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Abstract  
 

 

The performance of an internal combustion engine is affected when renewable biofuels are 
used instead of fossil fuels in an unmodified engine. Various engine modifications were 
experimented by the researchers to optimise the biofuels operated engine performance. 
Thermal barrier coating is one of the techniques used to improve the biofuels operated engine 
performance and combustion characteristics by reducing the heat loss from the combustion 
chamber. In this study, engine tests results on performance, combustion and exhaust emission 
characteristics of the biofuels operated thermal barrier coated engines were collated and 
reviewed. The results found in the literature were reviewed in three scenarios: (i) uncoated 
versus coated engine for fossil diesel fuel application, (ii) uncoated versus coated engine for 
biofuels (and blends) application, and (iii) fossil diesel use on uncoated engine versus biofuel 
(and blends) use on coated engine. Effects of injection timing, injection pressure and fuel 
properties on thermal barrier coatings were also discussed. The material type, thickness and 
properties of the coating materials used by the research community were presented. The 
effectiveness and durability of the coating layer depends on two key properties: low thermal 
conductivity and high thermal expansion coefficient. The current study showed that thermal 
barrier coatings could potentially offset the performance drop due to use of biofuels in the 
compression ignition engines. Improvements of up to 4.6% in torque, 7.8% in power output, 
13.4% in brake specific fuel consumption, 15.4% in brake specific energy consumption and 
10.7% in brake thermal efficiency were reported when biofuels or biofuel blends were used 
in the thermal barrier coated engines as compared to the uncoated engines. In coated engines, 
peak cylinder pressure and exhaust gas temperature were increased by up to 16.3 bar and 
14% respectively as compared to uncoated condition. However, changes in the heat release 
rates were reported to be between -27% and +13.8% as compared to uncoated standard 
engine. Reductions of CO, CO2, HC and smoke emissions were reported by up to 3.8%, 
11.1%, 90.9% and 63% respectively as compared to uncoated engines. Significant decreases 
in the PM emissions were also reported due to use of thermal barrier coatings in the 
combustion chamber. In contrast, at high speed and at high load operation, increase in the CO 
and CO2 emissions were also reported in coated engines. Coated engines gave higher NOx 
emissions by about 4 - 62.9% as compared to uncoated engines. Combined effects of thermal 
barrier coatings and optimisation of fuel properties and injection parameters produced further 
performance and emissions advantages compared to only thermal barrier coated engines. 
Overall, current review study showed that application of thermal barrier coatings in 
compression ignition engines could be beneficial when biofuels or biofuel blends are used 
instead of standard fossil diesel. However, more research is needed combining coatings, types 
of biofuels and other engine modifications to establish a concrete conclusion on the 
effectiveness of the thermal barrier when biofuels are used in the compression ignition 
engine. Reduction of NOx emissions is another important R & D area.  
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1. Introduction 
 
About 80.7% of the world energy demand is met by using the fossil based fuels [1] releasing 
considerable amount of lifecycle greenhouse gas (GHG) emissions. It is a well-known fact 
that the rising levels of GHG emissions are directly linked to global warming. The 
greenhouse gases also pose a danger to the wellbeing of the living beings. Llyod and Cackete 
[2] reported adverse effects of internal combustion (IC) engine exhaust gas emissions on 
human health e.g. cancer, cardiovascular and respiratory diseases. Furthermore, fossil based 
fuels are also facing with other issues such as depletion of resources, limited refinery capacity 
and security of supply [3]. Alternative fuel sources such as renewable biofuels can substitute 
fossil fuels and offset GHG emissions. Renewable second generation liquid biofuels (e.g. 
biodiesel, bioethanol, biobutanol and biooil) can be produced from waste resources using 
various techniques such as transesterification (Figure 1), fermentation, BTL, and pyrolysis. 
Biofuels are green and emits lower GHG emissions than fossil based liquid fuels (e.g. 
kerosene, gasoline and diesel). However, use of liquid biofuels in an unmodified IC engine 
might deteriorate the engine performance and combustion characteristics due to the inferior 
physicochemical properties of the biofuels [4–9]. Researchers have been investigating 
various aspects of engine modifications in order to improve the engine performance and 
combustion parameters when biofuels are used instead of fossil fuels [3,10–13]. Thermal 
barrier coating (TBC) [also known as ‘low heat rejection’ (LHR)] is one of the modifications 
which could be applied when biofuels are used in the internal combustion engines. In IC 
engine, as a rule of thumb, approximately one-third of the total input energy is lost by heat 
transfer through the cooling fluid, and another third of the total energy is released through tail 
pipe, and the rest is transferred to the crank shaft in the form of mechanical power. According 
to the second law of thermodynamics, the thermal efficiency of an engine can be enhanced up 
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to a certain level by minimising the energy losses to the surroundings [14–18]. The purpose 
of TBC is to reduce the heat losses from the combustion chamber of the engine to the 
surroundings (i.e. cooling system). Reduction of heat energy losses from the combustion 
chamber would mean more energy is available at the crank shaft [19]. Thermal barrier 
coatings can be applied on the surfaces of the components in the combustion chamber (piston 
crown, cylinder head and liner, inlet and exhaust valves). Research and development 
activities were carried out in various parts of the world to investigate how thermal barrier 
coatings affects the engine performance, combustion and exhaust gas emissions [12–14,16–
18,20–36] characteristics when various types of biofuels (and their blends) were used in the 
engine instead of fossil fuel. Until now, application of TBC is so far limited to some race 
engines [37] and gas turbines [38] using standard fuels. 
 
The advantages and disadvantages of using the thermal barrier coatings on gas turbine 
performance were reviewed and available in the public domain  [39,40]. Types of coating 
materials, their properties and effects of high temperature on coatings were discussed [41]. 
Jaichandar and Tamilporai [42] published an overview of various theoretical, experimental 
and simulation studies on low heat rejection (LHR) engines. They reviewed the effects of 
injection parameters on LHR engine performance characteristics. Hardly any review study 
could be found in the literature focusing on how TBC affects engine performance, 
combustion and exhaust emission characteristics when biofuels (and blends) are used instead 
of fossil fuels in an IC engine. In this study, a review study was carried out to investigate the 
insight on ‘TBC and biofuels (and blends) operation’. A total of 74 (seventy four) 
experimental results from 25 (twenty five) different studies were collated and reviewed for 
various biofuels (and blends) and ceramic coatings applications. In addition, another 7 
(seven) literature were investigated to review the influences of injection parameters and 
preheating of the fuel in thermal barrier coated engines. The effects of partially coated 
combustion chambers and air inlet system were also reviewed in the current study. The aim 
of this study is to present a review on the effects of thermal barrier coatings on biofuels (and 
their blends) operated compression ignition (CI) engines in terms of their performance, 
combustion and exhaust gas emissions characteristics. The objectives of the study are: (i) 
collating the information related to the properties and types of materials used for thermal 
barrier coatings in IC engines (ii) reviewing the engine performance, combustion and exhaust 
gas emissions characteristics of the TBC engines running on various types of biofuels (and 
blends), (iii) investigating the effects of fuel injection parameters and preheating temperature 
on TBC engine performance, combustion and exhaust gas emissions characteristics operated 
with various types of biofuels (and blends), (iv) comparing the engine performance, 
combustion and exhaust emissions characteristics with and without thermal barrier coatings, 
and (v) identifying the areas for future R & D activities on ‘TBC and biofuels’. Results 
available in the literature were grouped in three different reference conditions: (i) comparison 
of uncoated engine (UD) with coated engine for fossil diesel fuel (CD) application only, (ii) 
uncoated engine fuelled with biofuel (UB) versus coated engine fuelled with biofuel (CB), 
and (iii) coated engine fuelled with biofuel (CB) verses uncoated engine fuelled with fossil 
diesel (UD). Section 1 presents the introduction and scope of the current review study. Types 
of coating materials and their properties associated with the IC engine components are 
discussed in section 2. Sections 3, 4 and 5 presents detailed review on engine performance, 
combustion and exhaust gas emissions characteristics of the TBC engines fuelled with 
various types of biofuels, blends and fossil diesel. Comparison of engine tests results are 
shown in tables and in figures. Section 6 addresses the conclusions of the study and areas for 
future R & D study. 
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2. Thermal Barrier Coatings and Materials Properties 

 

Thermal barrier coating was first introduced in 1978 to assess the durability and performance 

parameters of the IC engine by decreasing the heat transfer from the combustion chamber 

[43]. Plasma spray technique is normally used to apply the TBC layers on the substrates (e.g. 

piston crown, cylinder liner, valves) due to its good splat structure with volume fracture of 

10-20% voids and cracks [13]. The surface of the coated components can preserve high 

temperatures and additional energy available inside the combustion chamber could affect the 

mechanical power output, thermal efficiency, fuel consumption and exhaust gas emissions.  
 

2.1. Coating Layers and Type of Materials 

The TBC applied to the IC engines are comprised of two stage layers, known as primary and 

bond coating layers [22–24]. The primary ceramic layer acts as thermal insulation. The bond 

layer consists of metallic substances (Figure 2) which provides adherence between the 

metallic substrate and the primary layer. Bond layer prevents corrosion and oxidation on the 

surface of the metallic substrate [44,45]. Furthermore, bond layer is necessary as an 

intermediate element to prevent any possible damage due to the thermal shock between the 

substrate and the top coating layer. Table 1 shows requirement of the important properties of 

ceramic materials and how they affects the performance characteristics of the coatings. The 

thermal conductivity value is very crucial since the aim of coating is to reduce the heat 

rejection from the combustion chamber as maximum as possible [46]. Lower the thermal 

conductivity value of the coating material lower will be the heat rejection from the 

combustion chamber of the engine (Figure 3). Thermal expansion coefficient (TEC) is 

another important property to consider, if the thermal expansion coefficients of both layers 

(primary and bond) are close to each other, they would expand at a similar rate and the effect 

of thermal stress on coatings would be very minimum. The melting point and phase stability 

of the coating materials are also significant as the durability of the coatings has to be 

conserved after high temperature operations (Table 1). Popular ceramic coating materials, 

their advantages and disadvantages are collated in Table 2. The bond layer is made up of an 

intermetallic alloy which enhances the adhesion between the substrate and the upper layer. 

Aydin [21]  reported that minor cracks on the ceramic coating were observed after 100 hours 

of operation (Figure 4) due to the absence of bond layer. Thermal expansion coefficients 

values of the bond layer must be lower than that of the coating layer and higher than metallic 

substrate [47–52]. Zirconates (10-6 K-1), garnets (9.1x10-6 K-1), Yittria stabilized zirconia and 

forsterite (11x10-6 K-1) have better TEC values than other materials (Table 2). Table 3 

presents various types of TBC materials (both main and bond layer), layer thicknesses and 

substrate surfaces used by the researchers when the internal combustion engine was fuelled 

by various biofuels and/or blends. It was revealed that most studies used zirconium or similar 

materials (ZrOx) for primary layer and NiCrAl alloy for bond layer (Table 3). Primary layer 

thicknesses vary widely ranging from 150 µm to 500 µm. On the other hand, thickness of the 

bond layer was between 0 µm to 150 µm. The coatings were applied on cylinder head, piston 

crown, cylinder liners and valves. However, it was observed that the coatings on the cylinder 

head and piston crown were common in almost all studies (Table 3). 
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3. Coatings and Engine Performance Characteristics 

 

The effects of TBCs on biofuels (and biofuels blends) operated engine performance 

characteristics were reviewed and presented in Table 4 and in Figure 5. Performance 

parameters such as brake specific fuel consumption (bsfc), brake specific energy 

consumption (bsec), brake thermal efficiency, power output, coolant load and sound intensity 

were discussed under three different engine operation scenarios – (i) uncoated diesel to 

coated diesel (UD to CD), (ii) uncoated biofuel to coated biofuel (UB to CB), and (iii) 

uncoated diesel to coated biofuel (UD to CB) [Table 4, Figure 5].  

 

3.1. Brake Specific Fuel Consumption 

In general, the brake specific fuel consumption (bsfc) were increased in unmodified engines, 

when fuelled with biofuels (or blends) as compared to fossil diesel operation [4–6,53–57]. On 

the other hand, significant improvements in the bsfc were reported in the literature when TBC 

technique was implemented (Table 4, Figure 5). Reduction on bsfc of up to 13.4% was 

reported for UB versus CB application [28] (Table 4). Higher temperature in the combustion 

chamber helped to shorten the ignition delay period and burn biofuel more effectively than in 

uncoated engine, hence lower fuel is needed to produce the same output power. Table 4 

shows the improvements of bsfc values under various scenarios. Furthermore, few studies 

reported that the bsfc of the coated biofuel application was even lower than the uncoated 

diesel (UD) application (Table 4, Figure 5). In contrast, increase in the bsfc was also reported 

in biofuels operated coated engine [24]. Use of spark ignition engine might have caused this 

unusual characteristics. Overall, biofuels (and blends) used in coated engines produced lower 

brake specific fuel consumption of between 3% and 13.4%, when compared to uncoated 

engines. Highest bsfc reduction was reported by Reddy [28]; they used neat mohr oil biofuel 

and partially stabilised zirconium as coating material. 

 

3.2. Brake Specific Energy Consumption 

Properties of biofuels (and blends) e.g. density are different than fossil diesel. Brake Specific 

Energy Consumption (BSEC) is another important parameter to assess the specific energy 

consumption of biofuels and then compare them with that of fossil diesel [58]. Table 4 

illustrated that in almost all cases the bsec values were reduced when coatings were applied 

in biofuels (or blends) operated engines (ie. UB verses CB scenarios). Enhanced temperature 

inside the combustion chamber led to better combustion of biofuels. As a result of TBC 

modifications, the highest reductions on bsec were reported to be 7.4% for diesel [23] and 

15.4% for biofuel [17]. Furthermore, literature showed that other engine modifications like 

changing injection timing, injector opening pressure and preheating temperature of biofuels 

could further reduce the specific energy consumptions in both coated and uncoated engines 

(Table 5). The cetane number of the biofuel plays an important role on fuel injection 

parameters adjustment. Biofuels having lower cetane number than fossil diesel prevalently 

modified by advancing the injection timing. Up to 4.4% and 5.6% reductions on bsec were 

observed when injection timing was advanced by 3° and 6° CA respectively [36] (Table 5). 
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3.3. Brake Thermal Efficiency 

The brake Thermal efficiency (BTE) can be explained as the percentage of chemical energy 

contained in the fuel converted into useful mechanical work. Use of thermal barrier in the 

combustion chamber could capture more mechanical energy. In addition to TBC, additional 

oxygen content in the biofuel might also help to achieve higher thermal efficiency [23]. 

Deviations in the brake thermal efficiencies due to the thermal barriers are reviewed and 

presented in Table 4. Not surprisingly, for both UD to CD and UB to CB scenarios, improved 

BTE values were reported in the range of 0% to 6.7% and 2.2% to 18% respectively. 

Furthermore, in the case of UD to CB scenario, relatively higher improvement on BTE of 

6.3% [31], and 4.9% [34] were reported. In contrast, 4.9% [27] and 3.7% [26] decrease in the 

BTE values were also reported when switched from UD to CB operation. It was thought that 

biofuel types and quality of coatings might have caused these unexpected results. 

Interestingly, one study reported a 10.7% increase in the BTE value for UD to CB scenario, 

optimisation of the injection timing and application of TBC both jointly contributed to 

achieve increased BTE value [36]. Effects of fuel injection parameters and preheating 

temperature on BTE values in both coated and uncoated engines were also collated (Table 6). 

It was found that, in general, higher injection pressure and preheated fuels gave higher BTE 

values in both uncoated and coated engines. This can be attributed to the improved 

combustion characteristics as a result of upgraded spray characteristics of the fuel [59]. In 

addition, advancing the injection timing also gave improved BTE vales in both types of 

engines (Table 6). However, the relationship between the injection timing and BTE values 

are not liner; maximum BTE value can be obtained at optimum injection timing. The 

optimum injection timing and injection opening pressure would also depend on the 

physicochemical properties of the fuel and other modifications of the engine. For example, 

the optimum injection timing in coated engine was reported to be 30°bTDC when rice bran 

oil was used in the engine [33]. On the other hand, Reddy et al stated the optimum injection 

timing as 28.5°bTDC for coated engine operated with mohr oil [28]. This was due to the 

different ignition delays and combustion duration characteristics of the fuels. 

 

3.4. Engine Power 

Generally, due to the lower heating values and higher kinematic viscosities, use of renewable 

biofuels causes reductions in the power output of the  engine [4,7,60–63]. The current review 

study revealed that TBC method is a promising solution to prevent the engine power loss 

when biofuels are used instead of fossil diesel ([31,32], Table 4, Figure 5). Literature shows 

that up to 9.2% improvement in the engine power can be achieved for UD to CD tests 

scenario. Whereas, the power and torque output from biofuels powered coated engines (CB) 

were reported to be 7.8% and 4.6% higher than the uncoated engines (UB) using same 

biofuels([31], Table 4, Figure 6). However, on the other hand, decrease in the engine power 

output was also reported (Table 4), use of poor quality biofuels (or blends) in the coated 

engines might have caused this characteristics. Upgradation of the fuels properties, and 

optimisation of preheating temperature and injection parameters would offset the engine 

power loss. Poor performance of the coatings could also lead to loss in the engine power 

output. 
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3.5. Coolant Load and Sound Intensity 

Coolant load (CL) and sound intensity (SI) are two other parameters which are also affected 

by the use thermal barrier coatings appled inside the combustion chamber of the engine 

(Figure 7). As the insulated components (coatings) in the combustion chamber decreases the 

heat transfer from working fluid (air and fuel mixture) to the coolant fluid; hence, the cooling 

loads (CL) of the engine system are expected to be reduced. Table 4 shows changes in the 

cooling loads when coating was applied to the engine. Reduction of up to 19% on the CL was 

reported by Srikanth [36] for UB to CB application. In another study, 18.2% reduction in CL 

was mentioned by Reddy [28] in UD to CB operation scenario. Decreased cooling load have 

multiple advantages, some of them are: (i) would decrease the weight of the engine, and (ii) 

would reduce the cost of the cooling system. When compared to uncoated engines, sound 

intensity were decreased significantly in coated engines (Table 4). Coated engines could 

provide up to 11.8% silent operation than conventional diesel engines when fuelled with 

renewable biofuels (Figure 7). It was believed that smooth combustion of the fuels in TBC 

engines cased this behaviour.  

 
  

4. Coatings and Combustion Characteristics 

 

Application of the thermal barrier coatings affects the combustion characteristics of the 

engine. The various combustion parameters discussed in this section are: peak in-cylinder 

pressure, heat release rate, exhaust gas temperature and volumetric efficiency. The deviations 

in combustion characteristics were reviewed and presented in table 7 and in figure 7, the 

results were grouped in three main scenarios i.e. UD to CD, UB to CB and UD to CB.  

 

4.1. Peak in-cylinder Pressure 

Most studies reported increased in-cylinder pressures when biofuels (and/or biofuels blends) 

were used in coated engines as compared to uncoated engines.  This can be explained by gas 

kinetic theory. The mean square temperature of gas molecules increases in coated engines as 

a result of thermal barrier [24]. The higher the gas temperature higher would be the gas 

pressure. Janardhan [14] reported that maximum peak pressure was increased by 16.3 bars 

(33.5%) in the case of UB to CB application. In the case of UD to CB scenario, most studies 

reported increased peak in-cylinder pressures (Table 7). However, few studies reported 

decreased in-cylinder pressures by 2 bars [26] and 0.7 bars [34] for UD to CB application. It 

was revealed that the partial coating (only piston crown coating) caused this [26] unexpected 

characteristic, as engine cooling is mainly affected by the changes in the cylinder liner and 

cylinder head.  

 

Table 8 demonstrated the effects of injection timing, injector opening pressure and fuel 

temperature on peak in-cylinder pressure, maximum rate of in-cylinder pressure rise and 

crank angle position at peak in-cylinder pressure. Most studies reported that the peak in-

cylinder pressure can be increased by changing the injection timing and increasing the 

injector opening pressure (IOP) in both coated and uncoated engines (Table 8). For example, 
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Janardhan et al. reported an increase in the peak in-cylinder pressure by 2 bar when the 

injection timing in coated engine was advanced by 5°CA [14]. The engine was operated with 

jatropha oil biodiesel and the IOP was set at 190 bar. The authors reported that, the peak in-

cylinder pressure was further increased by 3 bar when the IOP was increased form 190 bar to 

270 bar [14]. Similarly, in tobacco seed oil biodiesel fuelled coated engine, Rao et al. 

observed 13.1 bar increase in the peak in-cylinder pressure when the injection timing was 

advanced by 3°CA [29]. Advancing the injecting timing allowed extra delay time which 

helped in better mixing of biofuels with intake air. Furthermore, most biofuels have higher 

viscosity values than fossil diesel. Higher injection pressure produced smaller droplets sizes 

and better spray characteristics. 

 

In general, maximum rate of in-cylinder pressure rise (MRICPR) of fossil diesel is typically 

higher than biofuels when unmodified engines are used. Low cetane number and high 

viscosity of biofuels (and their blends) caused this characteristic. However, improvement in 

the MRICPR values were observed in coated engines (Table 8). Srikanth et al. [36] reported 

that MRICPR was increased by 0.1 bar/deg in coated engine when operated with cotton seed 

oil biodiesel as compared to uncoated engine operated with the same biofuel. Improvement 

on MRICPR by 0.9 bar/deg was also observed by Rao et al. [29] using tobacco seed oil 

biodiesel in coated engine. Reddy et al [28] reported that the MRICPR was increased by 1.0 

bar/deg and 0.7 bar/deg when operated with mohr oil and for mhor oil biodiesel respectively. 

A substantial increase in MRICPR by 2.2 bar/deg was observed by Krishna et al. [58] when 

jatropha oil was used in the coated engine. The MRICPR was increased by 1.0 bar/deg and 

0.9 bar/deg for rice brawn oil [33] for jatropha oil biodiesel operation [14]. Combined effects 

of fuel properties, preheating temperature, engine specification and injection parameters 

caused wide variations in the MRICPR values. It was revealed that optimising the injection 

parameters and preheating temperature could further improve the MRICPR values in TBC 

engines (Table 8). In addition, these parameters also affected the angle or time of occurrences 

of peak in-cylinder pressures. Krishna et al. reported that in the case of rice brawn oil 

operated TBC engine, the time of peak in-cylinder pressure was advanced by 2° CA 

(approaching to TDC) when the injection timing was changed from 27°bTDC to 30°bTDC 

[33]. The authors also noticed further advancement by 1° CA when the injection pressure was 

increased from 190 bar to 270 bar (without changing the injection timing (i.e. 27°bTDC)) 

[33]. Another study observed that in both coated and uncoated engines, the time of 

occurrence of peak in-cylinder pressure was changed by 1° CA (approaching to TDC) when 

the temperature of tobacco seed oil biodiesel was preheated to 60°C ([29], Table 8). 

 

4.2. Exhaust Gas Temperature 

Exhaust gas temperature (EGT) is directly related to the combustion temperature. Therefore, 

EGT is expected to rise in TBC engines. In addition, high combustion temperatures could 

also affect the composition and quantity of the exhaust gases. Up to 22% increase in EGT 

was observed (Table 7) for UD to CD scenario. However, in the case of biofuel (and blends) 

coated engines, a mixed picture was found with up to 10% reduction and up to 14% increase 

when compared to uncoated biofuel operation (Table 7). However, in general, EGT was 
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increased due to the application of thermal barrier. High EGT could be achieved in 

turbocharged engine using the exhaust gas recirculation technique.  Hence, the application of 

TBC in turbocharged engine could help to improve the overall performance of the IC engine 

even better [64].  

 

4.3. Heat Release Rate 

Heat Release Rate (HRR) is another combustion parameter which could be affected due to 

the application of the thermal barrier. Table 7 shows deviations in the HRR when coatings 

were applied. In the case of coated biofuel operation, Aydin [20], MohamedMusthafa [17], 

Taymaz [16] and Prasath [34] reported  that the HRR were decreased by 20%, 3%, 19% and 

27% respectively when compared with the uncoated engines. In contrast, Prabhahar [26] and 

Rajan [27] found that HRR were increased by 5% and 13.8% when coatings were applied. It 

was discovered that coating piston crowns only led to the increased HRR values (Table 3). 

 

4.4. Volumetric Efficiency 

Volumetric efficiency (VE) is the ability of the engine to breath. It is a ratio of the actual air 

intake to the theoretically possible maximum air intake. Theoretical maximum intake is the 

amount of air contained in the cylinders at the manifold temperature [65]. MohamedMusthafa 

[17] indicated that there is a link between the volumetric efficiency and the thickness of the 

coating. They reported that VE was decreased by 5.5% and 7.7% respectively for the UD to 

CD and UD to CB applications for coating thickness lower than the 250 µm,. On the 

otherhand, in the case of higher coating thicknesses (about 500 µm), relatively higher 

reductions of 8.2% for UD to CD and 11.8% for UD to CB applications were observed ([36], 

Table 7, Figure 7)). This phenomenon can be linked to the changes in the air density. As the 

thickness of the coating increases, the average temperature inside the cylinder increases. Air 

expands at higher temperatures; and as a result, number of the air molecules entering the 

cylinder will be lower as compared to uncoated condition. Nevertheless, modified injection 

timing [28] and use of turbocharged engine [66] could help to compensate the deterioration of 

the volumetric efficiency in coated engines. 

 

5. Coatings and Exhaust Gas Emissions 

 

Effects of TBCs on exhaust gas emissions (CO, CO2, HC, NOx and smoke intensity) were 

collated (Table 9, Figure 8) and discussed. Unlike engine performance and combustion 

characteristics, exhaust gas emission characteristics were also reviewed under three different 

scenarios - UD to CD, UB to CB and UD to CB. 

 

5.1. CO Emission 

Various parameters such as ambient conditions, engine speed and load, air-fuel ratio, 
geometry of the combustion chamber and piston, atomisation, type of injection, injector 
geometry, injection pressure and timing, heat rejection via coolant, and fuel properties affects 
the concentration of gas components in the exhaust gas. Emission of CO gas is primarily 
dependent on the amount of oxygen content in the air-fuel mixture. Insufficient oxygen 
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content during the combustion process generally lead to higher CO gas emission [4,67,68]. 
Guru et al. [67] reported that in addition to HC gas, concentration of CO gas also represent 
the efficiency of combustion i.e. conversion of chemical energy into mechanical energy. 
Various authors reported that use of biofuels in unmodified engines could reduce the CO gas 
emissions due to the higher oxygen content in the biofuels (and in blends) [53–56,69]. 
Literature shows that further reduction in the CO emission could be achieved by TBC 
application (Table 9) in all three comparison scenarios (Table 9). Use of ZrO2, ZrO3, TiO2 
and Mo coating materials helped to achieve better CO gas reduction than other types (Tables 
3 and 9). Iscan [22] and Aydin [21] reported that up to 81.3% and 93.8% reduction in the CO 
gas emissions were achieved for fossil diesel and biofuel respectively when coatings were 
applied in the combustion chamber.  CO gas emissions of coated and uncoated engines were 
almost comparable at low and medium engine speeds; however, at high speed operation, 
significant decrease in the CO emission was reported when coated engine was used [21,22]. 
Furthermore, Kumar [23] reported that for biofuel operation, concentration of CO increased 
with the increase in engine power output.  
 
5.2. CO2 Emission 

The lifecycle CO2 emissions can be reduced significantly by replacing fossil diesel with the 
renewable biofuels and/or blends [54,60]. Biofuels are considered as carbon neutral due to 
the fact that the CO2 gases emitted from biofuels combustion could be used to grow biomass 
[70–73]. However, the intensity of tailpipe CO and CO2 gases depends on the air-fuel ratio 
and other parameters. Aydin [21] reported that, both engine speed and thermal barrier 
coatings have huge impact on the CO2 emissions. The author found that CO2 emission of 
fossil diesel was decreased by about 19.4% at low and medium engine speed operation; on 
the other hand, in case of high engine speed operation, CO2 emission was increased by about 
29.2%. For coated biofuel operation, CO2 emissions of CSO35 (35% cottonseed oil biodiesel, 
65% diesel) and SFO35 (35% sunflower oil biodiesel, 65% diesel) were reduced by 11.1% 
and 2.8% respectively at low and medium range engine speeds; however, at high speed, they 
were increased by 20% and 23% respectively [21]. It can be concluded that in coated engines, 
CO2 emission was decreased at low to medium speed operation; however, at high speed and 
high load operation, CO2 emission could increase. 
 

5.3. HC Emission 

HC gas is not toxic by itself, they react with other pollutants in the atmosphere. Emission of 
HC gases are caused by incomplete combustion of fuels [60]. Literature reported that the 
TBC engines emitted significantly lower HC emissions in all three scenarios when compared 
to uncoated engines (Table 9). Higher lean flammability and reduced distance for quenching 
due to the thermal barrier caused this [12,24]. Up to 92.5% reduction in HC gas emission was 
reported when biofuel was used in coated engine instead of uncoated engine [26]. 
 
5.4. NOx Emission 

Emission of NOx gases depends on mainly combustion temperature and air-fuel ratio. When 
the combustion temperature exceeds about 1800 K, nitrogen and oxygen molecules combines 
and produces nitrogen oxides [74]. Emission of NOx gases affects environment and human 
health. Human lungs are affected by NOx gases; they react with the water vapour and form 
nitric acid inside the lungs which causes respiratory diseases [2]. Table 9 shows that almost 
all studies reported increased NOx emissions regardless of type of fuels used, coating 
materials and coating thicknesses. For UB to CB scenario, NOx emissions were increased in 
the range of between 4% and 62.9%. The small increase (4%) in NOx emission was due to the 
partial coating (only piston crown with 500 µm was coated) [26].   
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5.4.1. Reduction of NOx Emission 

Thermal barrier resulted increased interaction between nitrogen and oxygen at high 

combustion temperature and hence NOx emissions were increased [17]. Literature reported 

that injection timing can also affect NOx gas emissions, Kumar [23] and Alkidas [75] found 

that NOx emission could be decreased by decreasing the ignition delay (by advancing the fuel 

injection timing). Buyukkaya et al [76] reported that combined TBC injection timing 

modifications resulted 2.44% reduction in NOx emission at low loads and low-speed engine 

operation. They used 150 µm thick NiCrAl material as bond layer in the pistons; on top of the 

bond layer, MgZrO3 was coated with the thickness of 350 µm. In addition to pistons, cylinder 

head and valves were also coated with CaZrO3 material. The compression ratio was kept 

constant by removing the substrates material equal to that of combined thickness of both 

bond and main coatings (ie. 500 µm) [76]. However, they also reported about 9% higher NOx 

emission at high load and low-speed operation than uncoated engine. Sathiyagnanam et. al. 

[35] reported up to 46.5% decrease in the NOx emission for UD to CD scenario. They used 

Al2O3 as coating material and diisopropyl ether as an additive with fossil diesel. It was 

thought that the use of additive and Al2O3 as coating material might have caused low NOx 

emission. Hazar and Ozturk [18] used Al2O3 as coating material and reported 14.7% increase 

in the NOx emission; however, this value was lower than the average increase (30.5%) in 

NOx emissions reported by other studies (Table 9).  

 

Table 10 shows the effects on injection parameters and preheating of the fuel on NOx 

emissions. Literature reported that in coated engines, NOx emissions could be decreased by 

advancing the injection timing in coated engines (Table 10). Srikanth et al. [36] found out 

that up to 7% reduction on NOx emission was possible in cotton seed oil biodiesel powered 

coated engine when the injection timing was advanced by 3° CA. The NOx reduction by 

advancing the injection timing was linked to decreased gas mixture temperature [36]. Similar 

reductions on NOx emissions in coated engines were also reported by other studies: (i) 50 

ppm (4.2%) reduction for tobacco seed oil biodiesel operation when injection timing was 

advanced by 3°bTDC [29], and (ii) 40 ppm (3.9%) reduction for mohr oil operation when 

injection timing was advanced by 1.5°bTDC [28]. In addition, literature showed that 

increased injector opening pressure and preheating the fuel helped to achieve lower NOx 

emissions (Table 10). It was revealed that the NOx reductions in coated engines were only 

possible to a certain extent via various additional modifications; however, very few studies 

were able to balance the NOx emissions before and after the thermal barrier coatings were 

applied (Table 10). 

 

5.4.2. Selective Catalytic Reduction 

In addition to injection parameters modifications, use of selective catalytic reduction (SCR) 

could be implemented to further reduce the NOx emissions in coated engines. The SCR 

system can be installed easily in the exhaust system as an after treatment component. In SCR 

technique, ammonia (NH3) is injected into the exhaust gas which converts nitrogen oxides 

into nitrogen, water and tiny amounts of carbon dioxide [77]. Xiaoyan et al. [78] reported that 

the use of SCR treatment reduced the NOx emissions by 73% when the engine was operated 
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with biodiesel-ethanol-diesel blend. In another study, Vallinayagam et al. [79] managed to 

reduce the NOx emissions of pine-fossil diesel blend fuelled engine by 40% when SCR 

system was used. The SCR after treatment technique seems very promising for reducing the 

NOx emissions in biofuels operated TBC engines. 

  

5.5. Smoke and Particulate Matter 

Generally, there are big concerns on high level particulate matter (PM) emissions from 

compression ignition engines. Researchers stated considerable decreases in PM and soot 

emissions when oxygenated fuels such as biofuels were used in the engine [4,5,80,81]. The 

concentration of oxygen content in the chemical structure of biofuels is an important 

parameter which affects the darkness of the exhaust smoke by filling the sudden local oxygen 

vacancies [17]. This phenomenon results in a significant reduction on biofuels smoke opacity 

when compared with the same for fossil diesel. Literature shows that thermal barrier coatings 

contributed to further reductions in the smoke intensity and particulate matter emission. Table 

9 shows variations in PM and smoke opacity emissions when coatings were applied to 

engines. As an example, a reduction of up to 55.6% in smoke opacity can be achieved by 

coating the engine [21]. In coated engines, PM emissions were decreased considerably than 

standard engines both at low and high engine speeds operation (Table 9). At high engine 

loads, approximately 40% lower PM emissions were observed than standard engine [76]. 

Furthermore, turbocharged engine showed relatively higher PM and smoke reductions due to 

the increased air (or oxygen) content available for combustion in each cycle.  

 

Furthermore, the smoke emission characteristics were also affected by the injection 

parameters and fuel preheating (Table 11). Reduction on smoke intensity were observed by 

advancing the injection timing and/or increasing the injector opening pressure. This can be 

attributed to the improved spray characteristics and better mixing of the fuel-air inside the 

combustion chamber. Preheating the fuel reduces the viscosity and density values of the fuel, 

and ultimately will lead to reduced smoke emissions (i.e. improved combustion) [28]. 

Srikanth et al. [36] obtained up to 70% reduction on smoke emissions in cotton seed oil 

biodiesel powered coated engine when all three parameters were optimised (i.e. advancing 

injection timing, increasing injection pressure and preheating the fuel). 

 

 

6. Conclusions and Future R&D Areas 
 
In this study, effects of thermal barrier coatings on the compression ignition engine 
performance, combustion, and exhaust gas emissions characteristics were investigated when 
biofuels (and blends) were used instead of fossil diesel. The literature findings were discussed 
in three main categories: UD to CD, UB to CB and UD to CB applications. The effects of 
injection timing, injector opening pressure and preheating condition of the fuel in TBC 
engines were also reviewed. A total of 74 case studies from 28 literature were reviewed and 
presented. To help the research community and relevant industry, the engine characteristics 
results were grouped and tabulated based on various reference scenarios. The main findings 
of the study are highlighted below: 
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(i) Most researchers used ceramic based materials for coatings due to their higher endurance 
level against higher temperature and low thermal conductivity values. Zirconia is one of the 
most frequently used candidate material for thermal barrier coatings. Selection of physical 
thickness, material properties such as thermal expansion and conductivity are very crucial for 
durability and performance of the coating layer. Thermal barrier coatings were applied on 
cylinder liner, piston crown and valves. Application of bond coat layer is very important to 
create strong adhesion between the substrate and the primary layer. Moreover, bond layer 
reduces the risk of thermal fatigue failures. Application of thick (0.5 µm or above) coatings 
could produce negative effect on the volumetric efficiency and lubrication of piston-cylinder 
liner. In addition, this can also lead to reduced adhesion of the coating with the substrate. 

(ii) Coated engines could achieve around 11% higher temperatures inside the combustion 

chamber with respect to the uncoated engines. Increased combustion temperature helps to 

ignite the fuel faster. Some of the important combustion characteristics in the TBC engines 

are: reduced ignition delay, longer combustion duration, less heat release rate, increased 

maximum rate of in-cylinder pressure rise, multi-fuels flexibility, better mixing and faster 

vaporisation of the fuels, easy start-up of the engine and reduced noise and knocking during 

the combustion. These characteristics would help to burn relatively high viscosity and low 

cetane number renewable biofuels more efficiently when compared to combustion of the 

same fuel in standard uncoated engines.  

 

(iii) Generally, performance of a CI engine decreases when biofuels are used instead of 

standard fossil diesel in unmodified engines. However, application of thermal barrier coatings 

in biofuels (or blends) operated engines would lead to achieve comparable performance 

similar to fossil diesel. Improvement in power output, torque, BSFC, BSEC and BTE were 

observed by the researchers when biofuels (and blends) were used in TBC engines as 

compared to uncoated engines. Increase of up to 7.8% in power output and 10.7% in brake 

thermal efficiency were reported by the authors when coatings were applied. Up to about 

13.4% reduction in the brake specific fuel consumption and 15.4% reduction in the brake 

specific energy consumption were also reported in the literature. 

 

(iv) Only piston crown coating is not sufficient to achieve better or comparable performance 

with reference to uncoated condition as main heat transfers takes place between the 

combustion chamber (cylinder liners) and cooling jacket system. Most literature reported that 

coating of the cylinder liner reduces the HRR. Furthermore, increased peak in-cylinder 

pressures and exhaust gas temperatures were also reported. However, increased HRR in 

coated engines were also reported in the literature.   

 

(v) Due to the better combustion characteristics, coated engines work smother. On average, 

biofuels (and blends) operated coated engines gave reduced CO, HC and smoke opacity 

emissions by about 20%, 50% and 25% respectively when compared to uncoated engines,. In 

coated engines, emission of CO2 gas decreased at low and medium speed operation. 

However, at high speed and high load operation, higher CO2 emission was reported when 

compared to uncoated engines. The NOx gas emission was increased by about 30% on 

average, when biofuels were used in the coated engines. As NOx emissions are likely to 
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increase in the TBC engines, use of selective catalytic reduction is highly recommended as an 

after-treatment method. Additives in the biofuel could also help to reduce the NOx gas 

emission in the coated engines. 

 

(vi) Optimisation of the injection parameters (injection timing and pressure) and preheating 

of the fuel gave improved performance and combustion characteristics in TBC engines. Up to 

4.5% increase in the brake thermal efficiency was achieved by advancing injection timing. 

Also, increased injector opening pressure resulted up to 2% increase in the brake thermal 

efficiency. The NOx emissions of the biofuel operated TBC engine could be reduced 

significantly by optimising the injection parameters and preheating temperature of the fuel. 

  

(vii) Use of turbocharger would further improve the performance, smoke and PM emission 
characteristics of the coated engines. Increased combustion temperature could deteriorate the 
lubricant properties, extra attention would be needed on the lubricating oil properties. 
Thermal barrier coatings reduce the thermal stress on the coated components, which 
eventually will help to increase the lifetime and decrease the possibility of the thermal fatigue 
failures of the components.  

 

Following R&D topics are recommended as future study:  

• Long term durability study of the coated engines running with various types of 

biofuels and blends. Investigation on the frictional power losses using various types of 

lubricants is an important area for future study. 

• Investigating the effects of coating thicknesses and type of coating materials on the 

engine performance and emission characteristics. Optimisation of the combustion 

chamber geometry for thermal barrier coated engines is another topic for future study. 

• Detailed experimental study on the optimum injection timing and the injection 

pressures for biofuels (or blends) application in the coated engines. Effects of various 

combustion and injection types (HCCI, dual fuelled, DI, IDI, dual injection, variable 

compression) on biofuels operated coated engines is another important R & D topic. 

• Effects of new low load cooling system on engine performance and emission 

characteristics. Combined investigation on the optimisation of cooling fluid 
temperature and thermal barrier coatings is another important topic for future work. 
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Figure 1: Biodiesel production steps 
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(a) UB to CB scenario  

 

 

(b) UD to CB scenario  

 

Figure 5: Deviations in engine performance parameters after coating was applied to the 
engine combustion components  
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(a) UB to CB scenario 

 

 

(b) UD to CB scenario 

 

 

Figure 7: Deviations in engine combustion characteristics before and after thermal barrier 
coatings were applied                                       
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(a) UB to CB scenario  

 

 

(b) UD to CB scenario  

 

Figure 8: Deviations in exhaust gas emissions and smoke characteristics before and after the 
TBC modifications 
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Table 1: Requirement and effects of material properties of ceramic coating substances [46] 

 

Material  

property 

Level of 

requirement 

Effects and  

additional information 

Thermal 
conductivity Low Aim is to reduce heat rejection 

Thermal expansion High Expansion must be close to substrate and bond coats 

Melting point High Must stand high temperature operation 

Phase change Stable Phase change can destroy the coating layer 

Oxidation resistance High Working fluid can damage components 

Corrosion resistance High Working fluid can damage components 

Strain tolerance High Operating environment imposes large strain ranges 
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Table 2: Properties of popular coating materials [13,44] 

 

  Coating material candidates 

 Zirconates Garnets Cordierite 

Yittria Stabilized 

Zicronia Mullite Alumina Spinel Forsterite 

    YAG (Y3Al5O12) 2MgO.2Al2O3.5SiO2       MgO.Al2O3 2MgO.SiO2 

  
  

A
d

v
a

n
ta

g
e

s 

SA, low TS, high (1970 oC) TC, low TSR high Density, low Hardness TS TEC, high (11x10-6 K-1) 

TC, low PS, high 
 

TC, low TS, high CI CI, good 
Crystallinity after 

spray 

TCR, good TC, low (3 Wm-1K-1)  TEC, high PS OR, good   
TEC, high (between 9x10-6 and 10-5 K-

1) 
OD, low 

  
TC, low 

   

  

TEC, high (9.1x10-6 K-

1) 
    Creep and strength, good       

D
is

a
d

v
a

n
ta

g
e

s   
AD Sintering above 1473 K TEC, low 

TC, relatively 

high 

TEC, low (7.68x10-6 K-

1)  

  
PT PT at 1443 K 

Adhesion with substrate, 

poor 
PT at 1273 K 

  

  

TEC, low (1.67x10-6 K-

1) 
Corrosion & OT Crystallisation at 1023-1273 K TC, high 

  

    
    

  
TEC, very low     

AD: Amorphous Deposition, CI: Chemical Inertness, OD: Oxygen Diffusivity, OR: Oxidation Resistance, OT: Oxygen Transparent, PS: Phase Stability, PT: Phase Transformation, SA: Sintering Activity, TC: Thermal Conductivity, TCR: Thermal 
Cycling Resistance, TEC: Thermal Expansion Coefficient, TS: Thermal Stability, TSR: Thermal Shock Resistance. 
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Table 3: Biofuels (and blends), CI engines and thermal barrier coatings 

 

Ref Fuel  COATING    Engine 

Components 

Air                               

Intake 

Primary Layer 

Material 

Thickness 

(µm) 

Bond Layer 

Material 

Thickness 

(µm) 

 

[20] WCOB ZrO2 (88%) + Al2O3 (8%) + MgO (4%) 400 NiCrAl 100 PC, V Naturally aspired 
[21] CSO35 ZrO2 200   CH, PC, V n/a 
[21] SFO35 ZrO2 200   CH, PC, V n/a 
[18] COB Al2O3 +TiO2 250 NiAl 50 CH, PC, V Naturally aspired 
[22] CSO65 ZrO2 400 NiCrAl 100 PC, CL, V Naturally aspired 
[23] PPOB La2Zr2O7 350 NiCrAlY 150 PC, CH, V Naturally aspired 
[24] GNB15 ZrO2+ Y2O3 (8% by weight) 200  NiCrAl 100 CH, V Naturally aspired 
[17] RME Fly Ash 200 No bond layer 0 CH, CL, PC, V Naturally aspired 
[17] PME Fly Ash  200 No bond layer 0 CH, CL, PC, V Naturally aspired 
[25] Diesel ZrO3 250   PC, CH n/a 
[26] PME TiO2 500   PC Naturally aspired 
[27] JOB ZrO3 350  NiCrAl 150 PC n/a 
[36] ECSO PSZ 500   CH Naturally aspired 
[16] n/a CaZrO3 (CH and V), MgZrO3 (PC) 350 NiCrAl 150 CH, PC, V Turbocharged 
[28] MO PSZ 500   CH Naturally aspired 
[28] MOB PSZ 500   CH Naturally aspired 
[29] TOB PSZ 500   CH Naturally aspired 
[30] Diesel MgO-ZrO2 (PC), CaO-ZrO2 (CH and V) 350 NiCrAl 150 CH, PC, V Turbocharged 
[31] SOB ZrO3 n/a NiCrAl n/a CH, CL, PC, V Turbocharged 
[32] CME40 Mo n/a   CH, PC, V n/a 
[14] JO PSZ 500 supreni-90 n/a CH, CL Naturally aspired 
[14] JOB PSZ 500 supreni-90  n/a CH, CL Naturally aspired 
[33] RBO PSZ 500 supreni-90 n/a CH, CL Naturally aspired 
[34] JOB20 PSZ 500   CH, CL, PC, V Turbocharged 
[35] ISO10 ZrO2+Al2O3 150 + 150 NiCrALY 150 CH, CL, PC, V Naturally aspired 

 
           WCO: Waste Cooking Oil Biodiesel; CSO35: Cottonseed Oil (35%), Biodiesel + Diesel (65%); SFO35: Sunflower Oil (35%), Biodiesel + Diesel (65%); COB: Corn Oil Biodiesel; 
           CSO65: Cottonseed Oil (65%) + Diesel (35%); PPOB: Pongamia Pinnata Oil Biodiesel; GNB15: n-butanol (15%) + Gasoline (85%); RME: Rice Bran Biodiesel; PME: Pongamia Oil Biodiesel; 
           ECSO: Cottonseed Oil Biodiesel; MO: Mohr Oil; MOB: Mohr Oil Biodiesel; TOB: Tobacco Seed Oil Biodiesel; SOB: Sunflower Oil Biodiesel; CME40: Cottonseed Oil (40%), biodiesel + Diesel (60%); 
           JO: Jatropha Oil; JOB: Jatropha Oil Biodiesel; RBO: Rice Brawn Oil; JOB20: Jatropha Oil Biodiesel (20%) + Diesel (80%); ISO10: Fuel Additive (Di Iso Propylether 10%) + Diesel (90%); 
           ZrO2: Zirconium dioxide; La2Zr2O7: Lanthanum Zirconate; Y2O3: Yttrium Oxide; Fly Ash: (silica SiO2:45%, alumina Al2O3:30 %, iron Fe2O3:10%, magnesium MgO: 0.5%); 
           ZrO3: Partially stabilized Zirconia; PSZ: Partially stabilized Zirconium PSZ; Mo: Molybdenum; CH: Cylinder Head; CL: Cylinder Liner; PC: Piston Crown; V: Intake and Exhaust Valves 
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Table 4: Comparison of the engine performance characteristics under coated and uncoated conditions  

 

  Engine Performance Characteristics 
  

  BSFC (% change) BSEC (% change) BTE (% change) Power (% change) Coolant Load (% change) Sound Intensity (% Change)

Ref UD -> CD UB -> CB UD -> CB UD -> CD UB -> CB UD -> CB UD -> CD UB -> CB UD -> CB UD -> CD UB -> CB UD -> CB UD -> CD UB -> CB UD -> CB UD -> CD UB -> CB 

[20] -3.8 -3.4 9.6 -4.5 -1.6 1.6 0 3.7 -3.4 n/a n/a n/a n/a n/a n/a n/a n/a 

[21] -10 n/a 5.7 n/a n/a n/a n/a n/a n/a 2.4 n/a -3.6 n/a n/a n/a n/a n/a 

[21] -10 n/a 1.7 n/a n/a n/a n/a n/a n/a 2.4 n/a -0.1 n/a n/a n/a n/a n/a 

[18] -3.4 -5.1 6.1 -4.2 -4.8 7.9 4.4 5 -7.4 0 0 -10.7 n/a n/a n/a n/a n/a 

[22] -10 n/a 13.3 n/a n/a n/a n/a n/a n/a 5.6 n/a -14.7 n/a n/a n/a n/a n/a 

[23] -4.16 -9.5 n/a -7.4 n/a 0.8 8 10.7 -2.55 n/a n/a n/a n/a n/a n/a n/a n/a 

[24] n/a 1.48 n/a -6.8 -8.7 -10.9 6 7.4 12.1 n/a n/a n/a n/a n/a n/a n/a n/a 

[17] -10.3 n/a -6.6 -3.1 -12.7 -1.6 3.4 9 2.3 n/a n/a n/a n/a n/a n/a n/a n/a 

[17] -10.3 n/a -3.2 -3.1 -15.4 -4.6 3.4 18 1 n/a n/a n/a n/a n/a n/a n/a n/a 

[25] -12.5 n/a n/a -5.7 n/a n/a 4.6 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

[26] n/a n/a -8 n/a -7.1 7.1 n/a 2.2 -3.7 n/a n/a n/a n/a n/a n/a n/a n/a 

[27] n/a -7.7 1.35 n/a -7.1 7.1 n/a 4.2 -4.9 n/a n/a n/a n/a n/a n/a n/a n/a 

[36] -0.5 -4.9 -2.5 -0.5 -4.9 -2.5 3.6 8.9 10.7 n/a n/a n/a -5 -19 -15 5.9 -11.1 

[16] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

[28] 4 -13.4 0 4 -13.4 0 3.6 3.8 -3.6 n/a n/a n/a 12.5 -13.6 -5 11.8 -22.7 

[28] 4 -3 -4 4 -2.3 -4 3.6 3.6 3.6 n/a n/a n/a 12.5 -5.3 -18.2 11.8 -20 

[29] n/a n/a n/a 0 -7.1 0 1.9 3.8 3.8 n/a n/a n/a n/a n/a n/a n/a n/a 

[30] -6 n/a n/a n/a n/a n/a 2 n/a n/a 1 n/a n/a n/a n/a n/a n/a n/a 

[31] -4.2 -3.7 9.8 -4.4 -3.6 -6.7 3.8 3.7 6.3 9.2 7.8 n/a   n/a n/a n/a n/a n/a 

[32] -2 -7.4 0 -6.8 -3.2 9.7 5.9 5 -7.5 1.2 4.2 -7.4 n/a n/a n/a n/a n/a 

[14] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

[14] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

[33] n/a n/a n/a -3.4 -7.1 0 3.6 7.7 0 n/a n/a n/a 12.5 -14.3 -10 11.8 -25 

[34] -5.1 -4.5 -2.1 -5.5 -3.3 -4.4 5.4 4.3 4.9 n/a n/a n/a n/a n/a n/a n/a n/a 

[35]  n/a  n/a n/a  -3.2  n/a  n/a 6.7  n/a  n/a 0 n/a  n/a  n/a n/a n/a n/a n/a 

   Where UD -> CD stands for change from uncoated engine fuelled with diesel to coated engine fuelled with diesel; UB -> CB stands for change from uncoated engine fuelled with biofuel to    
   coated engine fuelled with biofuel; and UD -> CB represents the change from uncoated engine fuelled with diesel to coated engine fuelled with biofuel. 
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Table 5: Effects of injection timing, injector opening pressure and fuel temperature                                 
on BSEC characteristics in both uncoated and coated engines  

 
      BSEC at full load (kW/kW) 

 Injection  Uncoated Engine Coated Engine 

 Timing CA  Injection Opening Pressure (bar) 
Reference (⁰bTDC) Fuel 190 230 270 190 230 270 
      NT PT NT PT NT PT NT PT NT PT NT PT 
[36] 27 Diesel 4.00 n/a 3.96 n/a 3.92 n/a 3.98 n/a 3.92 n/a 3.88 n/a 
[36] 27 CSOB 4.10 3.90 3.90 3.80 3.80 3.70 3.90 3.86 3.86 3.82 3.82 3.78 
[36] 30 CSOB 3.92 3.88 3.88 3.84 3.84 3.80 3.82 3.78 3.78 3.74 3.74 3.70 
[36] 33 CSOB 3.86 3.82 3.90 3.86 3.92 3.88 n/a n/a n/a n/a n/a n/a 
[36] 27 CSO 4.20 4.00 4.00 3.94 3.94 3.92 3.92 3.90 3.90 3.86 3.86 3.82 
[28] 27 Diesel 4.00 n/a 3.92 n/a 3.84 n/a 4.16 n/a 4.08 n/a 4.00 n/a 
[28] 27 MO 4.62 4.20 4.20 3.98 3.98 3.94 4.00 3.96 3.96 3.92 3.92 3.88 
[28] 27 MOB 3.96 3.92 3.92 3.88 3.88 3.84 3.84 3.80 3.80 3.76 3.76 3.72 
[28] 28.5 MO 4.58 4.54 4.54 4.50 4.50 4.45 3.98 3.94 3.94 3.90 3.90 3.86 
[28] 28.5 MOB 3.92 3.88 3.88 3.84 3.84 3.80 3.80 3.76 3.76 3.72 3.72 3.68 
[28] 29.5 MO 4.40 4.00 4.00 3.96 3.96 3.92 4.00 3.96 3.96 3.92 3.92 3.88 
[28] 29.5 MOB 3.88 3.84 3.84 3.80 3.80 3.76 3.78 3.74 3.74 3.70 3.70 3.66 
[28] 30 MO 4.00 3.96 4.20 3.98 3.98 3.94 4.00 3.96 3.96 3.92 3.92 3.88 
[28] 30 MOB 3.84 3.80 3.80 3.76 3.82 3.78 n/a n/a n/a n/a n/a n/a 
[28] 31 MO 4.20 3.98 4.00 3.96 4.20 3.98 n/a n/a n/a n/a n/a n/a 
[28] 31 MOB 3.80 3.76 3.82 3.78 3.84 3.80 n/a n/a n/a n/a n/a n/a 
[58] 27 Diesel 4.00 n/a 3.96 n/a 3.92 n/a 4.16 n/a 4.12 n/a 4.08 n/a 
[58] 27 JO 4.30 n/a 4.26 n/a 4.22 n/a 4.00 n/a 3.96 n/a 3.92 n/a 
[58] 30 Diesel n/a n/a n/a n/a n/a n/a 3.88 n/a 3.84 n/a 3.80 n/a 
[58] 31 Diesel 3.60 n/a 3.64 n/a 3.68 n/a n/a n/a n/a n/a n/a n/a 
[58] 31 JO n/a n/a n/a n/a n/a n/a 3.84 n/a 3.80 n/a 3.76 n/a 
[58] 32 JO 3.86 n/a 3.90 n/a 3.94 n/a n/a n/a n/a n/a n/a n/a 

NT: Normal (room) temperature, PT: Preheated Temperature, CSOB: Cotton Seed Oil Biodiesel, CSO: Cotton Seed Oil, MO: Mohr Oil, MOB: Mohr Oil Biodiesel, JO: Jatropha Oil. 
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Table 6: Effects of injection parameters and fuel temperature on brake thermal efficiency  

 
      Maximum BTE (%) 

 Injection  Uncoated Engine Coated Engine 

 Timing CA  Injection Opening Pressure (bar) 
Reference (⁰bTDC) Fuel 190 230 270 190 230 270 
      NT PT NT PT NT PT NT PT NT PT NT PT 
[36] 27 Diesel 28.0 n/a 29.0 n/a 30.0 n/a 29.0 n/a 30.0 n/a 30.5 n/a 
[36] 27 CSOB 28.0 29.0 27.5 28.0 27.0 27.5 30.5 31.0 31.0 31.5 31.5 32.0 
[36] 30 CSOB n/a n/a n/a n/a n/a n/a 32.0 32.5 32.5 33.0 33.0 33.5 
[36] 33 CSOB 31.0 31.5 31.0 31.5 31.0 31.5 n/a n/a n/a n/a n/a n/a 
[59] 27 CSO 27.0 28.0 28.0 29.0 29.0 30.0 29.5 30.5 30.5 31.0 31.0 31.5 
[28] 27 Diesel 28.0 n/a 29.0 n/a 30.0 n/a 29.0 n/a 30.0 n/a 30.5 n/a 
[28] 27 MO 26.0 27.0 27.0 28.0 28.0 29.0 27.0 28.0 28.0 29.0 29.0 30.0 
[28] 27 MOB 28.0 29.0 29.0 30.0 30.0 31.0 29.0 30.0 30.0 31.0 31.0 32.0 
[28] 28.5 MO 26.5 27.5 27.5 28.5 28.5 29.5 28.0 29.0 29.0 30.0 30.0 31.0 
[28] 28.5 MOB 28.5 29.5 29.5 30.5 30.5 31.5 29.0 30.0 30.0 31.0 31.0 32.0 
[28] 29.5 MO 27.0 28.0 28.0 29.0 27.0 28.0 n/a n/a n/a n/a n/a n/a 
[28] 29.5 MOB 29.0 30.0 30.0 31.0 31.0 32.0 31.5 32.0 32.0 32.5 32.5 33.0 
[28] 30 MO 28.0 29.0 27.0 28.0 26.0 27.0 n/a n/a n/a n/a n/a n/a 
[28] 30 MOB 30.0 31.0 31.0 32.0 30.5 31.0 27.0 28.0 27.5 28.0 27.6 28.0 
[28] 31 MO 27.0 28.0 26.0 27.0 25.0 26.0 n/a n/a n/a n/a n/a n/a 
[28] 31 MOB 31.0 32.0 30.5 31.5 30.0 31.0 27.0 n/a n/a n/a n/a n/a 
[58] 27 Diesel 28.0 n/a 29.0 n/a 30.0 n/a 27.5 n/a 28.0 n/a 28.5 n/a 
[58] 27 JO 25.0 n/a 26.0 n/a 27.0 n/a 29.0 n/a 29.5 n/a 30.0 n/a 
[58] 30 Diesel n/a n/a n/a n/a n/a n/a 28.5 n/a 29.0 n/a 29.5 n/a 
[58] 31 Diesel 31.0 n/a 30.5 n/a 30.0 n/a n/a n/a n/a n/a n/a n/a 
[58] 31 JO n/a n/a n/a n/a n/a n/a 29.5 n/a 30.0 n/a 30.5 n/a 
[58] 32 JO 28.0 n/a 27.0 n/a 26.0 n/a n/a n/a n/a n/a n/a n/a 
[33] 27 Diesel 28.0 n/a 29.0 n/a 30.0 n/a 29.0 n/a 30.0 n/a 30.5 n/a 
[33] 27 RBO 26.0 27.0 27.0 28.0 28.0 29.0 28.0 29.0 29.0 30.0 30.0 31.0 
[33] 29 Diesel 28.5 n/a 29.5 n/a 30.2 n/a 29.5 n/a 30.5 n/a 31.0 n/a 
[33] 29 RBO 27.0 28.0 28.0 29.0 30.0 31.0 29.0 30.0 30.0 31.0 31.0 32.0 
[33] 30 Diesel 29.0 n/a 30.0 n/a 30.5 n/a 29.0 n/a 30.0 n/a 30.5 n/a 
[33] 30 RBO 28.0 29.0 29.0 30.0 30.0 31.0 30.5 31.5 31.5 32.5 32.5 33.5 
[33] 31 Diesel 29.5 n/a 30.0 n/a 31.0 n/a n/a n/a n/a n/a n/a n/a 
[33] 31 RBO 29.0 30.0 30.0 31.0 29.0 30.0 27.0 28.0 28.0 29.0 29.0 30.0 
[33] 32 Diesel 30.0 n/a 30.5 n/a 30.5 n/a n/a n/a n/a n/a n/a n/a 
[33] 32 RBO 30.0 31.0 29.0 30.0 29.0 30.0 n/a n/a n/a n/a n/a n/a 
[33] 33 Diesel 31.0 n/a 31.0 n/a 30.0 n/a n/a n/a n/a n/a n/a n/a 

       NT: Normal (room) temperature, PT: Preheated Temperature, CSOB: Cotton Seed Oil Biodiesel, CSO: Cotton Seed Oil, MO: Mohr Oil, MOB: Mohr Oil Biodiesel,                               
 JO: Jatropha Oil, RBO: Rice Bran Oil. 
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Table 7: Combustion characteristics in coated and uncoated engines 

 

Combustion Parameters 

Ref Peak in-cylinder pressure  Exhaust gas temperature Heat release rate Volumetric efficiency 

 
(bar change) (% change) (% change) (% change) 

  UD -> CD UB -> CB UD -> CB UD -> CD UB -> CB UD -> CB UD -> CD UB -> CB UD -> CB UD -> CD UB -> CB UD -> CB 

[20] 1 2 1 0 4.4 9.2 -2.2 -20 -4.3 n/a n/a n/a 
[21] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[21] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[18] n/a n/a n/a 13.7 5 -17.6 n/a n/a n/a n/a n/a n/a 
[22] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[23] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[24] 2 3 8 n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[17] 2.5 0 n/a 22.6 n/a 27 0 -3 -38 -5.5 n/a -7.7 
[17] 2.5 0 n/a 22.6 n/a 25 0 -19 -35 -5.5 n/a -10.2 
[25] n/a n/a n/a 4.2 n/a n/a n/a n/a n/a n/a n/a n/a 
[26] n/a 3 -2 n/a 14 25 n/a 5 -3.2 n/a n/a n/a 
[27] n/a 3 0 n/a n/a n/a n/a 13.8 4.8 n/a n/a n/a 
[36] -2.3 3.7 3.4 8.2 -5.6 0 n/a n/a n/a -8.2 -9.6 -11.8 
[16] n/a n/a n/a n/a n/a n/a -5 to -25 n/a n/a n/a n/a n/a 
[28] n/a n/a n/a 8.2 -5 11.8 n/a n/a n/a -8.2 -6.2 -10.6 
[28] n/a n/a n/a 8.2 -6.7 1.2 n/a n/a n/a -8.2 -7.2 -9.4 
[29] -2 1.3 6.2 n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[30] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[31] n/a n/a n/a 14.6 6.9 -14.6 n/a n/a n/a 8.9 -6.25 -3.2 
[32] n/a n/a n/a 8 10.5 3.5 n/a n/a n/a n/a n/a n/a 
[14] -4.3 16.3 12.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[14] -4.3 16.2 14.4 n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[33] -2.3 11.7 9.4 8.2 -10 5.9 n/a n/a n/a -8.2 -4.9 -8.2 
[34] 2.5 0 -0.7 5.3 4.6 6.1 -26.6 -27 -26.4 n/a n/a n/a 
[35] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

Where UD -> CD stands for change from uncoated engine fuelled with diesel to coated engine fuelled with diesel; UB -> CB stands for change from uncoated engine fuelled                                                                                                    
with biofuel to coated engine fuelled with biofuel; and UD -> CB represents the change from uncoated engine fuelled with diesel to coated engine fuelled with biofuel. 
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Table 8: Effects of injection parameters and fuel temperature on peak in-cylinder pressure, maximum rate of in-cylinder pressure rise and crank angle position at peak in-cylinder pressure   

  Injection     Peak In-cylinder pressure (bar) 

Maximum rate of in-cylinder pressure rise  

at full load (bar/deg) Crank angle at peak In-cylinder pressure (deg) 

 timing CA  TBC Injector Opening Pressure (bar) 

Reference (⁰bTDC) Fuel application 190 230 270 190 230 270 190 230 270 

        NT PT NT PT NT PT NT PT NT PT NT PT NT PT NT PT NT PT 

[36] 27 diesel UC 50.4 n/a 53.5 n/a n/a n/a 3.1 n/a 3.4 n/a n/a n/a 9 n/a 8 n/a n/a n/a 

[36] 27 diesel C 48.1 n/a 53.0 n/a n/a n/a 2.9 n/a 3.1 n/a n/a n/a 10 n/a 9 n/a n/a n/a 

[36] 27 CSOB UC 50.1 51.1 53.5 54.5 n/a n/a 3.3 3.4 3.5 3.6 n/a n/a 10 9 10 9 n/a n/a 

[36] 27 CSOB C 53.8 54.5 55.5 56.8 n/a n/a 3.4 3.5 3.6 3.7 n/a n/a 9 8 9 8 n/a n/a 

[36] 30 CSOB C 63.4 64.5 65.3 66.5 n/a n/a 3.6 3.7 3.7 3.8 n/a n/a 9 8 9 8 n/a n/a 

[36] 33 CSOB UC 55.8 56.7 56.8 58.8 n/a n/a 3.5 3.6 3.6 3.7 n/a n/a 10 9 11 10 n/a n/a 

[29] 27 Diesel UC 50.4 n/a n/a n/a 53.5 n/a 5.4 n/a n/a n/a 6.0 n/a 10 n/a n/a n/a 9 n/a 

[29] 27 TSOB UC 52.8 48.4 n/a n/a 54.6 50.4 4.9 3.9 n/a n/a 5.2 4.2 11 10 n/a n/a 10 9 

[29] 27 Diesel C 49.4 n/a n/a n/a 50.2 n/a 4.2 n/a n/a n/a 3.8 n/a 11 10 n/a n/a 10 9 

[29] 27 TSOB C 53.5 52.5 n/a n/a 52.5 51.5 5.8 5.6 n/a n/a 5.2 4.8 10 9 n/a n/a 10 9 

[29] 30 TSOB C 66.6 65.6 n/a n/a 65.6 64.2 6.4 6.0 n/a n/a 6.2 5.6 8 8 n/a n/a 8 8 

[29] 30 Diesel C 64.5 n/a n/a n/a 62.6 n/a 6.8 n/a n/a n/a 6.4 n/a 8 n/a n/a n/a 8 n/a 

[29] 31 Diesel UC 62.2 n/a n/a n/a 61.9 n/a 6.2 n/a n/a n/a 6.8 n/a 8 n/a n/a n/a 8 n/a 

[29] 31 TSOB UC 65.4 64.1 n/a n/a 67.5 65.5 5.6 4.4 n/a n/a 6.0 4.8 8 8 n/a n/a 8 8 

[28] 27 Diesel UC 50.4 n/a n/a n/a 53.5 n/a 3.1 n/a n/a n/a 3.4 n/a 9 n/a n/a n/a 8 n/a 

[28] 27 Diesel C 48.1 n/a n/a n/a 53.0 n/a 2.9 n/a n/a n/a 3.1 n/a 10 n/a n/a n/a 9 n/a 

[28] 27 MO UC 46.3 47.3 n/a n/a 48.5 49.4 2.0 2.1 n/a n/a 2.7 2.8 11 10 n/a n/a 11 9 

[28] 27 MO C 55.5 57.5 n/a n/a 58.6 59.6 3.0 3.1 n/a n/a 3.3 3.4 10 9 n/a n/a 9 8 

[28] 27 MOB UC 46.5 47.8 n/a n/a 49.9 50.6 2.6 2.7 n/a n/a 2.8 2.9 11 10 n/a n/a 11 10 

[28] 27 MOB C 57.5 58.6 n/a n/a 60.6 61.8 3.3 3.4 n/a n/a 3.6 3.7 10 9 n/a n/a 10 9 

[28] 28.5 MO C 60.7 61.7 n/a n/a 61.1 63.8 3.4 3.5 n/a n/a 3.5 3.6 8 8 n/a n/a 8 8 

[28] 29.5 MOB C 61.7 62.8 n/a n/a 63.1 64.8 3.5 3.6 n/a n/a 3.6 3.8 8 8 n/a n/a 8 8 

[28] 30 MO UC 49.4 50.6 n/a n/a 60.1 62.8 3.2 3.3 n/a n/a 3.6 3.7 10 9 n/a n/a 10 9 

[28] 31 MOB UC 53.3 54.6 n/a n/a 62.1 63.7 3.5 3.7 n/a n/a 3.7 3.8 10 9 n/a n/a 9 8 

[58] 27 Diesel UC 50.4 n/a 51.7 n/a 53.5 n/a 5.4 n/a 5.6 n/a 6.0 n/a 9 n/a 9 n/a 8 n/a 

[58] 27 Diesel C 56.3 n/a 54.3 n/a 52.4 n/a 6.8 n/a 6.4 n/a 6.2 n/a 10 n/a 10 n/a 10 n/a 

[58] 27 JO UC 46.5 n/a 47.5 n/a 48.5 n/a 4.2 n/a 4.4 n/a 4.6 n/a 11 n/a 11 n/a 11 n/a 

[58] 27 JO C 62.6 n/a 60.6 n/a 58.6 n/a 6.4 n/a 6.2 n/a 6.0 n/a 9 n/a 9 n/a 9 n/a 

[58] 30 Diesel C 54.2 n/a 52.4 n/a 50.2 n/a 6.0 n/a 5.8 n/a 5.6 n/a 9 n/a 9 n/a 9 n/a 

[58] 31 Diesel UC 62.4 n/a 60.6 n/a 58.6 n/a 6.2 n/a 6.0 n/a 5.8 n/a 8 n/a 9 n/a 9 n/a 

[58] 31 JO C 60.5 n/a 58.6 n/a 56.6 n/a 5.8 n/a 5.6 n/a 5.4 n/a 8 n/a 8 n/a 8 n/a 

[58] 32 JO UC 52.2 n/a 51.2 n/a 50.6 n/a 5.6 n/a 5.4 n/a 5.2 n/a 8 n/a 9 n/a 9 n/a 

[33] 27 Diesel UC 50.4 n/a n/a n/a 53.5 n/a 3.1 n/a n/a n/a 3.4 n/a 9 n/a n/a n/a 8 n/a 

[33] 27 Diesel C 48.1 n/a n/a n/a 53.0 n/a 2.9 n/a n/a n/a 3.1 n/a 10 n/a n/a n/a 9 n/a 

[33] 27 RBO UC 47.9 49.8 n/a n/a 48.8 50.8 2.1 2.2 n/a n/a 2.8 2.9 11 10 n/a n/a 11 10 

[33] 27 RBO C 59.8 60.8 n/a n/a 61.1 62.8 3.1 3.2 n/a n/a 3.3 3.4 10 10 n/a n/a 9 9 

[33] 30 RBO C 61.8 62.9 n/a n/a 63.1 64.9 3.5 3.7 n/a n/a 3.7 3.8 8 8 n/a n/a 8 8 

[33] 32 RBO UC 53.3 54.4 n/a n/a n/a n/a 3.4 3.6 n/a n/a n/a n/a 9 9 n/a n/a n/a n/a 

[14] 27 Diesel UC 50.4 n/a n/a n/a 53.5 n/a 3.1 n/a n/a n/a 3.4 n/a 9 n/a n/a n/a 8 n/a 

[14] 27 Diesel C 46.1 n/a n/a n/a 51.1 n/a 2.7 n/a n/a n/a 2.9 n/a 11 n/a n/a n/a 9 n/a 

[14] 27 JO UC 46.5 49.6 n/a n/a 51.3 52.4 2.6 2.7 n/a n/a 2.9 3.0 11 10 n/a n/a 11 10 

[14] 27 JO C 62.8 63.8 n/a n/a 67.3 67.5 3.6 3.7 n/a n/a 3.8 3.9 9 8 n/a n/a 9 9 

[14] 27 JOB UC 48.6 50.4 n/a n/a 52.5 53.6 2.7 2.8 n/a n/a 3.0 3.1 11 10 n/a n/a 11 10 

[14] 27 JOB C 64.8 65.4 n/a n/a 69.5 70.6 3.6 3.8 n/a n/a 3.9 4.0 9 8 n/a n/a 9 9 

[14] 31 JO C 65.8 66.5 n/a n/a 67.8 68.6 3.7 3.9 n/a n/a 3.9 4.1 8 8 n/a n/a 8 8 

[14] 32 JO UC 51.8 52.5 n/a n/a 52.7 53.6 3.3 3.4 n/a n/a 3.4 3.5 8 8 n/a n/a 8 8 

[14] 32 JOB C 66.8 67.7 n/a n/a 69.8 70.7 3.8 3.9 n/a n/a 4.0 4.2 8 8 n/a n/a 8 8 

[14] 33 JOB UC 52.8 53.6 n/a n/a 54.7 54.6 3.4 3.5 n/a n/a 3.5 3.6 8 8 n/a n/a 8 8 

   NT: Normal (room) temperature, PT: Preheated Temperature, UC: Uncoated, C: Coated, CSOB: Cotton Seed Oil Biodiesel, CSO: Cotton Seed Oil, MO: Mohr Oil, MOB: Mohr Oil Biodiesel, JO: Jatropha Oil,                                                                                                                           
   RBO: Rice Bran Oil. JOB: Jatropha Oil Biodiesel, TSBO: Tobacco Seed Oil Biodiesel.                                                                                       
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Table 9: Exhaust gas components with and without thermal barrier coatings  

 

  Exhaust Gas Emissions 
  CO (% change) CO2 (% change) HC (% change) NOx (% change) Smoke (% change) 

Ref 
UD -> 

CD 
UB -> 

CB 
UD -> 

CB 
UD ->  

CD 
UB -> 

CB 
UD -> 

CB 
UD -> 

CD 
UB -> 

CB 
UD -> 

CB 
UD -> 

CD 
UB -> 

CB 
UD -> 

CB 
UD -> 

CD 
UB -> 

CB 
UD -> 

CB 
[20] -11.4 -3.6 -22.9 n/a n/a n/a n/a n/a -23 10 8.2 32.2 -25.6 -24.3 -28.2 
[21] -81.3 n/a -93.8 -19.4 (low & medium rpm) n/a -11.1 -28.6 n/a -90.5 16.7 n/a 91.7 -38.9 n/a -55.6 
[21] -81.3 n/a -93.8 29.2 (high rpm) n/a -2.8 -28.6 n/a -90.5 16.7 n/a 91.7 -38.9 n/a -63 
[18] -27.1 -18.3 -39.6 n/a n/a n/a n/a n/a n/a 3.7 14.7 18.9 -9.3 -10 -50 
[22] -81.3 n/a -93.8 n/a n/a n/a -36.4 n/a -90.9 21.7 n/a 100 -33.3 n/a -33.3 
[23] -18 n/a -43.75 n/a n/a n/a -11.68 n/a -62.26 3.5 n/a 15 n/a n/a n/a 
[24] -14 -16 n/a n/a n/a n/a -19 -33 n/a 14 8 n/a n/a n/a n/a 
[17] n/a n/a n/a n/a n/a n/a -13 n/a -26.47 7.6 n/a 26.2 -29.2 n/a -35.9 
[17] n/a n/a n/a n/a n/a n/a -13 n/a -14.7 7.6 n/a 28.6 -29.2 n/a -33.8 
[25] -18.8 n/a n/a n/a n/a n/a -9.7 n/a n/a n/a n/a n/a -6.13 n/a n/a 
[26] n/a -20 -50 n/a 24 12 n/a -92.5 -87 n/a 4 33 n/a -34.4 -41.6 
[27] n/a -26.1 -38 n/a n/a n/a n/a n/a n/a n/a 17.8 30 n/a -30 -33.3 
[36] n/a n/a n/a n/a n/a n/a n/a n/a n/a 41.2 62.9 67.6 14.6 -9.1 4.2 
[16] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[28] n/a n/a n/a n/a n/a n/a n/a n/a n/a 52.9 37.3 21.2 14.6 -17.4 20.8 
[28] n/a n/a n/a n/a n/a n/a n/a n/a n/a 52.9 35 27.1 14.6 -11.7 10.4 
[29] n/a n/a n/a n/a n/a n/a n/a n/a n/a 29.5 33.3 41.2 14.6 -27.3 -16.7 
[30] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[31] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[32] -20.9 -28.6 -40.3 n/a n/a n/a n/a n/a n/a 6.5 n/a 6.5 -10 -5 -45.7 
[14] n/a n/a n/a n/a n/a n/a n/a n/a n/a 52.9 49.4 88 14.6 -6.3 -30.8 
[14] n/a n/a n/a n/a n/a n/a n/a n/a n/a 52.9 55.9 61.6 14.6 -16.7 -33.3 
[33] n/a n/a n/a n/a n/a n/a n/a n/a n/a 52.9 38.9 47 14.6 -14.3 25 
[34] n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 
[35] n/a n/a n/a n/a n/a n/a n/a n/a n/a -46.5  n/a  n/a 20.7 n/a  n/a  

Where UD -> CD: change from uncoated engine fuelled with diesel to coated engine fuelled with diesel; UB -> CB: change from uncoated engine fuelled with biofuel to 
coated engine fuelled with biofuel; UD -> CB: change from uncoated engine fuelled with diesel to coated engine fuelled with biofuel. 
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Table 10: Effects of injection timing, injector opening pressure and fuel temperature on NOx 
emissions in both uncoated and coated engines 

 
      NOx emission at full load condition (ppm) 

 Injection  Uncoated Engine Coated Engine 

 Timing CA  Injection Opening Pressure (bar) 
       
Reference (⁰bTDC) Fuel 190 230 270 190 230 270 
      NT PT NT PT NT PT NT PT NT PT NT PT 

[36] 27 Diesel 850 n/a 800 n/a 750 n/a 1200 n/a 1150 n/a 1100 n/a 
[36] 27 CSOB 875 825 825 775 775 725 1425 1375 1375 1325 1325 1275 
[36] 30 CSOB 950 900 900 850 850 800 1325 1275 1275 1225 1225 1175 
[36] 33 CSOB 1000 950 950 900 900 850 n/a n/a n/a n/a n/a n/a 
[29] 27 Diesel 850 n/a 900 n/a 950 n/a 1100 n/a 1050 n/a 1000 n/a 
[29] 27 TSOB 900 825 950 875 1000 925 1200 1150 1150 1100 1100 1050 
[29] 30 TSOB n/a n/a n/a n/a n/a n/a 1150 1100 1100 1050 1050 1000 
[29] 30 Diesel n/a n/a n/a n/a n/a n/a 1050 n/a 1000 n/a 950 n/a 
[29] 31 Diesel 1100 n/a 1150 n/a 1200 n/a n/a n/a n/a n/a n/a n/a 
[29] 31 TSOB 1200 1100 1250 1150 1300 1250 n/a n/a n/a n/a n/a n/a 
[28] 27 Diesel 850 n/a 810 n/a 770 n/a 1300 n/a 1280 n/a 1260 n/a 
[28] 27 MO 750 700 700 650 650 600 1030 950 950 900 900 850 
[28] 27 MOB 800 750 750 700 700 650 1080 1000 1030 950 980 900 
[28] 28.5 MO 775 725 725 675 675 625 990 910 910 830 830 750 
[28] 28.5 MOB 825 775 775 725 725 675 1040 960 960 880 880 800 
[28] 29.5 MO 800 750 750 700 700 650 n/a n/a n/a n/a n/a n/a 
[28] 29.5 MOB 850 800 800 750 750 700 1000 920 920 840 840 760 
[28] 30 MO 850 800 800 750 750 700 n/a n/a n/a n/a n/a n/a 
[28] 30 MOB 900 850 850 800 800 750 n/a n/a n/a n/a n/a n/a 
[28] 31 MO 900 850 900 850 850 800 n/a n/a n/a n/a n/a n/a 
[28] 31 MOB 950 800 900 850 850 800 n/a n/a n/a n/a n/a n/a 
[58] 27 Diesel 850 n/a 900 n/a 950 n/a 1100 n/a 1050 n/a 1000 n/a 
[58] 27 JO 750 n/a 800 n/a 850 n/a 1150 n/a 1100 n/a 1050 n/a 
[58] 30 Diesel n/a n/a n/a n/a n/a n/a 1050 n/a 1000 n/a 950 n/a 
[58] 31 Diesel 1100 n/a 1150 n/a 1200 n/a n/a n/a n/a n/a n/a n/a 
[58] 31 JO n/a n/a n/a n/a n/a n/a 1100 n/a 1050 n/a 1000 n/a 
[58] 32 JO 900 n/a 950 n/a 1000 n/a n/a n/a n/a n/a n/a n/a 
[58] 27 Diesel 850 n/a 810 n/a 770 n/a 1300 n/a 1280 n/a 1260 n/a 
[58] 27 RBO 900 850 850 800 800 750 1250 1200 1200 1150 1150 1100 
[58] 29 Diesel 900 n/a 860 n/a 820 n/a n/a n/a n/a n/a n/a n/a 
[58] 29 RBO 950 900 900 850 850 800 1175 1125 1125 1075 1075 1025 
[58] 30 Diesel 935 n/a 900 n/a 860 n/a 1225 n/a 1205 n/a 1185 n/a 
[58] 30 RBO 1000 950 950 900 900 850 1000 950 950 900 900 850 
[58] 31 Diesel 1020 n/a 980 n/a 940 n/a 1150 n/a 1130 n/a 1110 n/a 
[58] 31 RBO 1050 1000 1000 950 950 900 1100 1050 1050 1000 1000 950 
[58] 32 Diesel 1105 n/a 1060 n/a 1020 n/a n/a n/a n/a n/a n/a n/a 
[58] 32 RBO 1100 1050 1050 1000 1000 950 n/a n/a n/a n/a n/a n/a 
[58] 33 Diesel 1190 n/a 1150 n/a 1110 n/a n/a n/a n/a n/a n/a n/a 
[14] 27 Diesel 850 n/a 890 n/a 930 n/a 1300 n/a 1280 n/a 1260 n/a 
[14] 27 JO 675 650 650 600 600 550 1270 1230 1230 1210 1180 1115 
[14] 27 JOB 820 770 770 720 720 670 1325 1275 1275 1225 1225 1175 
[14] 30 JOB 920 870 870 820 820 770 1300 1250 1250 1200 1200 1150 
[14] 30 JO 750 700 700 650 650 600 1170 1150 1150 1120 1120 1100 
[14] 31 JOB 970 920 920 870 870 820 1250 1200 1200 1150 1150 1100 
[14] 31 JO 800 750 750 700 700 650 1070 1000 1000 950 950 900 
[14] 32 JOB 1020 970 970 920 920 870 1200 1150 1150 1150 1150 1100 
[14] 32 JO 850 800 800 750 750 700 n/a n/a n/a n/a n/a n/a 
[14] 33 JOB 1110 1060 1060 1010 1010 n/a n/a n/a n/a n/a n/a n/a 

NT: Normal (room) temperature, PT: Preheated Temperature, CSOB: Cotton Seed Oil Biodiesel, CSO: Cotton Seed Oil, MO: Mohr Oil, MOB: Mohr Oil Biodiesel, JO: Jatropha Oil               
RBO: Rice Bran Oil. JOB: Jatropha Oil Biodiesel, TSBO: Tobacco Seed Oil Biodiesel.       
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Table 11: Effects of injection parameters and fuel temperature on smoke intensity 

   

      Smoke intensity (HSU) full load condition  
Injection 

 
Uncoated Engine Coated Engine 

 
Timing 

CA 

 
Injection Opening Pressure (bar) 

Reference (⁰bTDC) Fuel 190 230 270 190 230 270 
      NT PT NT PT NT PT NT PT NT PT NT PT 

[36] 27 Diesel 48 n/a 38 n/a 34 n/a 55 n/a 50 n/a 45 n/a 
[36] 27 CSOB 55 50 50 45 45 40 50 45 45 40 40 35 
[36] 30 CSOB n/a n/a n/a n/a n/a n/a 30 25 25 20 20 15 
[36] 33 CSOB 40 35 45 40 43 40 n/a n/a n/a n/a n/a n/a 
[29] 27 Diesel 48 n/a 38 n/a 34 n/a 55 n/a 50 n/a 45 n/a 
[29] 27 TSOB 55 50 50 45 45 40 40 35 35 30 30 25 
[29] 30 TSOB n/a n/a n/a n/a n/a n/a 35 30 30 25 25 20 
[29] 30 Diesel n/a n/a n/a n/a n/a n/a 50 n/a 45 n/a 40 n/a 
[29] 31 Diesel 30 n/a 30 n/a 35 n/a n/a n/a n/a n/a n/a n/a 
[29] 31 TSOB 45 40 40 35 35 30 n/a n/a n/a n/a n/a n/a 

[28] 27 Diesel 85 n/a 80 n/a 75 n/a 95 n/a 90 n/a 85 n/a 
[28] 27 MO 110 105 105 103 100 95 85 80 80 75 75 70 
[28] 27 MOB 100 95 98 93 96 91 80 75 75 70 70 65 
[28] 28.5 MO 109 104 104 102 99 94 80 75 75 70 70 65 
[28] 28.5 MOB 99 94 94 92 89 84 75 70 70 65 65 60 
[28] 29.5 MO 107 102 104 99 94 97 85 80 80 75 75 70 
[28] 29.5 MOB 97 92 92 87 91 86 65 60 60 55 55 50 
[28] 30 MO 104 100 102 97 110 105 n/a n/a n/a n/a n/a n/a 
[28] 30 MOB 94 89 92 87 90 85 n/a n/a n/a n/a n/a n/a 
[28] 31 MO 102 97 105 100 110 105 n/a n/a n/a n/a n/a n/a 
[28] 31 MOB 92 87 90 85 93 87 n/a n/a n/a n/a n/a n/a 
[33] 27 Diesel 48 n/a 38 n/a 34 n/a 55 n/a 50 n/a 45 n/a 
[33] 27 RBO 70 65 65 60 63 60 60 55 55 50 50 45 
[33] 29 Diesel 40 n/a 36 n/a 34 n/a 52 n/a 48 n/a 43 n/a 
[33] 29 RBO 68 64 63 59 60 57 55 50 50 45 45 40 
[33] 30 Diesel 36 n/a 34 n/a 32 n/a 45 n/a 42 n/a 41 n/a 
[33] 30 RBO 67 64 60 57 61 58 46 42 42 40 40 38 
[33] 31 Diesel 33 n/a 32 n/a 30 n/a 43 n/a 41 n/a 40 n/a 
[33] 31 RBO 60 57 57 54 54 60 55 50 50 45 45 40 
[33] 32 Diesel 32 n/a 31 n/a 32 n/a n/a n/a n/a n/a n/a n/a 
[33] 32 RBO 50 45 45 40 40 35 n/a n/a n/a n/a n/a n/a 
[33] 33 Diesel 30 n/a 30 n/a 35 n/a n/a n/a n/a n/a n/a n/a 
[14] 27 Diesel 48 n/a 38 n/a 34 n/a 55 n/a 50 n/a 45 n/a 

[14] 27 JO 65 60 63 58 58 54 45 40 40 35 35 30 
[14] 27 JOB 60 55 55 50 50 45 40 35 35 30 30 25 
[14] 30 JOB 55 50 50 45 45 40 35 30 30 25 25 20 

[14] 30 JO 60 55 55 50 45 55 40 35 35 30 30 25 
[14] 31 JOB 50 45 45 40 40 35 30 25 25 20 20 18 
[14] 31 JO 55 50 50 45 55 52 35 30 30 25 25 22 
[14] 32 JOB 45 40 40 35 45 40 25 20 25 20 20 16 
[14] 32 JO 50 45 55 52 52 49 n/a n/a n/a n/a n/a n/a 
[14] 33 JOB 40 35 45 40 50 45 n/a n/a n/a n/a n/a n/a 

 NT: Normal (room) temperature, PT: Preheated Temperature, CSOB: Cotton Seed Oil Biodiesel, CSO: Cotton Seed Oil, MO: Mohr Oil, MOB:                                                                                      
 Mohr Oil Biodiesel, JO: Jatropha Oil, RBO: Rice Bran Oil. JOB: Jatropha Oil Biodiesel, TSBO: Tobacco Seed Oil Biodiesel. 
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