreatment Temperature Energy production 

Tuquoy Farm 
2,190 T/yr cattle and sheep manure 

200T/yr grass silage 
No Mesophilic 2 x 9kW CHP 

Devon Farm Grass and chicken manure No Mesophilic 45 kW CHP 

Swancote Energy 
Food waste, potato peel, yoghourt 

sludge, maize silage and grass silage 
No 

Mesophilic 

40°C 
2.000 kW CHP 

Oberlauterbach-

Hallertau 

65% hop silage  

35% maize/grass 
Extrusion 

Mesophilic 

40°C 
11.5 MW 

Klostermansfeld Corn silage, grass silage and grain Biological Mesophilic 834 kW CHP 



5. Discussion 

The literature available about the pretreatment of grass for biogas production to date is very scarce, 

for that reason comparing methods is not easy, as most of reported studies applied different 

pretreatment conditions to different grass species. The energy balance of the pre-treatment method 

has to be positive for the process in order to be profitable. Economic efficiency is the most important 

factor that decides what pre-treatment technique should be used. Usually, pre-treatment techniques 

with lower energy input has a lower impact on biogas and methane yield compared to pre-treatment 

techniques that require higher energy demand.  

The main advantages and disadvantages of grass pretreatment methods are summarised in Table 4. 

Mechanical pre-treatment is used for grass as well as for other biomass feedstock in order to increase 

the surface area and make the digestion easier. Remarkably high biogas yield were reported using 

these methods, with biogas productions increases between 25 and 60%. In mechanical pre-

treatments, existing machinery from other industries can be used with minor changes or adjustments, 

but such machinery is highly sensitive to inert materials such as stones or metallic materials that 

could easily damage it. Additionally, mechanical methods are high energy demanding and have high 

maintenance costs.  

In microwave pretreatment, a cell wall lysis is achieved to make the lipids and proteins more available 

to digestion, this is based on the disruption of hydrogen bonds that produces changes in protein and 

lipid structures, the quick penetration into biomass is the main advantage of the process as well as 

the heat produced that by itself help to biomass disintegration, while the main disadvantage is the 

high energy consumption, depending on biomass concentration, higher energy supplied usually 

results in higher biomass solubilisation and greater biogas production. On the other hand, microwave 

pre-treatment seems to be the easiest method, where the samples are subjected to the irradiation and 

do not need any further treatment. Samples are introduced into the equipment in buckets, so there is 

no need to clean the facility after each treatment, and the process normally takes no more than 30 

min. To date microwave pretreatment resulted in biogas production reduction around 13%. 

Thermal pre-treatment is generally considered as an easy and fast method, it usually takes 10-30min, 

but there are some studies where the biomass was subjected to a longer period up to 5 days in the 

case of using the oil bath [99]. Methane yield increase can vary from 4 to 46% by using such 

technique. Additionally, thermal pre-treatment have an additional benefit, the sanitisation of the 

feedstock. The main disadvantage is that it is a high energy demand process. Another problem that 

may occur in thermal pre-treatment is the formation of recalcitrant compounds that reduce the 



anaerobic degradability. Energy balance in thermal pre-treatment is related to the solid content of 

biomass, as it can be improved when biomass is previously dewatered.  

Biological pre-treatment is a low energy demanding process compared to other pre-treatments and it 

doesn’t form any inhibitory compounds during the process, while the main disadvantage of this type of 

pretreatment is that it is a slow process. The enzyme cost should be taken into account, as some 

enzymes have a relatively high price for a limited increase in methane yield. Different microbial 

consortiums and the ensiling process can achieve increases in methane yield of 30-50%. 

The addition of an alkali or an acid to biomass is another process to improve its degradability. In grass 

pre-treatment, the chemicals used to date are calcium hydroxide and Fenton’s reagent. These 

compounds improve the solubilisation of hemicellulose with a low energy demand, however, chemical 

pre-treatment have multiple disadvantages: the possibility of chemical contamination and changes of 

pH in the digester leading an interruption in the process. Furthermore, the corrosion problems in the 

reactor, along with the chemical cost make chemical pre-treatment the one of the most complicated 

methods to pre-treat grass for biogas production. To date chemical pretreatment resulted in biogas 

production increase around 37%.  

Table 4. Advantages and disadvantages of grass pretreatments. 

Pretreatment Description Advantages Disadvantages 
Effect on 

Ch4/biogas 

Mechanical 

Reduction of cellulose 

crystallinity and particle 

size. 

Biomass easier to handle 

Existing machinery. 

Improves fluidity in digester 

Increase surface area 

High energy demand 

High maintenance cost 

Sensitive to inert materials 

+  25-60% 

Microwave 

Disruption of hydrogen 

bonds 

Changes in protein and 

lipid structure 

Quick and uniform heating High energy demand - 13% 

Thermal 

Heat  application in the 

range  

of  50-250ºC 

High biomass solubilisation 

High methane yield 

increment 

Sanitisation of the feedstock 

High energy demand 

Thickened biomass 

Possible recalcitrant 

compounds 

+ 4-46% 

Chemical 

Adding an alkali or an 

acid, usually sodium 

peroxide and sulphuric 

acid 

Low energy demand 

Solubilisation of  

hemicellulose 

Chemical contamination 

Chemicals cost 

Possible inhibitory compounds 

Corrosion problems 

Changes of pH in the digester 

+ 37% 



Biological 

Adding an enzyme or 

combination of enzymes 

to enhancing the 

hydrolysis 

Low energy demand 

Not inhibitory compounds 

Slow process 

Big space 

Enzyme cost 

Enzyme-substrate specificity 

+ 30-50% 

 

6. Conclusion 

Most pre-treatment techniques can improve biogas production from grass in different percentages 

around 50% [100,111]. In cases of mechanical methods, the improvement raises to around 60% 

[61,67]. Mechanical pretreatments lead to a reduction of the particle size of the feedstock which is the 

best way to improve the availability of the substrate in the case of lignocellulosic materials. Despite 

that mechanical methods are normally related to high energy requirements, they are still considered 

very promising, and more research is believed to improve the energy balance for such methods. 

Despite the methods’ disadvantages, more research is need in order to overcome them and achieve 

more efficient methods to scale up and applied in industry. High energy requirement is a disadvantage 

common to all methods; the facilities used for grass pretreatment are machinery pre-existent for other 

purposes then a deepest study is needed to optimize each appliance for the specific technique where 

it is used. In chemical and biological treatments, new compounds and enzymes can be studied to 

increase the effectiveness and at the same time reduce the toxicity and the pre-treatment time. 

Pretreatment parameters may be specified using multi-objective optimization technique, so that a high 

biogas yield can be produced with a positive energy balance. Different techniques can be used for 

solving such multiple response problems. The desirability approach was used in different engineering 

areas, and it is recommended due to its simplicity, availability in the software and flexibility for each 

response. 

In United Kingdom there are 55 biogas plants working with grass as feedstock from a total of 913 

[121,122], grass is always co-digested with other substrates, in most cases alongside with animal 

slurry. These biogas plants using grass as raw material are in the group of farm-fed plants, farm-fed 

plants have higher potential of biogas production for the next 3 years with the possibility of reach 500 

plants. Pretreatment of grass for biogas production is still not widely used at industrial scale and no 

information about it could be found for UK.  

Most of the member countries of the European Union have drawn up a biogas roadmap as part of 

their national renewable energy action plan in the framework of the European Renewable Energy 

Directive (2009/20/EC) [123]. The Directive set the electricity production from biogas in 63.3 TWh by 



2020 that means an increase of 254% compare to the production in 2009. This goals are been 

accomplished, in 2013 the biogas electricity produced in the European Union was 52.3 [124].  

In order to study future targets of biogas production from grass for United Kingdom, can be set some 

key performance indicators (KPIs) which will help us to evaluate the progress in biogas from grass:   

 Grass availability 

In Northern Ireland, the 5% of the grassland area (39,000 ha) could contribute 62 MW, equivalent 

to 39% of the average electricity demand in the region [125]. Considering the similarity of land use 

in the whole United Kingdom with Northern Ireland, the energy potential from grass could 

increase to a high extent, especially in Scotland where there is only one biogas plant with grass 

as raw material.  

 Pretreatment method 

As was discussed in this paper, pretreatment methods of grass for biogas production improve and 

accelerate the degradation process achieving higher biogas and methane yields. 

 Governmental policies 

In UK the government is supporting the role of anaerobic digestion through different plans; the 

Department for Environment Food & Rural Affairs (DEFRA) set the level of 305 TWh of heat and 

electricity from AD by 2020. Scotland has also introduced food waste bans on disposal to landfill and 

this has improved the AD capacity. Northern Ireland has introduced four new Renewables Obligation 

Certificate (ROC) that increases the grass-fed biogas plants [126]. On the EU level, there is no 

specific policy on biogas, but it is addressed in multiple policy documents and Directives that are 

related to renewable energies and bioenergy. Biogas is included in three EU regulatory frameworks: 

the Renewable Energy Directive (2009/28/EC), the Directive on Waste Recycling and Recovery 

(2008/98/EC) and the Directive on Landfill (1999/31/EC).  
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