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Abstract

A regularization method based on the non-extensive maximum entropy principle is

devised. Special emphasis is given to the q = 1=2 case. We show that, when the residual

principle is considered as constraint, the q = 1=2 generalized distribution of Tsallis yields a

regularized solution for bad-conditioned problems. The so devised regularized distribution

is endowed with a component which corresponds to the well known regularized solution

of Tikhonov.

1 Introduction

Consider a linear mapping Â from the space X of all distributions fpg characterizing the

statistics of a sample into the space Y of all measurable quantities. If one is given the dis-

tribution, the measurable quantities can be predicted. This is the so-called direct problem, a

typical application being the computation of expectation values given a system's wave-function.

Usually, a more di�cult problem is posed by the inverse problem: given the measurable quan-

tities, determine the underlying distribution fpg. In this paper we will concern ourselves with

questions concerning the inverse problem, and will focus attention upon p1=2-distributions asso-

ciated to the generalized non-extensive maximum entropy formalism of Tsallis (corresponding

1



to q = 1=2) [1, 2]. A physically relevant q = 1=2 instance is that related to the relaxation of

two-dimensional Euler turbulence [3]. In the relaxation of Euler turbulence several identi�able

stages can be identi�ed: an initially hollow vorticity pro�le develops a linear diochotron insta-

bility which saturates with the creation of long-lived vortix patches. These patches move about

for hundreds of diochotron periods, shedding �laments, and eventually mixing and inwardly

transporting. This process gives rise to an axisymmetric metaequilibrium state, whose density

decreases monotonically with radius, which then persists for tens of thousands of diochotron

periods [3]. The shape and radial vorticity pro�le of the metaequilibrium state is an interest-

ing and fundamental problem. As such, one could anticipate that it could be described by a

variational principle. The most natural one applying within this context is Jaynes' maximum

entropy principle, using Boltzmann-Gibbs' entropy. This yields, however, unsatisfactory results

in this case [3]. Non-extensive entropy, with q = 1=2, allows for the use of Jaynes' variational

principle and gives a convincing explanation of this phenomenon [3].

We are interested in the so-called stability issue of the inverse problem concerning the general-

ized non-extensive maximum entropy distribution corresponding to q = 1=2, which forces one to

look also at the concomitant \direct" problem by assuming that it is appropriately represented

by a linear mapping Â from the space X of all p1=2 distributions characterizing the statistics of

a sample, into the space Y of all corresponding measurable quantities.

In the present e�ort considerations will be restricted to the analysis of samples composed by

a �nite number of, say N , subsamples of known properties, so that the X-space will be iden-

ti�ed with an N -dimensional Euclidean space XN= fp1=2j � 0 ; j = 1; : : : ; N ;
PN

j=1 pj = 1g.

In practice the outcome of an experiment is a �nite set of, say M , real numbers, so that the

experimental measurements can be viewed as the components of an M -dimensional vector that

we will call the data vector jfi 2 RM. The probability distribution can also be regarded as a
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vector jp 1

2 i [4]. Thus, the operator representing the direct problem admits a matrix represen-

tation of M rows and N columns.

In these terms the problem we wish to investigate consists of the following ingredients:

� When we apply the operator Â to all vectors jp 1

2 i of XN we obtain a set of images that

will be called the set of exact or noise-free images jfi verifying: jfi = Âjp 1

2 i.

� On the other hand, in the concomitant inverse problem we are given an image jfi and

are asked to �nd a jp 1

2 i 2 XN such that jfi = Âjp 1

2 i.

� But, as a matter of fact, physical data are never known exactly but only with a certain

degree of accuracy. In practice, rather than the exact image jfi the experimental setup

gives rise to a vector jf oi = jfi + j�fi, where j�fi is an stochastic vector representing

random noise.

� The impossibility of knowing the exact data may cause serious instabilities in the inverse

problem solution, even if the operator Â does have an inverse. Indeed, the propagation

of relative small errors from the data to the solution will often produce a meaningless

solution if the so-called condition number cond(Â) is too large [5, 6, 7].

� The condition number is cond(Â) = �max=�min, where �max and �min are, respectively,

the maximum and minimum singular values of the operator Â. A small variation j�fi of

the data imposes bounds to the error of the solution according to [5, 6, 7]:

jj�jp 1

2 ijj2=jjjp 1

2 ijj2 � cond(Â)jj�fijj2=jjjfijj2;

where jj:jj2 indicates the 2-norm. As a consequence, when cond(Â) is too large, small


uctuations in the data can drastically a�ect the solution, whereby the problem is said

to be bad-conditioned [5, 6].
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The question is: how to achieve robustness (stability) of the solution against noise?

The answer: the solution needs to be regularized.

Consistently with the formulation of the direct problem, which is assumed to involve the jp 1

2 i

generalized distribution, we shall show in the present Communication that maximization of

the q = 1=2 non-extensive entropy renders a regularization method, provided that a suitable

constraint is imposed. Regularization methods have been the subject of much research during

the last thirty years, [5] providing one with a good summary on the state of the art and a great

deal of references.

In a recent publication [4] the generalized jp 1

2 i non-extensive maximum entropy distribution

was shown to yield a predictor of the data vector that minimizes the distance to the real (cor-

rupted) data. In [4] linear-independence of the measurements is assumed. In the present e�ort

we delve into the following points

� We shall prove that, provided that Rank(Â) is well de�ned, i.e, the spectrum of singular

values of Â has a sharp cut-o�, the lack of linear-independence of the measurements does

not a�ect the uniqueness of the jp 1

2 i distribution.

� Alas, when the spectrum of singular values has a fast decay rate, the jp 1

2 i distribution

minimizing the distance to the data may not exist when the data are perturbed by small

errors. In order to obtain a stable (regularized) solution against small perturbations of

the data we study the possibility of using as a constraint the discrepancy or residual

principle [8, 9, 10] under the requirement

jjÂjp 1

2 i � jf oijj2 � jjj�fijj2:
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The paper is organized as follows: The inversion problem to be addressed is introduced in

Section 2 via the description of the concomitant direct problem. In Section 3 the non-extensive

maximum entropy approach is summarized and the uniqueness of the jp 1

2 i distribution for the

case of dependent measurements is discussed, while, in Section 4, the residual principle is shown

to be an appropriate constraint that, together with the non-extensive maximum entropy prin-

ciple, leads to a regularization method for badly conditioned inverse problems. For the q = 1=2

case, the regularized jp 1

2 i distribution is shown to be the sum of two components, one of which

corresponds to the well known regularized solution of Tikhonov [11]. The proposed regulariza-

tion approach is illustrated in Section 5 by recourse to a numerical simulation concerning the

determination of the statistical properties of a rare earth sample on the basis of magnetization

measurements [12, 13].

2 The direct vs the inverse problem

As stated in the previous section, we shall focus attention on the stability aspect of the jp 1

2 i

distribution. For the sake of completeness we mention �rst the \direct" problem, corresponding

to the inverse problem to be addressed, in terms of the general jpqi distribution.

Let us assume that we wish to investigate a physical system S which is composed by N sub-

systems Sj ; j = 1; : : : ; N of known properties. In line with Tsallis' proposal [1], let us further

assume that the statistical description of such subsystems is given by the generalized weights

pqj � 0 ; j = 1; : : : ; N such that
PN

j=1 pj = 1 [2]. Consider now that one interacts with the

system S by means of a signal (probe) I. If the physical laws ruling the interaction are well

known then one could \predict" the outcome f of the experiment, provided that the statistical

distribution of subsystem is also known a priori. Thus, the above-mentioned \direct" problem
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can be formulated in mathematical form as follows:

ŴI = f (1)

where the linear operator Ŵ (associated to S) portrays the e�ect that the system produces

upon the input signal so as to originate the response f . As S is a composition of N subsystems

Sj and the subsystems' statistics is assumed to be represented by the �gures p
q
j ; j = 1; : : : ; N

we can decompose the operator Ŵ in the following fashion

Ŵ =
NX
j=1

pqjŴj; (2)

where the operator Ŵj accounts for the (assumedly known) action of Sj upon the probe I, i.e.,

ŴjI = �j (3)

�j being the response evoked by Sj when impinged upon by the probe I.

According to (1) and (2) and (3) we can write:

ŴI =
NX
j=1

pqj�j = f (4)

and it becomes clear that if we know both the �gures pqj ; j = 1; : : : ; N and the physical laws

governing the interaction, we can predict f and the \direct" problem is solved.

On the order hand, the concomitant \inverse" problem concerns the \mirror" situation: know-

ing the response f evoked by a system when impinged upon by a probe, determine the statistic

distribution pqj ; j = 1; : : : ; N characterizing the sample (system) S. Since in this case f is an

experimental result, its available representation will be given as a �nite set of, say M , numbers

f1; f2; : : : ; fM and equation (4) will entail:

fi =
NX

j=1

pqj�i;j; (5)
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where �i;j are the values one would obtain by performing the observation i upon the response

�j of system Sj. Certainly, the �i;j values should also be derivable by recourse to physical

considerations, as we are assuming that we deal with N subsystems Sj ; j = 1; : : : ; N , of known

properties. They can be regarded as matrix elements of an operator Â, i.e, �i;j = hijÂjji ; i =

1; : : : ;M ; j = 1; : : : ; N (the notation jji is used to represent an element of the standard basis

in Euclidean spaces). With this notation, and adopting the vectorial representation

jfi =
MX
i=1

fijii (6)

the previous equation can be recast in the more compact form

jfi = Âjpqi; (7)

where jpqi stands for the vectorial representation of pqj ; j = 1; : : : ; N , i.e.:

jpqi =
NX
j=1

pqj jji: (8)

As already discussed, when one aims to solve the inverse problem, rather than the exact data

jfi, what is actually available is an observed vector jf oi = jfi+ j�fi. How to take into account

the uncertainty of the observed data so as to guarantee stability of the inverse problem-solutions

will be the subject of Section 4.

3 The non-extensive maximum entropy approach

3.1 The generalized p
q distribution

The non-extensive maximum entropy approach for determining the generalized distribution

pqj ; j = 1; : : : ; N entails maximizing the entropy Sq:

Sq =

PN
j=1 p

q
j �
PN

j=1 pj

1� q
(9)
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subjected to the constraints of the problem. In the problem we are dealing with, if one wishes

to reproduce the data jf oi, Tsallis' proposal leads to the maximization of (9) with constraints:

jf oi = Âjpqi (10)

NX
j=1

pj = 1: (11)

This results in a distribution jpqi of the form

pqj = z[1� (1� q)hjjÂyj�i] q

1�q ; j = 1; : : : ; N; (12)

where Ây stands for the adjoint of Â while z and the Lagrange Multiplier-vector j�i 2 RM are

determined so as to ful�ll constraints (10) and (11).

In order to stress the role of the q�parameter we believe to be interesting to analyze the above

optimization process by looking at it in a new, but quivalent, fashion: after the change of

variables pqj ! ~pj one sees that, from a numerical viewpoint, the maximization of (9) with

constraints (10) and (11) is tantamount to dealing with

max

PN
j=1 ~pj

1� q
(13)

subject to the constraints

jf oi = Âj~pi (14)

NX

j=1

~p
1

q

j = 1: (15)

Indeed, by maximizing (13) with constraints (14) and (15) one obtains

~pj = z0[1� (1� q)hjjÂyj�0i] q

1�q � pqj ; j = 1; : : : ; N (16)

with z0 and j�0i 2 RM determined by solving (14) and (15). We see then that the role of the

q�parameter is completely speci�ed by the constraint (15). If q < 1 such a constraint can be
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expressed as jj~pjj
1

q

1

q

, where jj~pjj 1
q

indicates the 1=q-norm. Thus, for q < 1, the selection of the

q�parameter can be viewed as the process of choosing the norm one wishes to preserve while

maximizing the 1-norm. The concomitant decision should, of course, be adopted by carefully

paying attention to the physic of the problem at hand.

Notice that Boghosian chose an alternative path [3]: instead of constraint (11) he �xes:
PN

j=1 p
q
j ,

and the corresponding maximum entropy scheme is then numerically equivalent to that of

dealing with

max�
PN

j=1 ~p
1

q

j

1� q
= min

PN
j=1 ~p

1

q

j

1� q
(17)

with the constraints

jf oi = Âj~pi (18)

NX
j=1

~pj = 1; (19)

whereby, for q < 1, maximizing the q�entropy is tantamount to minimizing jj~pjj
1

q

1

q

, while pre-

serving the 1-norm. In this contribution we shall deal with constraint (11) and therefore, as

already discussed, the parameter q is assigned the role of preserving the 1=q-norm. In particular,

for q = 1=2 the Euclidean norm is seen to be preserved.

3.2 The q = 1=2 case

In a recent publication [4], some mathematical properties of the q = 1=2 distribution have been

reported. Provided that the measurements jf oi are independent, i.e. Rank(Â) = M , the p
1

2

j

distribution was shown to be given by

p
1

2

j =
MX
n=1

hjj ni 1p
�n
h~�njf oi+ z+ � z+

MX
n=1

NX

k=1

hjj nih njki ; j = 1; : : : ; N; (20)

with j ni and j~�ni ;n = 1; : : : ;M satisfying the eigenvalue-equations

ÂyAj ni = �nj ni ; �n > 0 ; n = 1; : : : ;M; (21)
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ÂÂyj~�ni = �nj~�ni ; �n > 0 ; n = 1; : : : ;M; (22)

The orthonormal vectors j ni and j~�ni are the so called singular vectors of Â and
p
�n ; n =

1; : : : ;M its non-zero singular values. The singular vectors are related each other through the

mappings: Âj ni = p
�nj~�ni and Âyj~�ni = p

�nj ni. The number z is calculated as

z = (
1�PM

n=1
jh~�njfoij2

�n

N �PN
j=1

PN
k=1

PM
n=1hjj nih njki

)
1

2 : (23)

Although equation (20) was derived assuming Rank(Â) = M , it is straightforward to prove

that it still holds true if Rank(Â) = K < M , with the corresponding summations running up to

K instead of up to M . Indeed, if Rank(A) = K < M , in order to determine p
1

2

j ; j = 1; : : : ; N

we should obtain the Lagrange Multiplier-vector j�i 2 RM by solving the equation

Âjp 1

2 i = Âjzi � z

2
ÂÂyj�i = jf oi (24)

jzi =
PN

j=1hjjzijji =
PN

j=1 zjji being the vectorial representation of the real number z [4].

When Rank(Â) = K < M the operator ÂÂy has no inverse and an in�nite number of vectors

j�i 2 RM satisfying (24) exists. Nevertheless, the lack of uniqueness of the Lagrange multipliers

does not a�ect the uniqueness of the distribution. This can be clearly appreciated if one writes

the most general solution of equation (24), namely

j�i = 2

z
(ÂÂy)0

�1
Âjzi � 2

z
(ÂÂy)0

�1jf oi+ j�?i; (25)

with j�?i an arbitrary vector in Null(ÂÂy) and (ÂÂy)0
�1

the pseudo-inverse of the operator

ÂÂy, which is expressed in terms of its eigenvectors as

(ÂÂy)0
�1

=
KX
n=1

j~�ni 1
�n
h~�nj: (26)

Since

� j�?i 2 Null(ÂÂy) Âyj�?i = 0, and
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� jp 1

2 i = jzi � (z=2)Âyj�i,

the arbitrary component j�?i has no e�ect whatsoever on jp 1

2 i. Thus, even if Rank(Â) = K <

M the p
1

2

j (j = 1; : : : ; N) distribution is of the form (20), with the summations running up to

K instead of up to M .

From the above discussion we conclude that, at least in theory, the linear dependence of the

measurements is overcome if the numerical Rank of operator Â can be estimated. However,

di�culties of a fundamental nature raise their heads in many situations because, if the singular

values spectrum does not have a clear cut o�, the estimation of Rank(Â) is not an easy task.

Furthermore, as it is well known, the existence of small singular values poses a bad-conditioned

problem whereby small perturbations in the data cause a large dispersion in the solution [5, 6, 7].

One way to proceed, in order to restore stability to the solutions, might be that of applying the

regularization method that prescribes the truncation of the singular values spectrum. We would

like to stress that such a criterion is somewhat embodied in the jp 1

2 i solution. Indeed, since

the jp 1

2 i-norm is �xed when, as a consequence of the data errors, the term
PK

n=1
jh~�njfoij2

�n
(cf.eq

(23)) becomes larger than unity there is no jp 1

2 i solution. If one wishes for an approximate

solution, the singular values-spectrum must be truncated so as to ensure a real value for the

constant z. In the next section we shall present an alternative regularization method which is

based on the discrepancy or residual principle.

4 The non-extensive maximum entropy based regular-

ization method

We introduce here a constraint that allows for regularization of bad-conditioned inverse prob-

lems, namely, the residual principle [8, 9, 10]. This principle states that, rather than a predictor
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that minimizes the distance to the data, we should look for a predictor, Âjpqi, such that:

jjÂjpqi � jf oijj22 � �2; (27)

where �2 is the square norm of the data error j�fi. In order to determine the �gures pqj ; j =

1; : : : ; N , out of all the distributions satisfying condition (27) we will choose the one that,

in addition to be endowed with the normalization property (11), maximizes the entropy (9).

We incorporate constraint (27) into the variational process through the introduction of an

additional variable t � 0 and write (27) as

jjÂjpqi � jf oijj22 + t = �2 t � 0: (28)

The functional, L, to be maximized is

L =

PN
j=1 p

q
j �
PN

j=1 pj

1� q
� 
0

NX

j=1

pj � 
(jjÂjpqi � jf oijj22 + t): (29)

From the condition �L
�t

= 0 one immediately obtains that, either constraint (27) is irrelevant,

or t � 0. Assuming that the uniform distribution, which maximizes the unrestricted entropy,

does not satisfy (27), the variable t must be zero and (27) becomes

jjÂjpqi � jf oijj22 = �2: (30)

From the condition �L
�p

= 0 it follows that

pqj = 
00[1� 2
(1� q)(hjjÂyAjpqi � hjjÂyjf oi)] q

1�q ; (31)

where for the sake of convenience we have introduced 
00 = [q=(1 + 
0(1 � q))]
q

1�q . In the

next subsection we shall consider the case q = 1=2 and show that such a q�value considerably

simpli�es the computational task.
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4.1 The q = 1=2 regularized solution

Adopting a q = 1=2 value for Tsallis' parameter, equation (31) is equivalent to

(Î�1 + ÂyA)jp 1

2 i = j�2i+ Âyjf oi; (32)

where Î is the identity operator in RN and we have set �1 = 1=(
00
) and �2 = 1=
, j�2i =
PN

j=1 �2jji being the vectorial representation of the number �2. For �1 > 0 the operator

(Î�1 + ÂyA) has an inverse that can be expressed as

(Î�1 + ÂyA)�1 =
NX
n=1

j ni 1

�1 + �n
h nj: (33)

Hence, jp 1

2 i can be cast in the fashion

jp 1

2 i = jc�1i+ �2j~c�1i; (34)

where

jc�1i =
NX
n=1

j ni
p
�n

�1 + �n
h~�njf oi; (35)

and

j~c�1i =
NX
n=1

NX

k=1

j ni 1

�1 + �n
h njki: (36)

Notice that the jc�1i component of jp 1

2 i corresponds to the regularized solution of Tikhonov

[5, 6, 7, 11]. The remaining component, j~c�1i, appears as a consequence of the normalization

constraint

hp 1

2 jp 1

2 i =
NX
j=1

pj = 1: (37)

Using this constraint to solve for �2 one obtains two possible solutions:

�2� =
�hc�1j~c�1i �

q
hc�1j~c�1i2 � h~c�1j~c�1i(hc�1jc�1i � 1)

h~c�1j~c�1i
(38)
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It is straightforward to prove that, for �1 > 0, the �2� solution is to be disregarded because it

yields a lower entropy. Indeed, for �2 satisfying (37) we have

S 1

2

= 2
NX

j=1

hjjc�1i+ �2hjj~c�1i � 2: (39)

Since �2+ � �2� the required proof is obtained by showing that
PN

j=1hjj~c�1i � 0. This imme-

diately follows after writing
PN

j=1hjj~c�1i in explicit fashion

NX
j=1

hjj~c�1i =
NX
j=1

NX

k=1

NX
n=1

hjj ni 1

�1 + �n
h njki: (40)

Thus, denoting rn =
PN

j=1hjj ni it is clear that

NX
j=1

hjj~c�1i =
NX
n=1

jrnj2
�1 + �n

� 0: (41)

The parameter �1, which characterizes the regularized solution (34), is to be �xed by solving

equation (30).

5 Numerical Test

Consider that the sample to be analyzed is a mixture of N = 11 di�erent rare earth elements.

We shall deal with a simple paramagnetic model given in the literature [14, 15]. Our aim

is that of determining the statistical composition of a paramagnetic sample on the basis of

magnetization measurements.

We shall simulate the \direct" problem by assuming that the jp 1

2 i distribution is of the binomial

form

p
1

2

j = C
11!

(11� j)!j!
0:4j0:611�j j = 1; : : : ; 11 (42)

with C an appropriate constant accounting for the normalization condition (37).

We appeal now to a classical result: if, via a magnetic �eld H at the temperature T , one
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interacts with a given ion j of Table I, one obtains the magnetization value [14, 15]:

Mj(x) = gjJj�BBJj (x) (43)

where x = H=T , �B is the Bohr magneton, gj is the spectral factor for the ion j

gj = 1 +
Jj(Jj + 1) + Sj(Sj + 1)� Lj(Lj + 1)

2Jj(Jj + 1)
(44)

and BJj(x) is the Brillouin function

BJj(x) =
2Jj + 1

2Jj
cotgh[

2Jj + 1

2Jj
x]� 1

2Jj
cotgh[

x

2Jj
]: (45)

For any given j we list the corresponding quantum number Sj; Lj and Jj in Table I.

Taking a series ofM =40 values the parameter parameter xi = Hi=T ; (i = 1; : : : ; 40) and using

(42) we simulate the noise-free measurements as

fi = hijÂjp 1

2 i ; i = 1; : : : ;M; (46)

where the matrix elements hijÂjji are the values Mj(xi) ; i = 1; : : : ; 40; ; j = 1; : : : ; 11.

The inversion of equation (46) constitutes a typical example of a bad-conditioned problem. In

fact, if the \exact data" fi ; i = 1; : : : ; 40 (calculated in double precision fashion) are given, using

the inverse Â�1 one obtains the exact solution (42) with Rank(Â) = 11. However, as soon as we

distort the exact data with small perturbations, the solution becomes chaotic. The continuous

line in Fig 1 represents the exact solution given by (42) and also obtained through Â�1 from

the exact data fi ; i = 1; : : : ;M (see the continuous line of Fig 2 for a better resolution) . The

broken and dotted lines of Fig 1 display the solution we obtain (for two di�erent realizations)

by randomly distorting the exact data within a 0:001% error.

In Fig 2 the continuous line represents the exact solution given in (42). The broken lines in the

same �gure represent the Tikhonov regularized solution (cf. eq (35)) from the same noisy data
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as in the previous example. One appreciates now the fact that the two di�erent realizations of

the data yield similar results. The dotted lines of Fig 2 represent the jp 1

2 i regularized solution.

As it can be seen, both the Tikhonov regularization and the non-extensive maximum entropy

regularization succeed in retrieving stability. In addition, the non-extensive maximum entropy

regularized solution is shown to achieve a better agreement with the \true" solution.

6 Conclusions

Stability aspects of the generalized q = 1=2 Tsallis distribution, with regards to bad-conditioned

problems, have here been addressed. It has been shown that, although redundant measurements

do not a�ect the theoretical uniqueness of such a distribution in the noise free case, when dealing

with problems of bad-conditioned nature small perturbation in the data require the regulariza-

tion of the \idealistic" noise free solution.

On the basis of both the residual and the non-extensive maximum entropy principles, a reg-

ularization method has been presented in this Communication. The ensuing regularized jp 1

2 i

distribution is endowed with a component which corresponds to the well known regularized so-

lution of Tikhonov. By recourse to a numerical test we were able to illustrate the fact that, in

addition to guarantying stability against perturbations in the data, the jp 1

2 i regularized solution

may be better, \resolution-wise", than the regularized solution of Tikhonov.
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Figure Captions

Table 1: For each rare-earth ion the pertinent quantum numbers are given.

Figure 1:The continuous line corresponds to the true distribution given in (35). The dot-

ted and broken lines are the results (for two di�erent realizations) obtained through Â�1 when

the exact data are randomly distorted within a 0:001% error.

Figure 2: The continuous line corresponds to the true distribution given in (35). The

broken lines display the regularized Tikhonov approximation for the same data as in Fig 1.

The dotted lines are the corresponding non-extensive maximum entropy regularized results.
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