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Abstract

A detailed mathematical analysis on the q = 1=2 non-extensive maximum entropy

distribution of Tsallis' is undertaken. The analysis is based upon the splitting of such a

distribution into two orthogonal components. One of the components corresponds to the

minimum norm solution of the problem posed by the ful�llment of the a priori conditions

on the given expectation values. The remaining component takes care of the normalization

constraint and is the projection of a constant onto the Null space of the \expectation-

values-transformation".
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1 Introduction

The seminal work of Tsallis [1], which generalizes the concepts of both entropy and expectation

values, has rendered a variety of interesting generalized results in connection with multifrac-

tals, astrophysics, cosmology, turbulence, thermodynamics, statistical mechanics, etc (see, for

instance, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]). The Tsallis' generalized framework depends upon a

real parameter, q, and each q�value generates a particular statistics. The limiting case q ! 1

yields Shannon's entropy [12] and therefore Jaynes' celebrated results based upon the Maxi-

mum Entropy Principle [13, 14].

In the present contribution we will focus attention on the analysis of the q = 1=2 case, which

arouses special interest because it involves dealing with linear equations. This entails making

the q = 1=2 Tsallis distribution particularly adequate to be used in those situations in which

the number M of available expectation values is very large (although, of course, not so large

as to determine a unique solution). For big M -values, the handling of the nonlinear set of

equations arising from considering q 6= 1=2 becomes a troublesome task indeed. Typically, such

situations take place when the expectation values represent measurements which are obtained

as a function of a variable parameter [15, 16]. In addition to the numerical advantage accrued

to the linearity of the q = 1=2 distribution, one should mention that this distribution has

already been shown to be endowed with physical signi�cance by Boghosian [9], being related

to the concept of enstrophy. Indeed, in a recent publication Boghosian has reported that the

density pro�les of a pure-electron plasma column during the relaxation to a metaequilibrium

state rather that maximize the Boltzmann entropy maximize Tsallis' entropy with q = 1=2 [9]

The q = 1=2 Tsallis distribution appears therefore, as stated, a potentially helpful tool deser-

ving careful analysis from a mathematical point of view. In particular, we wish to shed light on
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the relation between such a solution and the classical minimum norm one. We will show that

the q = 1=2 Tsallis distribution can be split into two orthogonal components, each of which has

a well de�ned mathematical meaning. One of the components is the minimum norm solution

of the linear problem posed by the ful�llment of the expectation-values constraints. The other

component is the projection of a constant onto the Null space of the transformation generated

by the expectation values. The latter takes care of the normalization constraint.

The paper is organized as follows: In Section 2 Tsallis' approach is brie
y summarized, while

in Section 3 the case q = 1=2 is considered and a detailed mathematical analysis is provided.

Some conclusion are drawn in Section 4.

2 The p
q non-extensive maximum entropy distribution

Let us consider a set of N events with probabilities pn ; n = 1; : : : ; N and let fi ; i = 1; : : : ;M

be a set of M random variables, each of which takes values fi;n ; n = 1; : : : ; N . Consider

further that, by resort to adequate experimental measurements, one is able to ascertain the

expectation values f
i
; i = 1; : : : ;M of the corresponding random variables fi. Tsallis' proposal

for determining the probabilities pn ; n = 1; : : : ; N from the measurements f
i
; i = 1; : : : ;M

confronts us with a problem that can be rendered in the following terms [4]: for q 2 R, and

with the set of constraints

NX

n=1

p
q

n
fi;n = f

i
; i = 1; : : : ;M; (1)

NX

n=1

pn = 1; (2)

maximize the Tsallis entropy Sq

Sq =

P
N

n=1 p
q

n
�
P
N

n=1 pn

1� q
: (3)
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The resulting expression for the Tsallis generalized weight pq [1] adopts the functional form [4]

p
q

n
=

1

zo
[1� (1� q)

MX

i=1

�ifi;n]
q

1�q ; (4)

where both zo and the Lagrange Multipliers (�i ; i = 1; : : : ;M) should be determined so as to

ful�ll constraints (1) and (2). For q = 1=2, obviously q

1�q = 1, and pq
n
becomes bilinear in both

�i; fi;n.

3 The q = 1=2 case

Before undertaking the analysis of the p
1

2 distribution, we �nd it convenient to adopt a vectorial

notation. We shall represent a vector, x say, as jxi and its transpose as hxj. The standard basis

fjni;n = 1; : : : ; Ng in RN is de�ned as follows: hnjmi = �n;m ; n = 1; : : : ; N ; m = 1; : : : ; N ,

where h:j:i stands for inner product. Accordingly, the p
1

2 distribution will be represented as a

vector jp
1

2 i 2 RN , i.e.,

jp
1

2 i =
NX

n=1

jnihnjp
1

2 i =
NX

n=1

p

1

2

n jni; (5)

and the measurements f
i
; i = 1; : : : ;M will be represented as a vector jfi 2 RM ,i.e.,

jfi =
MX

i=1

jiihijfi =
MX

i=1

f
i
jii: (6)

Furthermore, we de�ne the rank de�cient operator Â : RN ! RM through the matrix elements

hijÂjni = fi;n ; i = 1; : : : ;M ; n = 1; : : : ; N . Considering that the measurements f
i
; i =

1; : : : ;M are linearly independent, rank(Â) =M .

Using this notation, constraints (1) and (2) (for q = 1=2) are recast as

Âjp
1

2 i = jfi (7)

hp
1

2 jp
1

2 i = 1 (8)
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with

jp
1

2 i = jzi �
z

2
Â
yj�i (9)

where Ây stands for the adjoint of Â, j�i 2 RM is a vector whose components are the Lagrange

multipliers �i ; i = 1; : : : ;M and jzi =
P
N

n=1hnjzijni =
P
N

n=1 zjni is the vectorial representation

of the real number z = z
�1
o
.

In order to solve for the Lagrange Multipliers, we introduce (9) into (7). Since we are considering

linearly independent measurements, the operator ÂÂy : RM ! RM has an inverse and we

obtain

j�i = �
2

z
(ÂÂy)�1jfi+

2

z
(ÂÂy)�1Âjzi (10)

so that jp
1

2 i becomes

jp
1

2 i = jci+ j~czi (11)

with

jci = Â
y(ÂÂy)�1jfi (12)

j~czi = jzi � Â
y(ÂÂy)�1Âjzi: (13)

The vector j~czi depends upon the value of z, which should be determined by the normalization

constraint (8). Before �xing such a number, we would like to discuss some general properties

of solution (11).

3.1 Some properties of the jp
1

2 i distribution

We shall study here the jp
1

2 i distribution by analyzing its two components jci and jczi. The

essential tool for the analysis is provided by the spaces Null(Â) and Null?(Â) (the orthogonal

complement of Null(Â)). Let us recall then that Null(Â) is de�ned as

Null(Â) = fjbi 2 RN ; Âjbi = 0g (14)
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whereas

Range(Â) = fjfi 2 RM ; jf i = Âjbi for some jbi 2 RNg: (15)

Proposition 1: The vectors jci and j~czi given in (12) and (13) are mutually orthogonal, j~czi

being the orthogonal projection of jp
1

2 i onto Null(Â), and jci the orthogonal projection of jp
1

2 i

onto Null?(Â).

Proof: Let us give the names P̂N and P̂N?, respectively, to the orthogonal projection operators

onto Null(Â) and Null
?(Â). In order to obtain explicit representations for these projectors,

we consider the eigenvectors of the operator Ây
A : RN ! RN . This is a bounded self adjoint

operator which satis�es

Â
y
Aj ni = �nj ni ; h nj mi = �n;m ; n = 1; : : : ; N; (16)

with the eigenvalues property: �1 � �2 : : : � �N � 0 [17]. Since rank(Ây
A) = M , we

have M nonzero eigenvalues �n ; n = 1; : : : ;M and (N �M) zero eigenvalues �n ; n = M +

1; : : : ; N . The vectors j�ni = Âj ni ; n = 1; : : : ;M are the eigenvectors of the operator ÂÂy

with corresponding eigenvalues �n, as is easily seen. It is also straightforward to verify that

h�nj�mi = �m;n�m. We see then that the vectors j ni corresponding to a zero eigenvalue give

rise to vectors j�ni of zero norm, whereby j ni ; n = M + 1; : : : ; N span Null(Â). Thus, the

explicit representations of P̂N and P̂N? are as follows:

P̂N =
NX

n=M+1

j nih nj (17)

P̂N? =
MX

n=1

j nih nj: (18)

The normalized vectors j~�ni =
j�nip
�n

=
Âj nip
�n

; n = 1; : : : ;M span Range(Â), so that they provide

an explicit representation for the orthogonal projection operator onto Range(Â), i.e.,

P̂R =
MX

n=1

j~�nih~�nj: (19)
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Furthermore, since j~�ni ; n = 1; : : : ;M are the normalized eigenvectors of the operator ÂÂy,

we have

ÂÂ
y =

MX

n=1

j~�ni�nh~�nj (20)

and

(ÂÂy)�1 =
MX

n=1

j~�ni
1

�n
h~�nj (21)

therefore, ÂÂy(ÂÂy)�1 = (ÂÂy)�1ÂÂy = P̂R.

In addition,

Â
y(ÂÂy)�1Â =

MX

n=1

Â
yj~�ni

1

�n
h~�njÂ =

MX

n=1

j nih nj = P̂N?: (22)

We are now in a position to prove that P̂N?j~czi = 0 and P̂N?jci = jci. Indeed,

P̂N?j~czi = P̂N?jzi � P̂N?Â
y(ÂÂy)�1Âjzi = P̂N?jzi � P̂N?P̂N?jzi = 0; (23)

and

P̂N?jci =
MX

n=1

j nih njÂy(ÂÂy)�1jfi =
MX

n=1

Â
yj~�ni

1

�n
h~�njÂÂy(ÂÂy)�1jfi

= Â
y(Ây

A)�1P̂Rjfi = Â
y(ÂÂy)�1jfi = jci: (24)

Summing up, we have proved that P̂N?jp
1

2 i = P̂N?jci + P̂N?j~czi = jci. On the other hand,

since P̂N?jci = jci, P̂N jci = 0, and since P̂N?j~czi = 0, j~czi = P̂N j~czi. Hence, P̂N jp
1

2 i =

P̂N jci+ P̂N j~czi = j~czi 2

Corollary 1: The vector jci given in (12) is the minimum norm solution of equation (7).

Proof: Since Âjc0i = 0 for all jc0i 2 Null(Â), the most general solution of equation (7) is

amenable to a cast in the fashion jci + jc0i, with jci given by (12) and jc0i being any vector

in Null(Â). Indeed, Â(jci + jc0i) = Âjci = P̂Rjfi = jfi. It is obvious then that by choosing

jc0i � 0 the minimum norm solution is obtained 2.

Corollary 2: The vector j~czi given in (13) is the orthogonal projection of a constant z onto
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Null(Â).

Proof: According to (22) j~czi can be expressed as j~czi = jzi � P̂N?jzi � P̂N jzi 2.

From the above corollaries we conclude that, among all the vectors jc0i 2 Null(Â), the Tsallis

q = 1=2 approach chooses the one which is just the projection of a constant onto Null(Â).

Such a vector plays the role of making sure of increasing the minimum norm so as to give one

the possibility of setting equal to unity the norm-value, as required by constraint (8).

Although jfi 2 Range(Â) by hypothesis, it is appropriate to recall that its components hijfi =

f
i
; i = 1; : : : ;M represent experimental measurements that are always a�ected by errors. In

practice, what is actually available is a vector jf oi = jfi + j�fi and situations for which

jf oi 62 Range(Â) may certainly occur. The next proposition deals with this case and shows

that Âjp
1

2 i renders an approximation to jf oi which is optimal in a minimum distance sense.

Proposition 2: If jf oi 62 Range(Â) is the available observation vector, Âjp
1

2 i is the unique

vector in Range(Â) that minimizes the distance to jf oi.

Proof: The proof stems from the fact that Âjp
1

2 i is the orthogonal projection of jf oi onto

Range(Â). Indeed,

Âjp
1

2 i = Âjci = ÂÂ
y(ÂÂy)�1jf oi = P̂Rjf oi: (25)

Accordingly, jf oi can be written as : jf oi = Âjp
1

2 i+j�f oi where j�f oi 2 Range?(Â). If we take

an arbitrary vector jgi 2 Range(Â) and calculate the distance to jf oi we have: jjjgi� jf oijj2 =

jjjgi�Âjp
1

2 i��f oijj2 = jjjgi�Âjp
1

2 ijj2+jj�f oijj2. Hence, the distance jjjgi�jf oijj is minimized

if jgi � Âjp
1

2 i 2

We shall �x now the constant z so as to ful�ll the normalization constraint (8) i.e.,

NX

n=1

pn = hp
1

2 jp
1

2 i = hcjci+ h~czj~czi = hcjci+ hzjP̂N jzi = 1: (26)
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There exist two values of z satisfying (26), namely:

z� = �(
1� hcjci

P
N

j=1

P
N

k=1hjjP̂N jki
)
1

2 = �(
1�
P
M

n=1

jh~�njfij2

�n

N �
P
N

j=1

P
N

k=1

P
M

n=1hjj nih njki
)
1

2 : (27)

In the next proposition we show that the negative value, z�, is to be disregarded because it

yields a lower entropy than the positive one.

Proposition 3: From the two values z+ and z�, satisfying constraint (8), z+ renders the largest

entropy-value.

Proof: Writing explicitly the entropy S 1

2

(z+) we have

S 1

2

(z+) = 2
NX

n=1

hnjci+ 2
NX

n=1

hnjP̂N jz+i � 2 = 2
NX

n=1

hnjci+ 2z+

NX

n=1

NX

k=1

hnjP̂N jki � 2 (28)

and, since z� = �z+,

S 1

2

(z�) = 2
NX

n=1

hnjci+ 2
NX

n=1

hnjP̂N jz�i � 2 = 2
NX

n=1

hnjci � 2z+

NX

n=1

NX

k=1

hnjP̂N jki � 2: (29)

Notice that
P
N

n=1

P
N

k=1hnjP̂N jki = h~czj~czi=z2 � 0, so that on comparing (28) and (29) we gather

that S 1

2

(z+) > S 1

2

(z�) 2

Thus, the distribution p
1

2

j
= hjjp

1

2 i ; j = 1; : : : ; N that complies with the constraints (7) and

(8) yields the global maximum of the entropy S 1

2

as given by

p

1

2

j = hjjÂy(ÂÂy)�1jfi+ hjjP̂N jz+i

=
MX

n=1

hjj ni
1

p
�n
h~�njfi+ z+ � z+

MX

n=1

NX

k=1

hjj nih njki ; j = 1; : : : ; N (30)

where z+ is calculated as in (27). It should be stressed, however, that from the above expression

the positivity property of the distribution can not be guaranteed.

4 Conclusions

A detailed mathematical analysis, performed on the q = 1=2 Tsallis distribution, has been

undertaken in the present e�ort. We have shown that such a distribution is able to be split
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into two orthogonal components, each endowed with a clear mathematical signi�cance. One of

the components corresponds to the minimum norm solution of the (a priori) expectation values

equations. The other component allows for the normalization constraint, and is the projection

of a constant onto the Null space of the expectation values transformation.

It has been shown that the process of extremizing S 1

2

, restricted by the given constraints, leads

to two stationary points. A general expression for the global maximum solution was provided.

Furthermore, we have shown that such a solution gives rise to a predictor of the expectation

values which minimizes the distance to the given experimental measurements.

We believe the results of our analysis should be of assistance when trying to decide on the use

of the q = 1=2 Tsallis distribution in a given particular situation.
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