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Abstract: Aggregate occupies at least three-quarters of the volume of asphalt mixture and can significantly affect 

the performance of pavement. The geometrical morphology influences the slippage and interlock among aggregates 

for resisting and distributing applied loads. In recent years, the discrete element method (DEM) has been employed 

for simulation of asphalt mixture structure. This paper introduces an approach for simulation of aggregate and asphalt 

mixture using parameterized shape and size gradation. Both plane geometry factor (PGF) and section aspect ratio 

(SAR) were employed to describe the 3D geometric characteristics of aggregates. A numerical technique of aggregate 

models was implemented with probabilistic parameters depending on statistical results of PGFs and SARs. Therefore, 

the 3D numerical model of asphalt mixtures was assembled with three different components, which is validated by 

uniaxial compression test via comparison with that of the laboratory result. It was found that the PGF and SAR are 

appropriate to describe the three-dimensional features of aggregate shapes, due to the fact that a simplified space 

object can be described by a 2D graphical projection and a vector scalar corresponding to the space vector. Probability 

distribution curves of PGFs and SARs between coarse aggregates are in concordance with the Gauss-type function, 

since their correlation coefficients are all greater than 95%. It was verified that the developed clumping algorithm of 

aggregates was reasonable with the shapes and size gradation. Based on the parallel-bond model and the Burger’s 

model, the results of virtual tests are in good agreement with those of laboratory uniaxial tests. It is shown that the 

angularity (PGF) of aggregates has a beneficial effect on the strength and stability while the flat-elongated feature 

(SAR) has a negative effect on those of asphalt mixtures. 

 

Author keywords: asphalt mixtures; irregular aggregates; three-dimensional simulation; discrete element method; 

parameterized shape 

 

Introduction 

Asphalt mixture is a heterogeneous material, whose mechanical properties are determined by the characteristics of 

its components including aggregates, asphalt mastic and air voids (Liu and You 2009; Chen et al. 2015a). It is well-

known that the geometrical morphology and distribution of the aggregates play critical roles in forming the skeleton 

of the material structure, while the properties of the asphalt binder affect the mixture interface behavior (Singh et al. 

2014). The discrete element method (DEM) is an efficient computational method for predicting the structural and 

mechanical characteristics of the asphalt mixtures (You and Buttlar 2004). Over the past two decades, the DEM has 

been widely applied to analysis of the interface contact behavior between aggregates in the mixtures (Liu et al. 2011; 
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Dan et al. 2018). 

With the development of computer technology and DEM theory, the DEM models has evolved from two 

dimensions to three dimensions, in which three grain types are available to model granular materials including 

spherical particles, clusters and clumps (Zhang, et al. 2018a). The ideal particle system such as disk (2D) or spheres 

(3D), in general, is the basic calculating element of the DEM controlled by Newton's 2nd law and specific contact 

rules. It is deemed to be an effective way to simulate the anisotropic material through different rolling frictional 

resistances (Wensrich and Katterfeld 2012) and is more efficient than the other two types in terms of contact searching 

and force calculation (Ferellec and Mcdowell 2010). Some researchers suggested that the DEM model of spherical 

particles is capable of properly estimating mix designs of aggregate structures and the development trend in the 

compaction process of asphalt mixtures (Shen and Yu 2010; Chen et al. 2015b). However, these models cannot 

accurately evaluate the movement and rotation of granular materials (Liu and You 2011). Meanwhile, the angularity 

and complex shape of actual granules provide complete contact and interlocking, which affect the mechanical 

properties of stone-based materials under loading (Lv et al. 2018). In this regard, the ideal particles such as spheres 

or ellipsoids cannot capture the effect (Shi et al. 2015). Both clusters and clumps were developed to represent the 

irregular and angular shape of natural structures, fully filled with overlapping or non-overlapping discrete elements, 

within the boundary of polyhedron or hyper quadric (Fu et al. 2010). A single cluster is made up of a series of bonded 

small disks (or spheres) through a default structural strength and can interact with the others, approximating the 

packing behavior of a blocky system (Zhang and Wong 2018d). Clumps also behave as rigid bodies but will never 

break apart, on account of the relative position of slaved particles fixed by the clump logic (Itasca Consulting Group 

2005). Based on this logic mode, the efficiency of the time stepping in DEM has been improved significantly. The 

aggregates can be regarded as a set of clumps at loading routine, whose internal damage don’t occur. 

It is very important for asphalt mixture digital specimens to obtain and reconstruct heterogeneous models (Yang et 

al. 2016). Recently, many studies have been reported to develop reliable approaches to analyze and simulate coarse 

aggregate irregular attributes. In this issue, the clumping technology is widely used and can be divided into the 

following four processes. First, the digital image technology was applied to analyze different aggregate properties in 

2D DEM model but limited to the plane (Mahmoud et al. 2010; Peng and Sun 2016). Next, the aggregate clumping 

templates were created in 3D by extending multiple 2D image features in order and the accuracy of aggregate models 

depends on the quality of the processed image (Yu and Shen 2012). Then, with the development of the digital image 

technology, the realistic aggregates can be reconstructed in DEM through some sophisticated imaging equipment, 

such as the X-ray CT system (Liu et al. 2017) and the 3D Sobel-Feldman operation (Yang et al. 2017). The main 

disadvantage of the digital image technology is that the acquired samples of aggregates are insufficient and 

unchanged in shape, due to current technical constraint and high experimental costs. Finally, the gradation distribution 

and the irregular shape of aggregates were expressed by the random mathematic model, which is considered to be an 

effective way to describe the mechanical heterogeneity of asphalt mixtures (Ma et al. 2017). The random mathematic 

model is efficient and unlimited but the impact of real aggregate characteristics is weakened relative to digital 

technology (Salemi and Wang 2018). In this study, both digital image technology and random mathematic model 

were taken into consideration to reconstruct numerical specimens of asphalt mixture. 

The objective of this paper is to present an approach for parameterized characterizations of particle shapes and 

numerical reconstructions of asphalt mixtures. The characteristics of aggregates were obtained by digital image 

technology. Both the plane geometry factor (PGF) and the section aspect ratio (SAR) were employed to describe 3D 

geometric properties and analyze the compaction effects of aggregate shapes on the assembly. Moreover, a digital 

aggregate generation algorithm was proposed and its reliability was verified by testing volume distribution of coarse 

aggregates. Finally, the numerical specimen of asphalt mixtures was assembled with three different components, 

namely aggregates, mortar and voids. Meanwhile, the effect of PGFs and SARs on compressive strength was 
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discussed. 

Gradations and attributes of asphalt concrete mixtures 

Three gradations of asphalt concrete (AC) mixture, namely AC-16, AC-20 and AC-25, were selected for the study, 

as shown in Fig.1. These types of asphalt concrete are applied to the representative structures of asphalt pavement in 

China, such as the middle and lower surface course. According to the Chinese flexible pavement design (CCCC 

Infrastructure Maintenance Group 2017), the coarse aggregate is required to be cubic-shaped with rough surfaces and 

its diameter must be greater than 4.75mm (No. 4 sieve). The aggregates obtained from the margins of rivers can be 

used for low-volume road for cost efficient reason, but pebbles and other natural materials are not recommended for 

the use in asphalt mixtures of highways in China. Therefore, this study is focused mainly on the effect of cubic-

shaped characteristics of the aggregates on the properties of mixtures. And the crushed limestone aggregate was 

selected in the research and procured from quarries around Zhuzhou. By means of the Marshall tests, the optimum 

asphalt content of AC-16, AC-20 and AC-25 was determined to be 5.1%, 4.6% and 4.0%, respectively. 

 

Figure 1: Gradations of Asphalt Concretes 

Three-dimensional description of aggregate shape 

The 3D object of aggregates is generally modeled by multiple 2D geometric outlines and fine-divided networks, but 

this approach demands excessive memory and computer time (Chen et al. 2017). Some simplified parameters have 

been proposed to describe the shape and texture of aggregates, so as to reduce costs and time associated with 3D-

modeling. Meanwhile, many researches indicated that these parameters have dramatic effects on mechanical 

properties of aggregates and asphalt mixtures.  

In fact, a space object can be determined by a 2D graphical projection and a vector scalar corresponding to the 

space vector, as shown in Fig. 2. In this study, the digital image technology was applied to obtain overall sample 

characteristics of aggregates, such as the geometric shape of a projection plane, the height of a cross section and the 

maximum axis length. Two geometric parameters were employed to characterize the feature of aggregate particles in 

3D. The plane geometry factor (PGF) is defined as the edge number of the projection plane geometry of an aggregate. 

The section aspect ratio (SAR) is calculated by the ratio of the maximum axis length to the cross-sectional height, in 

which the 3D roundness of the aggregate was considered. Details about the shape feature access and probability 

analysis of aggregate samples are discussed below. 
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Figure 2: Digital image and projection of an aggregate 

 

Impact analysis of geometric parameters on the assembly 

The influences of PGFs and SARs on the packing characteristics of aggregate mixtures were studied by measuring 

porosities in the biaxial and triaxial compression tests with a confining pressure of 10MPa (Zhang et al. 2018b; Zhang 

et al. 2018c). The initial specimens were 200mm in height and 100mm in diameter. According to the three grading 

distributions in Fig.1, disk (ball) particles and single shaped polygon (ellipsoid) clumps were tested separately for 

coarse aggregates. The elastic modulus of the crushed limestone is 39.3GPa and its Poisson’s ratio is 0.23 on average 

(Wang 2011).  

The Bubble Pack algorithm was mentioned to generate clumps using an input closed geometry (line or triangular 

surface) (Taghavi 2011). Default values were used in the algorithm for the ratio of the smallest to largest ball in the 

clump which is 0.5 and the angular corresponding to smoothness which is 150° for this. It has demonstrated that these 

parameters have little effect on the corresponding geometry of the clumps (Liu et al. 2017) and the optimized solution 

was not included in this research. As show in Fig.3, the surface descriptor of the clump was imported and the ellipsoid 

clumps in 3D with different SARs (1.5, 2.0, 2.5, 3.0 and 3.5) were established. Similarly, Fig.4 shows that disk clumps 

with different PGFs (4, 5, 6, 7 and 8) were imported by regular polygons. 

 

Figure 3: Clumps of ellipsoid geometry with different SARs 



5 

 

Figure 4: Clumps of regular polygon with different PGFs 

The test results of polygon (ellipsoid) clumps with different SARs and PGFs are shown severally in Fig.5 and Fig.6. 

For biaxial tests, the disk particles (PGF is similar to infinity, marked as ‘’) were replaced in turn by a set of the 

same shape regular polygon. It is clearly that the PGF has an effect on the final porosity and its trend is not monotonic. 

The reason for this issue may be that the roundness of particles will increase and the interlock between particles will 

be weakened after the PGF reaches a certain value. For triaxial tests, the porosity increases with the SAR and the 

compaction effect of balls is different from the ellipsoids. Through five parallel experiments, the error bars represent 

the variation of results. At the same confining pressure, the porosity depends on the internal structure and contacts. 

On these results of regular polygons and ellipsoids, it is noted that both shape and gradation affect the composition 

of internal structure and the contact behavior between particles. 

 

Figure 5: Final porosity of biaxial compression tests 
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Figure 6: Final porosity of triaxial compression tests 

 

Investigation and data collection of real aggregates 

Two-dimensional images of aggregates were photographed to identify the projected surface features of aggregates 

using a high-definition camera. The grayscale images were obtained by the gray scale enhancement and de-noise 

processing, as shown in Fig.7. Since the maximum nominal particle diameters of AC-25 mixture is 26.5mm, the 

coarse aggregates in this research are from six sieve size groups (26.5mm-31.5mm, 19mm-26.5mm, 16mm-19mm, 

13.2mm-16mm, 9.5mm-13.2mm, 4.75mm-9.5mm). The object of this study is a cylinder specimen of asphalt 

mixtures, including hundreds of coarse aggregates for each size group. The measured aggregates were randomly 

selected by the cluster sampling and numerical features of the aggregates were given by the Monte-Carlo method 

(Ferellec and Mcdowell 2010). Through multiple sampling analysis, the variance of statistical results tends to 

stabilize within 10% relative error when the number of particles is great than 100. To represent the geometric feature 

of a whole specimen, the sample size per sieve was set to be 200. Due to little demand for large-size aggregates, the 

number of aggregates at first sieve was 100. 

 

Figure 7: Grayscale image of aggregate projection plane 

The statistical distribution result of PGFs and SARs is shown in Fig.8. A modified Douglas-Peucker algorithm was 

written in MATLAB that the thresholds were obtained by iterating over iterations to reduce the impact of special 

pixels and the polygon area was used to replace the nonlinear boundary curve of aggregate images (Visvalingam and 
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Whyatt 1990). By means of polygonal fitting, the PGF of aggregates per sieve was counted and the results show that 

a peak value occurs as the PGF increases. The probabilities for the PGF of 5 and 6 are both greater than 30% in the 

same sieve. Probability distribution curves of PGFs and SARs are in concordance with the Gauss-type function. With 

the increase of SARs, the trend of probability distribution is similar to that for PGFs. Meanwhile, the statistical 

analyses indicate that the aggregate size has a significant influence on the statistical results of SARs but the difference 

is negligible on those of PGFs. 

 
Figure 8: Statistical distribution results of PGFs and SARs 

Gaussian fitting functions and parameters of PGFs and SARs are displayed in Table 1 and Table 2, respectively. 

For the peak feature of PGFs, the mean value xc is from 5.393 to 5.577, which is within the range at probability of 

30%. The mean value for SARs is from 1.858 to 2.099 and the peak of statistical results is also around 2.0. The 

correlation coefficients of fitting curves, R values, are all greater than 95%. It can be assumed that Gaussion fitting 

curves are in good agreement with the statistical results of aggregates per sieve. Therefore, these fitting parameters 

were applied to represent the geometry information of the realistic aggregates in mathematical models. 

Table 1. Gaussian curve fitting results of PGFs 

Sieve size 

(mm) 

 
2

2
2

0
/ 2

cx x

w
A

y y e
w 




   
R 

y0 xc w A 

26.5 0.084 5.577 1.160 0.584 0.998 

19.0 0.057 5.585 1.929 0.743 0.999 

16.0 0.093 5.393 1.365 0.557 0.999 

13.2 0.080 5.532 1.445 0.623 1.000 

9.5 0.053 5.436 1.878 0.766 0.999 

4.75 0.080 5.498 1.279 0.609 0.981 

Table 2. Gaussian curve fitting results of SARs 

Sieve size 
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R 

y0’ xc’ w’ A’ 

26.5 0.049 1.858 0.670 0.378 0.991 

19.0 -0.235 1.955 2.077 1.450 0.990 

16.0 0.055 2.099 0.941 0.376 0.991 

13.2 0.043 1.989 1.167 0.420 0.960 

9.5 -0.004 2.076 1.255 0.542 0.987 
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An aggregate generation algorithm with geometric parameters 

According to statistic information of geometrical features, an aggregate generation algorithm was developed by the 

Monte-Carlo method. The model of asphalt mixture structures was divided into three components: coarse aggregate, 

asphalt mortar and void. Limited by computer memory, the following discussion is only for coarse aggregate (> 

4.75mm).  

Clumping model of irregular aggregates 

The irregular clumps were processed through a newly developed aggregate generation algorithm to simulate the real 

aggregates with the Gauss parameters. Three steps were mentioned as follows. 

1) The first step is to create the basic clump models.  

The spatial structure of an aggregate is a cuboid inscribed in a certain sphere, with a square bottom whose edge 

length lb was determined by the uniform distribution of the aggregate size and the clump element radius, using Eq. 

(1).  

min max min

b e

e

2( ( ) urand())
int( )

R R R
l r

r

  
                          (1) 

where int() is the integer function; urand() is the uniformly distributed random number from 0 to 1.0; Rmax and Rmin 

are the maximum and the minimum aggregate size in the sieve; re is the clump element radius. 

The height of the cuboid hc could be expressed by the SAR, as shown in Eq. (2). Clump elements were stacked in 

a rectangular arrangement with a spherical distance of the radius and the diagram of clump elements was shown in 

Fig.9. 

b

c e2

0 e

2
int( )

grand( , , , )c

l
h r

y A x w r
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
                           (2) 

where grand() is the Gauss distribution random number from 1.0 to 3.5; y0, A, xc and rc are the fitting parameters of 

the SAR. 

 

Figure 9: Elements accumulation of basic clump model 

A judgment mechanism was required to ensure that the clump size conforms to the grading requirements, as 

described in Eq. (3). If the conditions were not met, the above steps would be repeated to regenerate the stochastic 

model. 

2 2 2 2

min b c max+R l h R                                       (3) 

2) The second step is to segment the plane of the basic model.  
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For the model in line with the aggregate edge characteristics, a random plane was set by a FISH function to incise 

the basic model to obtain a complex aggregate space structure, as shown in Fig.10. The plane was through a specific 

point in the inscribed sphere and the direction of the outside line was the body-center to the point, as expressed in Eq. 

(4). 

1 0 1 1 0 1 1 0 1( )( ) ( )( ) ( )( ) 0x x x x y y y y z z z z                           (4) 

where x0, y0 and z0 are the coordinate of the clump body-center; x1, y1 and z1 are the coordinate of the specific point 

in an inscribed sphere. 

 

Figure 10: Schematic diagram of polygon segmentation by plane 

The position of the specific point must meet the requirement of Eq. (5), to ensure the effectiveness of incision. 

2

c

1 0

b

0.5 urand()
h

z z
l

                                  (5-a) 

1 0 c0.5 sin(2π )y y h                                   (5-b) 

1 0 0.5 cos(2π )cx x h                                   (5-c) 

where θ is the uniformly distributed random number from 0 to 1.0. 

3) The last step is to obtain the irregular clump with polygon bottom.  

The clumping model was cut into any polygon shape in the bottom by repeating the second step. Probabilistic 

fitting functions of the PGF were also applied to determine the polygon of clump bottoms by the number of cutting 

planes randomly. Fig.11 shows the typical digital models of aggregate particles in each sieve. 

 

Figure 11: Typical digital aggregates with each sieves 
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Aggregate accumulation with the size gradation 

During the grading delivery process of the above-mentioned digital random aggregate, two issues need to be solved: 

1) how to determine the location of a random aggregate in a specified space; 2) how to achieve the aggregate quality 

distribution as grading scheme. 

Fig.12 shows the flow diagram of the grading delivery algorithm. The command GEN in PFC3D was used to 

randomly generate ball particles in the specified area and balls of different particle sizes could be dispensed in sieve 

i. The balls were derived with the coordinates and replaced by random aggregate clumps. At the same time, the total 

mass of the generated aggregate clumps was computed to determine whether the set quality reached. If the desired 

result is not obtained, the above procedures should be repeated to generate more balls and clumps. 

 

Figure 12: Flow diagram of the grading delivery algorithm 

Verification of volume distribution in aggregate skeleton 

In general, it is possible to change the nominal maximum aggregate size when the cuboid is cut into different shapes. 

A geometrical constraint was defined to reduce the possibility in this process. Both the maximum diagonal length of 

the bottom surface and the height of aggregates were obtained and the quadratic sum must be greater than the size of 

their primary control sieve. In addition, the size of the final aggregate has less effect on the whole gradation since 

there is a large difference between each sieve size. 

Taking the assembly of AC-20 mixture as an example, the correlation between designed and generated gradation 

was analyzed by volume content of aggregates, as shown in Fig.13. Aggregate clumps were divided into 5 groups 

according to the grain diameter and their volume can be calculated by the number of assigned particles. To understand 

the stability of the model, multiple numerical modeling tests were conducted to measure the variation of volume 

fraction per aggregate group. The results show that the volume distribution of generated aggregates is consistent with 
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the design gradation due to R2 of 99.45%. Therefore, it is proved that the developed aggregate generation algorithm 

is reasonable and stable in this research and can be applied to the follow-up modeling of asphalt mixtures. 

 

Figure 13: Correlation between designed and generated gradation 

Simulation and analysis of asphalt mixtures using uniaxial tests 

Numerical specimen of asphalt mixture 

The three-dimensional cylindrical specimen of asphalt mixtures was built with the size of 100mm in height and 

100mm in diameter. The coarse aggregates were delivered and the initial height was determined to be 250mm by 

multiple testing to ensure the produced particles enough. After the coarse aggregate had been finished, the upper wall 

was controlled to compress the specimen until the height was reduced to 100mm and the assembly tended to balance 

through manifold cycles, as shown in Fig.14 (a). 

Due to the current technical difficulties, the coarse aggregate skeleton is not able to be filled with dense mortar 

particles. To obtain the dense structure of asphalt mixtures, a simplified approach to fill the asphalt mortar was 

proposed based on coarse aggregate skeleton. A numerical specimen of asphalt mixtures was reconstructed by single-

sized particles with 2.5mm in diameter and a total number of 49520, as shown in Fig.14 (b). A FISH function was 

written to determine whether the filled particles overlapped with the original aggregate clumps, which were pre-

generated by the aggregate generation algorithm. It is clearly that the single-sized particles are colored to represent 

different components of asphalt mixtures in Fig.14 (c). If the overlap was present, it would be defined as the aggregate 

unit (dark-colored part); otherwise, it would be defined as the mortar unit (light-colored part). It is noted that these 

aggregates are still a series of irregularly-shaped clumps, whose ranges are consistent with the original aggregate 

skeleton. Similarly, some mortar particles were randomly removed to simulate the void distribution. The nominal 

porosity is 0.04 in this model. 

 

Figure 14: Digital specimen of asphalt mixtures 
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Contact model and material parameter 

Since the aggregates and the asphalt mortar have different mechanical properties, the components of the asphalt 

mixtures should be given different contact models and parameters. The aggregate-in interface was fixed by the clump 

definition; the aggregate-aggregate interface was defined as the slip model; the aggregate-mortar and the mortar-in 

interface were both defined as the parallel-bond model and the Burger’s model. 

The basic physical and mechanical properties of aggregates and asphalt mortar were measured by the 

corresponding mechanical test methods. The elastic modulus of the calcareous aggregate was 39.3GPa and Poisson's 

ratio was 0.23 (Wang 2011). The elastic modulus of the asphalt mortar was determined as 0.63GPa by laboratory 

tests and Poisson's ratio was 0.4. The Burger’s model is used to characterize the viscoelastic behavior of materials 

and the parameters of this contact model were calculated by macroscopic mechanical parameters of creep behaviors 

(Itasca Consulting Group 2005). Therefore, the Burger’s meso-mechanical parameters of the asphalt mortar at 20°C 

were obtained by the shear creep tests in laboratory and described as Table 3. 

Table 3. Meso-mechanical parameters of Burger’s model 

Parameters Cm Km Ck Kk 

Normal 8.431×103 11.44×103 10.35×103 2.921×103 

Tangential 3.01×103 4.09×103 3.70×103 1.04×103 

The uniaxial compression test was conducted by applying a constant rate of 2mm/min to the upper wall. The 

process of simulation was concluded when the stress was reduced to 80% of its historical peak, displayed in Fig.15. 

The parameters of the parallel-bond model have no definite correspondence with macroscopic mechanical behavior. 

Through multiple simulations and verification, the normal strength and shear strength of the parallel-bond model 

were determined to be 1.21×106 and 0.49×106, respectively. Fig.15 shows that the results of virtual tests are in good 

agreement with those of laboratory tests in peaks and their curve slopes are very close from the initial state to the 

failure peak. 

 

Figure 15: Results of uniaxial compression test in AC-20 

Impact analysis of PGFs and SARs on uniaxial tests 

It was mentioned in the previous work that the shape of aggregates plays an essential role in the mesoscopic structure 

of mixtures, such as coordination number and porosity. In addition, cubic-shaped aggregates with rough surfaces 

provide a more stable structure for the asphalt mixtures because those characteristics result in a better aggregate 

interlock. Thereby, a series of virtual uniaxial tests of asphalt mixtures were performed to understand the variation 

and its influencing factors of compressive strength. 

Considering single dependence on PGFs and SARs, modeling test results are shown in Fig.16. The type of asphalt 

concrete makes a difference to mechanical properties. With the decrease of the maximum aggregate size, the 
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compressive strength of all specimens increases. Meanwhile, as the PGF increases from 5.0 to 7.0, the strength 

increases greatly. However, it is obvious that the mechanical property is negatively correlated with SARs from 1.75 

to 3.0. Thus, it is proved by simulations that the angularity (PGF) of aggregates has a beneficial effect on the strength 

and stability while the flat-elongated feature (SAR) has a negative effect on those of asphalt mixtures, which matches 

the real result. 

 

Figure 16: Effect of PGFs and SARs on compressive strength 

Summary and conclusions 

In this study, the plane geometry factor (PGF) and section aspect ratio (SAR) were proposed to characterize the three-

dimensional structures of aggregates. A clumping model of irregular aggregates was developed and its input 

parameters were obtained through Gauss regression analysis of shape statistical results. A digital specimen of asphalt 

mixture was built with 49520 particles in 3D DEM. The uniaxial compression test was simulated and the effect of 

PGFs and SARs on compressive strength was discussed. Major conclusions are drawn as follows: 

1) Since a simplified space object can be described by a 2D graphical projection and a vector scalar corresponding 

to the space vector, the PGF and SAR are appropriate to represent the three-dimensional features of aggregate shapes. 

It was proved by biaxial and triaxial tests that both PGFs and SARs play essential roles in the compaction property 

of aggregate mixtures. 

2) Probability distribution curves of PGFs and SARs are in concordance with the Gauss-type function. Their 

correlation coefficients of Gaussian fitting curves, R values, are all greater than 95%. Meanwhile, the statistical 

analyses indicate that the aggregate size has a significant influence on the statistical results of SARs but the difference 

is not observable on those of PGFs. 

3) The developed clumping model of aggregates was reasonable with the shapes and size gradation. The final size 

of aggregates per sieve is strictly constrained and must be greater than the size of their primary control sieve. 

Meanwhile, it is verified that the volume distribution of generated aggregates is consistent with the design gradation 

due to R2 of 99.45%, taking AC-20 gradation as an example.  

4) A cylinder specimen of asphalt mixtures can be reconstructed regularly by single-sized particles to distinguish 

three different components, namely aggregates, mortar and voids. Based on the parallel-bond model and the Burger’s 

model, the results of virtual tests are in good agreement with those of laboratory uniaxial tests in peaks and their 

curve slopes are very close from the initial state to the failure peak. It is shown that the angularity (PGF) of aggregates 

has a beneficial effect on the strength and stability while the flat-elongated feature (SAR) has a negative effect on 

those of asphalt mixtures. 
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