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Abstract 42 

Productive infections by human papillomaviruses (HPVs) are restricted to non-dividing, 

differentiated keratinocytes.  HPV early proteins E6 and E7 deregulate cell cycle 44 

progression and activate the host cell DNA replication machinery in these cells, changes 

essential for virus synthesis.  Productive virus replication is accompanied by abundant 46 

expression of the HPV E4 protein.  Expression of HPV1 E4 in cells is known to activate 

cell cycle checkpoints, inhibiting G2-to-M transition of the cell cycle and also suppressing 48 

entry of cells into S phase.  We report here that the HPV1 E4 protein, in the presence of a 

soluble form of the replication-licensing factor (RLF) Cdc6, inhibits initiation of cellular 50 

DNA replication in a mammalian cell-free DNA replication system.  Chromatin-binding 

studies show that E4 blocks replication initiation in vitro by preventing loading of RLFs 52 

Mcm2 and Mcm7 onto chromatin.  HPV1 E4 mediated replication inhibition in vitro and 

suppression of entry of HPV1 E4 expressing cells into S phase are both abrogated upon 54 

alanine replacement of arginine 45 in the full-length E4 protein (E1^E4), implying that 

these two HPV1 E4 functions are linked.  We hypothesize that HPV1 E4 inhibits 56 

competing host cell DNA synthesis in replication-activated suprabasal keratinocytes by 

suppressing licensing of cellular replication origins, thus modifying the phenotype of the 58 

infected cell in favour of viral genome amplification. 
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Introduction 60 

Human papillomaviruses (HPVs) are a large group (> 100 types) of small DNA viruses 

that replicate in keratinocytes of squamous epithelia.  HPV infections produce 62 

hyperproliferative warts that are in most instances benign.  A small subset of HPV types 

however form lesions on the skin, and on the oropharyngeal and anogenital tract mucosa, 64 

that have a significant risk of malignant transformation.  The most common cancer 

attributable to infection with the high-risk HPV types is cancer of the uterine cervix (35).  66 

Despite the differences in pathogenesis between virus types, their life cycles are similar 

(10), beginning with infection of keratinocytes within the basal cell compartment of 68 

squamous epithelia.  Here the HPV genome is replicated as a low copy (between 50-100 

copies per cell) episome in synchrony with the replication of the host cell genome, a 70 

process that requires HPV E1 and E2 functions.  HPV early proteins E6 and E7 act to 

expand the population of HPV infected keratinocytes once they migrate up from the basal 72 

layer, by stimulating cell cycle entry and cell survival.  The virus then utilizes the host 

cell’s replication machinery that has been activated in these cells to amplify the HPV DNA 74 

to many thousands of copies per cell during the vegetative stage of the life cycle.  Finally, 

the capsid proteins L1 and L2 are produced and new progeny are assembled in the most 76 

superficial cells prior to their release from the highly differentiated squames. 

A major protein produced during the HPV life cycle is the E4 protein.  It is expressed as an 78 

E1^E4 fusion protein from spliced transcripts formed between the N-terminus of the E1 

open-reading frame (ORF) and almost the complete ORF of E4 (21).  The precise function 80 

of E4 has not been defined, but loss of expression of the full-length E1^E4 polypeptide has 

a severe adverse effect on viral genome amplification of HPV types 16, 18 and 31 82 

genomes following introduction of mutant genomes unable to support E1^E4 expression 

into keratinocytes and subsequent induction of cellular differentiation (20, 38, 39).  Failure 84 

to complete the vegetative stage of the virus life cycle is also the outcome of loss of E1^E4 

expression in rabbit papillomas induced by a mutant cottontail rabbit papillomavirus 86 

genome (22).  These studies suggest that E4 function is necessary for efficient vegetative 

replication of the virus, a hypothesis supported by coincidence between onset of viral 88 
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genome amplification and induction of high-level E4 production in natural papillomavirus 

infections (23).  90 

Examination of E4 activity in epithelial cell cultures has revealed diverse biological 

actions that perhaps imply a multifunctional role for this viral protein in the virus life 92 

cycle.  These include disruption of ND10 body organization that might be required for 

viral DNA replication, either by organization of viral replication centres or by inactivation 94 

of an host anti-viral response mediated through the nuclear ND10 body (8, 29).  A potent 

G2 arrest function is a conserved function of E4 proteins between HPV types with 96 

dissimilar tropism and it is thought that division-arrest of infected cells might be necessary 

to support efficient viral DNA amplification (5, 13, 19).  E4 inclusion bodies found in the 98 

cytoplasm of cells of HPV1 skin warts contain a kinase SRPK1, a binding partner of 

E1^E4 proteins, that is associated with regulating the function of splicing factors (1).  100 

Sequestration of SRPK1 by E4 could be an HPV mechanism to regulate expression of viral 

late transcripts at the late stages of the replication cycle (1).  Late in the infectious cycle, 102 

the E4 protein may also act to diminish the integrity of the keratinocyte by disrupting the 

keratin cytoskeleton and cornified envelope formation, and inducing apoptosis through 104 

alteration of mitochondria function, to facilitate egress of the newly formed HPV virions 

(3, 6, 24, 26). 106 

Execution of multiple functions might be assisted by conversion of the E4 protein into 

multiple forms, brought about by a combination of sequential N-terminal proteolysis of the 108 

E1^E4 polypeptide (7, 25) and by phosphorylation (9, 21).  Indeed, a study of the 

interaction between E4 and cell growth revealed an interesting relationship between 110 

modification of the HPV1 E4 protein and dysregulation of the cell cycle (13).  During the 

HPV1 infectious cycle N-terminal sequences are removed from the full-length 17-kDa 112 

E1^E4 polypeptide to produce smaller E4 species of 16-, 11- and 10-kDa that 

progressively replace the full-length protein as the replication cycle proceeds (7, 25).  114 

Expression of the 17-kDa E1^E4 protein in the presence of a protein mimicking the 16-

kDa polypeptide in epithelial cells inhibits G2-to-M transition of the cell cycle and, in a 116 
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population of cells, prohibition of entry into S phase is also observed (13).  The negative 

effect on S phase entry however, was not apparent in cells expressing the individual forms 118 

of E4, although expression of the truncated 16-kDa protein alone was sufficient to block 

cell division (13).  Further analysis revealed that HPV1 E4 employed two distinct 120 

mechanisms to inhibit G2-to-M transition, the first, mediated by the combined expression 

of 17- and 16-kDa proteins, was found to be dependent on maintenance of high levels of 122 

the Wee1 kinase to inhibit cdk1 activity, and the second, mediated by the 16-kDa protein, 

was associated with insufficient production of cyclin B1 to enable the cells to transverse 124 

G2 to M (13, 14).  Employment of two distinct mechanisms to inhibit cell division 

suggests that the G2 arrest function of HPV1 E4 is important in the HPV life cycle.  In this 126 

study we investigated how HPV1 E4 inhibits progression of cells into S phase and show 

that HPV1 E4 affects a key step in the cellular DNA replication process. 128 

Materials and methods 

HPV1 E4 expression plasmids 130 

Construction of plasmids based on pcDNA3.1 that deliver expression of the 17-kDa full-

length HPV1 E1^E4 (E4-17K) and an N-terminal truncation (E4-16K) equivalent to the 132 

16-kDa E4 polypeptide have been described previously (29).  A set of previously described 

deletions within the full-length E1^E4 coding sequence (25) were excised and inserted into 134 

the BamHI restriction site of pcDNA3.1 (Invitrogen, Carlsbad, CA).  The sequence 

integrity of plasmid inserts was verified by bi-directional DNA sequencing.  Substitutions 136 

E4R45A, E4R47A and E4R48A are described elsewhere (1). 

Expression of recombinant proteins 138 

HPV1 E4 and Xenopus laevis Cdc6 (His6-XeCdc6) proteins were purified from Sf9 insect 

cells following infection with appropriate recombinant baculoviruses, as previously 140 

described (28, 31).  Histidine-tagged human geminin (His6-hsGeminin) was expressed in 

Escherichia coli and purified as described (36).  For expression of histidine-tagged HPV1 142 

E4 protein in bacteria, the E1^E4 wild type and mutant coding sequences were inserted 

into the BamHI – EcoRI cloning site of the expression vector pRSET-C (Invitrogen) and 144 
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expressed in E. coli strain BL21 (DE3) pLysS (Novagen, Madison, WI, USA).  The 

recombinant protein was purified by IMAC using NiCl2-charged HiTRAP chelating 146 

columns (GE Healthcare Europe GmbH, Munich, Germany).  Non-specifically bound 

proteins were removed with 4 column volumes (c.v.) of 10% elution buffer (30 mM Tris-148 

Cl pH 8, 300 mM imidazole, 30 mM NaCl, 0.1 mM PMSF) and 8 c.v. of 20% elution 

buffer.  The E4 proteins were eluted with 2 c.v. of 100% elution buffer and desalted into 150 

20 mM Tris-Cl pH 8, 50 mM NaCl. 

In vitro cellular DNA replication assays 152 

Nuclei and cytosolic extracts were prepared from synchronized NIH3T3 and HeLa S3 cells 

and supplemented as described previously (11, 15, 31, 32).  In vitro DNA replication 154 

assays were performed as described (15, 31) (Fig. 1A).  Briefly, reactions contained 30 !l 

of cytosolic extracts (250-300 !g of protein), 10 !l of premix buffer (160 mM K-HEPES 156 

pH 7.8, 28 mM MgCl2, 12 mM ATP, 0.4 mM of GTP, CTP, UTP, dATP, dGTP and dCTP, 

1 !M biotin-16-dUTP, 2 mM dithiothreitol, 160 mM creatine phosphate, 20 !g 158 

phosphocreatine kinase), 1 x 10
5
 nuclei and, where indicated, up to 10 !l of recombinant 

protein(s).  His6-XeCdc6 protein in 20 mM HEPES pH 7.4, 150 mM NaCl, 5% glycerol, 1 160 

mM DTT was added to in vitro replication reactions at a final concentration of 0.65 µM, 

baculovirus-expressed HPV1 E4 proteins in 10 mM phosphate buffer pH 7.4, 0.1 mM DTT 162 

at 3 µM, bacterially-expressed His6-E4 proteins in 40 mM Tris-HCl pH 7.6, 30 mM NaCl, 

and His6-hsGeminin protein in 50 mM Na-phosphate at 4 µM.  Equal volumes of 164 

appropriate buffers were added to control reactions.  All components of the replication 

reactions were incubated together on ice for 15 min prior to the addition of S phase cytosol 166 

and incubation for 3 h at 37°C.  For analysis of in vitro DNA synthesis reactions by 

confocal microscopy, reactions were stopped by diluting with 500 !l of phosphate-168 

buffered saline (PBS) and nuclei fixed for 5 min in 4% paraformaldehyde.  After fixation, 

nuclei were spun through a 30% sucrose/PBS cushion onto poly-L-lysine coated 170 

coverslips.  All subsequent washing and staining steps were carried out in PBS, 0.2% 
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Triton X-100, 0.04% SDS.  Coverslips were washed, stained for incorporated biotin-16-172 

dUTP with fluorescein-linked streptavidin (1:100 dilution, Amersham) and for DNA with 

propidium iodide/RNase A (both at 50 ng/ml), washed again, and mounted in Vectorshield. 174 

Confocal fluorescence microscopy of random fields of nuclei was performed on a Leica 

TCS DMRE confocal microscope and the number of nuclei incorporating biotin-16-dUTP 176 

in vitro and non-replicating nuclei were counted.  Routinely 800-1000 nuclei were scored 

blind by a single individual for each reaction and quantitated as percentages of the total 178 

number of nuclei that synthesized DNA in vitro.  More than one preparation of nuclei was 

assayed, in triplicate, for each set of experiments and analysis performed by two 180 

individuals.  Statistical analysis of data from multiple independent experiments was 

performed by single factor analysis of variance (ANOVA). 182 

Chromatin-binding assay 

In vitro DNA replication assays were set up as described above.  After 3 h incubation, 184 

nuclei were pelleted by low speed (1300xg) centrifugation and used in chromatin-binding 

reactions performed as described previously (12).  Samples were immunoblotted with 186 

antibodies against Mcm2 (BD Biosciences, #610701), Mcm7 (Neomarkers, Lab Vision, 

Suffolk, UK, #MS-862-P), Cdc6 (Santa Cruz, CA, USA, #9964), HPV1 E4 (MAb 4.37, 188 

(7)) and Histone H1 (Santa Cruz, CA, #10806).  Analysis of protein bands using 

densitometry was determined using ImageJ (http://rsb.info.nih.gov/ij).  Chromatin-binding 190 

reactions were repeated at least twice in separate in vitro DNA replication assays. 

Cell transfection and cell cycle analysis 192 

Cos-1 cells were transfected with the appropriate combinations of HPV1 E4 expression 

plasmids, or the pcDNA3.1 empty vector as a control plasmid, as described previously 194 

(13).  At 48 h post-transfection, the cells were incubated with 5-bromodeoxyuridine 

(BrdU) at a final concentration of 33 µM for 2 h.  Cells were then fixed, incubated with an 196 

anti-BrdU antibody conjugated to fluorescein isothiocyanate, labelled with propidium 
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iodide and analysed by dual-parameter flow cytometry as described (13).  Statistical 198 

analysis of data derived from multiple independent experiments was performed by 

ANOVA.  Expression of E4 proteins was confirmed by immunoblot analysis using an 200 

HPV1 E4 monoclonal antibody (MAb 4.37). 

Results 202 

HPV1 E4 inhibits cellular DNA replication in vitro 

We sought to establish whether the negative effect of HPV1 E4 upon S phase entry 204 

reflected an interaction between the viral protein and the process of cellular DNA synthesis 

itself.  To do this, we took advantage of an established cell-free DNA replication system 206 

that supports efficient cellular DNA synthesis under somatic cell cycle control (31) (Fig. 

1A). Previous characterisation of this system revealed that nuclei prepared from quiescent 208 

(G0) NIH3T3 fibroblasts cannot initiate DNA synthesis in S phase cytosolic extracts of 

HeLa cells, whilst G1 nuclei become competent to initiate DNA replication in the S phase 210 

extracts when prepared 16 to 18 hours after release from G0 (31).   

NIH3T3 G1 nuclei were combined with HeLa S phase cytosol and incubated for 3 h in the 212 

presence of an ATP generation system and nucleotides (NTPs and dNTPs) including 

biotin-labelled dUTP as a marker to enable detection of DNA synthesis by confocal 214 

microscopy (Fig. 1A).  We observed that 19.3% of G1 nuclei were capable of DNA 

synthesis in the presence of S phase cytosol in comparison to only 2.2% following 216 

incubation of the G1 nuclei in a physiological buffer (Buffer A) that supports elongation 

but not initiation of DNA replication (Fig. 1C).  The small proportion of replication 218 

competent nuclei observed in Buffer A represent contaminating S phase nuclei present in 

the G1 nuclear preparation that continue DNA synthesis at replication forks established in 220 

vivo prior to their isolation (31).  Thus, 17.1% of G1 nuclei undergo true replication 

initiation in the presence of S phase cytosol.  To confirm that our preparations of G1 nuclei 222 

and S phase cytosol respond to exogenous factors, we first tested the response to 

recombinant preparations of the replication-licensing factor (RLF) Cdc6 (His6-XeCdc6) 224 

and geminin (His6-hsGeminin), a known cellular repressor of replication licensing (18).  

ACCEPTED

 on D
ecem

ber 21, 2018 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


HPV E4 inhibits cellular DNA synthesis 

9 

The percentage of replicating nuclei increased from 19.3% to 23% in reactions containing 226 

His6-XeCdc6 (Fig. 1C).  Since Cdc6 is known to be rate-limiting for replication 

competence after release from G0 (31), the small but consistent increase in replicating 228 

nuclei in the presence of His6-XeCdc6 indicates a low number of G1 nuclei are responsive 

to this RLF.  In contrast, in the presence of His6-hsGeminin there was a marked and 230 

significant decrease (7.2%) in the percentage of replication competent nuclei (Fig. 1C). 

To investigate if HPV1 E4 might interfere with cellular DNA synthesis, the viral protein 232 

was expressed in Sf9 insect cells using a recombinant baculovirus and the purified protein 

(Fig. 1B, WT38) titrated into in vitro replication reactions (Fig. 1C).  Whilst we observed 234 

no significant effect of E4 on the percentage of nuclei synthesizing DNA in co-incubations 

of G1 nuclei and S phase cytosol (19.7%), when E4 was added to reactions that also 236 

contain exogenous Cdc6 (His6-XeCdc6), the percentage of replicating nuclei decreased 

significantly from 23% to 10.6%, indicating that 54% of the replication-competent nuclei 238 

failed to initiate DNA synthesis (Fig. 1C).  Notably, the scale of E4-induced replication 

inhibition was comparable to the inhibitory effect (67%) of His6-hsGeminin (Fig. 1C). 240 

The E4 protein added to the in vitro replication assays contained the full-length E1^E4 

protein (17-kDa) plus small quantities of truncated polypeptides (16-, 11-, and 10-kDa) 242 

(Fig. 1B, WT38).  Interestingly, addition of recombinant E4 protein that contains the 

truncated proteins, but no full-length E1^E4 polypeptide (Fig. 1B, WT43) to the cell-free 244 

replication assay did not inhibit DNA synthesis in the G1 nuclei either in the absence (data 

not shown) or presence of exogenous Cdc6 (Fig. 1C, !E4).  This observation suggests that 246 

E4-induced inhibition of cellular DNA synthesis in vitro requires the presence of the full 

length E1^E4 protein. 248 

To validate the specificity of our findings, identical replication reactions to those described 

above, but using a separate preparation of baculovirus-expressed E4 protein containing a 250 

similar profile of E4 species to WT38, and G1 nuclei prepared from human WI38 diploid 

fibroblasts, achieved a similar level of replication inhibition (55%; data not shown). 252 
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HPV1 E4 does not arrest ongoing cellular DNA synthesis in vitro 

Unlike G1 nuclei, nuclei isolated from cells in the S phase of the cell cycle contain active 254 

replication forks and are thus competent for DNA synthesis in the absence of cytosolic S 

phase extracts (31).  Addition of geminin, an inhibitor of origin licensing, to in vitro 256 

replication reactions containing NIH3T3 S phase nuclei as the source of template failed to 

affect ongoing DNA synthesis (Fig. 1D) consistent with previous reports (18, 33, 40).  258 

Significantly, cellular DNA elongation was also not affected by the addition of 

recombinant E4 protein (WT38) to S phase nuclei, either in the absence or presence of 260 

His6-XeCdc6 (Fig. 1D).  The data from the in vitro replication assay (Fig. 1) indicate that 

in the presence of exogenous Cdc6, HPV1 E4 inhibits initiation of DNA synthesis, but 262 

fails to arrest ongoing DNA synthesis. 

HPV1 E4 blocks recruitment of replication licensing proteins onto chromatin in vitro 264 

Initiation of cellular DNA replication is achieved by the ordered assembly of pre-

replicative complexes (pre-RCs) at origins of replication (34).  During late mitosis (M) and 266 

early G1 phase, RLFs Cdc6 and Cdt1, by interacting with the origin recognition complex, 

load the putative DNA replicative helicase Mcm2-7 onto chromatin to form pre-RCs.  In 268 

the subsequent S phase, DNA replication is initiated at these “licensed” origins by the 

concerted action of cyclin dependent kinases and Cdc7-Dbf4.  To investigate whether 270 

HPV1 E4 might inhibit replication initiation by blocking assembly of pre-RCs onto 

chromatin, we resolved chromatin-bound protein fractions prepared from G1 and S phase 272 

nuclei taken through in vitro replication reactions by gel electrophoresis and probed for 

RLFs Cdc6, Mcm2 and Mcm7 (Fig. 2).  Histone H1 levels were used as a loading control.  274 

Chromatin prepared from G1 nuclei incubated with S phase cytosol showed a two-fold 

increase in the binding of endogenous Cdc6 and MCM factors compared to the elongation 276 

control reaction (Buffer A) (Fig. 2A).  Addition of recombinant Cdc6 to replication 

reactions led to a 1.5-fold increase in the total amount of chromatin-bound Cdc6 and 278 

further increased levels of chromatin-bound MCMs (Fig. 2A), correlating with the 

observed small increase in the percentage of replication-competent nuclei (Fig. 1C).  In 280 

contrast, geminin inhibited origin licensing by blocking loading of Mcm2 onto chromatin 
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(Fig. 2A), indicating that increased levels of chromatin-bound RLFs in nuclei taken 282 

through the replication assay are a result of genuine pre-RC assembly in vitro.  Addition of 

HPV1 E4 protein (WT38) with His6-XeCdc6 to the replication reactions was associated 284 

with a 3.5-fold and 2-fold decrease in chromatin-bound Mcm2 and Mcm7 proteins 

respectively, compared to reactions containing His6-XeCdc6 alone (Fig. 2A).  Notably, the 286 

reduced levels of chromatin-bound MCM proteins were close to base levels measured in 

G1 nuclei incubated with Buffer A (Fig. 2A).  The reduction of chromatin-bound MCM 288 

proteins by the HPV1 protein correlated with its ability to inhibit replication, as Mcm2 and 

Mcm7 levels were not affected by addition of E4 in the absence of exogenous Cdc6, or by 290 

the addition of E4 protein lacking full-length E1^E4 protein (!E4) to reactions containing 

His6-XeCdc6 (Fig. 2A).  There was no evidence that E4 became bound to chromatin, either 292 

in the presence or absence of exogenous Cdc6 (see Fig. 4b). 

Chromatin-binding studies on S phase nuclei taken through replication elongation assays 294 

show that neither addition of geminin nor E4 together with His6-XeCdc6 affected the 

chromatin-binding status of Mcm2 and Mcm7 (Fig. 2B). 296 

Together, the in vitro replication and chromatin-binding data indicate that inhibition of 

initiation of cellular DNA synthesis by HPV1 E4 in the presence of His6-XeCdc6 correlates 298 

with reduced MCM loading onto chromatin.   

Repression of S phase entry by HPV1 E4 in epithelial cells is dependent on an 300 

arginine-rich motif in the E1^E4 protein 

To determine whether there is a relationship between the negative effect of HPV1 E4 on 302 

cell proliferation (13) and E4’s ability to inhibit cellular DNA replication in vitro, we first 

identified the HPV1 E1^E4 sequences required for suppression of S phase entry in 304 

epithelial cells.  Since the negative effect of HPV1 E1^E4 on S phase entry was dependent 

on the presence of a truncated 16-kDa E4 protein (13), HPV1 E1^E4 (E4-17K) expression 306 

plasmids containing small deletions that cover the majority of the E1^E4 sequence, were 

individually co-transfected with the plasmid expressing the truncated protein (E4-16K) 308 

into Cos epithelial cells, and cellular DNA synthesis monitored by BrdU incorporation.  In 
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keeping with our previous findings (13), transient expression of the full-length E1^E4 310 

protein together with E4-16K reduced S phase BrdU incorporation by nearly 2-fold, in 

comparison to cells expressing the individual proteins, or control cells (Table 1).  Of the 312 

E1^E4 deletion plasmids tested, only one, containing a deletion of residues 44 to 48 

(GRPRR), did not inhibit S phase entry following co-transfection with E4-16K (Table 1).  314 

The G2 arrest function of this mutant E1^E4 protein however remained intact (data not 

shown).  316 

The contribution of individual amino acids within the 44GRPRR48 sequence to E1^E4 

function was examined by substituting the arginine residues at positions 45, 47 and 48 by 318 

alanine residues (E4R45A, E4R47A, E4R48A).  Following co-transfection of these mutant 

E1^E4 plasmids with the E4-16K expression plasmid into Cos cells, BrdU incorporation 320 

revealed that inhibition of entry into S phase was sensitive to alanine substitution of Arg45, 

but not mutation of Arg47 or Arg48 (Fig. 3A).  Loss of inhibitory action was not due to 322 

any change in the stability of the E4R45A E1^E4 protein in epithelial cells (Fig. 3B), and 

all three mutants promoted G2 arrest to levels comparable with E4-17/16K expressing cells 324 

(data not shown). 

The arginine-rich motif in E1^E4 is necessary for inhibition of cellular DNA synthesis 326 

initiation in vitro 

Next, we wanted to determine whether the 44GRPRR48 sequence E1^E4 was also involved 328 

in inhibition of cellular origin licensing in the in vitro replication assay.  In this instance, 

the recombinant HPV1 E4 proteins were expressed and purified from bacteria.  To verify 330 

that a bacterial form of the E4 protein encodes an inhibitory function, the wild-type protein 

was titrated into the in vitro replication reactions.  Consistent with the data using 332 

baculovirus recombinant E4 protein, we observed no significant effect of E4 on the 

percentage of nuclei synthesizing DNA following addition of the bacterial E4 protein to 334 

co-incubations of NIH3T3 G1 nuclei and HeLa S phase cytosol (24%, Fig. 4A).  However 

when E4 was added to reactions that also contain exogenous Cdc6 (His6-XeCdc6), the 336 

percentage of replicating nuclei decreased significantly from 29% to 13.8%, indicating that 
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in the presence of a bacterial derived HPV1 E4 protein nearly 53% of the replication-338 

competent nuclei failed to initiate DNA synthesis (Fig. 4A).  Inhibition of cellular 

replication initiation was however abrogated upon the addition of the E4 protein containing 340 

deletion of 44GRPRR48 to the in vitro reactions containing His6-XeCdc6 (26.5%, Fig. 4A), 

and alanine substitution of arginine 45 (E4R45A) within this motif was sufficient to relieve 342 

the inhibitory effect of the HPV protein (23.2%, Fig. 4A). 

Our analysis of pre-RC assembly in the in vitro replication assay had indicated that HPV1 344 

E4 protein inhibited loading of MCM onto chromatin (Fig. 2).  Therefore we investigated 

whether failure to inhibit replication initiation by the mutant E1^E4 proteins correlated 346 

with efficient assembly of pre-RCs onto chromatin.  Chromatin-bound protein fractions 

prepared from G1 and S phase nuclei taken through in vitro replication reactions were 348 

probed for RLFs Cdc6, and MCM proteins 2 and 7 (Fig. 4B).  Chromatin prepared from 

G1 nuclei incubated with S phase cytosol in the presence of His6-XeCdc6 and the wild-type 350 

protein derived from bacteria showed a 51% and 41% decrease in chromatin-bound Mcm2 

and Mcm7 proteins respectively, compared to the level of these proteins in the reaction 352 

containing His6-XeCdc6 alone (Fig. 4B).  The reduced levels of chromatin-bound MCM 

proteins in the presence of the bacterial preparation of E4 were similar to the decrease 354 

observed with the baculovirus-recombinant E4 protein (Fig. 2).  However, in the presence 

of mutant E1^E4 proteins E4!44-48 and E4R45A both Mcm2 and Mcm7 were efficiently 356 

recruited to chromatin (Fig. 4B). 

Together, our data suggest that HPV1 E4 inhibits initiation of cellular DNA replication in 358 

vitro by blocking MCM loading onto chromatin and that this is dependent on an arginine-

rich motif within the full-length form of the viral protein.  360 

Discussion 

Using a cell-free cellular DNA replication assay, we have shown that HPV1 E4 protein is a 362 

potent inhibitor of cellular replication licensing; a novel function for this protein.  

Chromatin binding studies indicate that E4 blocks replication initiation in vitro by 364 

preventing loading of licensing factors Mcm2 and Mcm7 onto chromatin.  The functional 
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effect of E4 mimics the cellular repressor of replication licensing geminin (18), but while 366 

geminin interacts with the RLF Cdt1 to inhibit assembly of MCMs into pre-RCs, the 

mechanism by which E4 blocks MCM loading appears different to that of the cellular 368 

repressor.  Unlike geminin, inhibition of licensing in vitro by E4, requires addition of an 

exogenous supply of soluble Cdc6.  The requirement for exogenous Cdc6 for E4 mediated 370 

inhibition of DNA replication may be explained by the differential regulation of Cdc6 in 

normal proliferating cells, where Cdc6 is found in both the soluble and chromatin-bound 372 

fractions (30) and during the G0-S transition, where Cdc6 is synthesised de novo and 

immediately recruited to replication origins (12).  In the in vitro replication assay used in 374 

this study, NIH3T3 G1 nuclei are prepared during release from density-dependent growth 

arrest (G0) and therefore contain only chromatin-bound Cdc6 protein (31).  How HPV1 E4 376 

and the soluble form of the licensing factor Cdc6 function together to inhibit replication is 

not yet understood, but they are sufficient to block MCM recruitment to origins even in the 378 

presence of chromatin bound Cdc6.  One possibility is that E4 is able to complex with 

MCM factors in a soluble Cdc6-dependent manner.  We have evidence of an association 380 

between a GST-HPV1 E1^E4 fusion protein and an epitope-tagged form of Mcm7 

expressed in cell lysates containing soluble Cdc6 (I. Bell and Sally Roberts, preliminary 382 

data).  Association between E1^E4 and this MCM factor however, might not be a complete 

description of the mechanism of E4-mediated replication inhibition since !E4, the form of 384 

HPV1 E4 defective in inhibiting cellular DNA synthesis, can form an association with 

Mcm7 (I. Ashmole and S. Roberts, unpublished data).  It is feasible that further 386 

modification, for example a phosphorylation event, is necessary to achieve an “active” 

inhibitory complex and this might be dependent on N-terminal sequences specific to the 388 

full-length E1^E4 polypeptide.  Whatever the underlying mechanism, inhibition of 

initiation of cellular DNA replication in vitro and suppression of entry of epithelial cells 390 

into S phase are functions both dependent on arginine 45 in the HPV1 E1^E4 polypeptide, 

suggesting that these two functions are linked and hence implies that E4 can block cellular 392 

DNA synthesis in the presence of endogenous soluble Cdc6. 
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Our studies have shown that E4-induced inhibition of in vitro replication initiation is 394 

dependent on a full-length E1^E4 molecule.  It is possible that the smaller forms of E4 that 

exist in the purified preparations of HPV1 E4 protein used in this study may contribute to 396 

this E1^E4 function.  Indeed HPV1 E4 expression studies show that co-expression of full-

length and truncated forms of HPV1 E4 act to repress cell proliferation, whilst expression 398 

of the full-length form alone did not (13).  Complex formation between the different E4 

polypeptides (14) might be one explanation, either the complex inhibiting S phase entry 400 

directly or, upon formation, depleting free full-length protein to a level that it is then active 

with regards to blocking cell proliferation.  This latter explanation might well explain why 402 

there is no block in cell proliferation in cells expressing the E1^E4 protein alone even 

though a small amount of the truncated E4 species does accumulate in these cells.   404 

We do not know at this stage of our investigations whether this novel HPV1 E4 function is 

conserved between the different phylogenetic types.  Arginine 45 lies in a region of HPV1 406 

E4 that is rich in basic amino acids and indeed similar (but not identical) regions are to be 

found in E4 proteins of types with a dissimilar tropism to HPV1, such as HPV16 and 18 408 

that have preference for epithelia of the oral and anogenital tracts (1).  The basic region of 

HPV16 E4 forms part of the G2 arrest domain (5), but in HPV1 E4 is not a required 410 

element of the G2 arrest function, and nor do these regions contribute to the interaction 

with the keratin cytoskeleton (25, 27).  An association between HPV1 E4 and the SR 412 

protein kinase SRPK1 is dependent on arginine 45 (1), although other sequences required 

to maintain this interaction do not contribute to inhibition of cell proliferation, suggesting 414 

that this E4 binding partner is unlikely to be involved in the underlying mechanism of 

replication inhibition by HPV1 E4.  Therefore, either arginine 45 mediates an association 416 

to a novel E4-binding protein, or dictates a specific cellular localization, necessary for 

replication inhibition.  418 

Host cell DNA synthesis is blocked during Epstein-Barr virus (EBV) lytic infection cycle 

during which there is high level amplification of the EBV genome (17).  EBV inactivates 420 

MCM helicase function by phosphorylation of MCM proteins and this might be sufficient 

ACCEPTED

 on D
ecem

ber 21, 2018 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


HPV E4 inhibits cellular DNA synthesis 

16 

to block cellular DNA synthesis in lytic infected cells (16).  Infection by another DNA 422 

virus, cytomegalovirus (CMV) also abrogates cellular replication licensing by inhibiting 

chromatin loading of MCM proteins (2, 37).  Even though the underlying mechanism of 424 

repression of cellular DNA replication by EBV and CMV were not identified, taken 

together with our study, it implies that unrelated DNA viruses may have evolved similar 426 

strategies to selectively inhibit host cell DNA synthesis.  This function could prove 

advantageous to viruses that depend on the host cell for the supply of essential replication 428 

enzymes and nucleotides for viral DNA synthesis.  Papillomaviruses have three phases of 

replication; establishment and maintenance of the genome in basal cells is followed by 430 

vegetative genome amplification in cells that have migrated up from the basal layer and 

differentiated (10).  Because keratinocyte differentiation normally correlates with exit from 432 

the cell cycle, the virus induces S phase gene activity in these cells, and eventually they 

initiate vegetative viral genome replication, whereby the viral genome is amplified to high 434 

copy number (4).  Notably, the switch to genome amplification is associated with induction 

of E4 protein (23).  Furthermore, more recently, it has been shown that this switch also 436 

correlates with suppression of cellular DNA synthesis in replication-activated HPV16-

containing keratinocytes (20).  We therefore hypothesize that in these cells, E4 acts to 438 

preserve the supply of essential host replication factors by inhibiting licensing of cellular 

origins of replication and thus repress competing cellular DNA synthesis.  Combined with 440 

action on G2-to-M transition of the cell cycle (5, 13, 19), E4 could be a key player in 

ensuring successful replication of the virus.  Indeed, loss of expression of the full-length 442 

E1^E4 protein is associated with an abrogation of efficient vegetative genome replication 

in systems that recapitulate the productive replication life cycles of HPV16, 18 and 31 and 444 

cottontail papillomavirus (20, 22, 38, 39). 

Viral factors such as E4 could provide powerful molecular tools that can be utilized to 446 

dissect the molecular mechanisms regulating initiation of eukaryotic DNA replication.  

Furthermore, because the origin licensing machinery has been proposed as a novel 448 

attractive target for anti-cancer therapy, the design of E4-based mimetic compounds could 

provide novel non genotoxic agents. 450 
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Figure legends 

Figure 1.  HPV1 E4 inhibits initiation of cellular DNA synthesis in an in vitro 590 

replication assay. (A) Cell-free cellular DNA replication system. Nuclei (N) 

prepared from G1 phase NIH3T3 fibroblasts, synchronized by release from 592 

quiescence (G0), initiate a single round of semi-conservative DNA replication in 

cytosolic extracts (SC) from S phase HeLa cells following incubation in buffer A 594 

(BA) that support elongation, nucleotides (dNTPs, NTPs) and an ATP regeneration 

system (CP, CK).  Nuclei are stained with propidium iodide to reveal DNA (red) 596 

and with fluorescein-streptavidin (green) to detect biotin-16-dUTP incorporation 

resulting from in vitro DNA synthesis. (B) Coomassie-stained SDS-PAGE gel of 598 

baculovirus recombinant HPV1 E4 proteins.  Lane 1, molecular weight standards 

(12.3-, 17.2-, 30-, 42.7-, 66-, 76-kDa); lanes 2 and 3, purified HPV1 E4 proteins 600 

WT38 and WT43 containing variable levels of full-length E1^E4 (17-kDa) and 

processed (16- and 11-kDa) species. (C) NIH3T3 G1 nuclei were incubated in 602 

cytosolic extracts from S phase HeLa cells, which induce initiation in competent 

nuclei, or in elongation buffer (Buffer A) which only supports elongation DNA 604 

synthesis in nuclei that are already in S phase.  Addition of E4 (but not !E4) and 

Cdc6 to co-incubations inhibits DNA synthesis at a level comparable to the effect 606 

of geminin.  Results are expressed as the percentage of nuclei replicating (mean ± 

standard deviation), and asterisks indicate a significance of >99.99% in the 608 

decrease of replicating nuclei compared to control replication assays.  (D) Addition 

of E4 and Cdc6 to co-incubations of NIH3T3 S phase nuclei and Hela S phase 610 

cytosol had no effect on replication potential.  Similarly, addition of geminin did 

not affect ongoing DNA synthesis.  Data analyzed as described in C. 612 

 

Figure 2.  HPV1 E4 suppresses recruitment of MCM proteins onto chromatin in vitro. 614 

Immunoblots of chromatin-bound protein fractions prepared from NIH3T3 G1 

phase (A) and S phase (B) nuclei taken through in vitro replication assays.  The 616 

densities of protein bands were determined and shown in the histograms relative to 
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those measured in nuclei incubated in S phase cytosol (SC), after normalization 618 

against histone H1 loading, 

 620 

Figure 3. Inhibition of S phase entry by HPV1 E4 in epithelial cells is dependent on 

an arginine residue within the E1^E4 protein.  Cos-1 epithelial cells were 622 

transfected with expression plasmids and pulse-labelled with BrdU, and the 

percentage of BrdU-positive S phase cells counted.  (A) Co-expression of full-624 

length E1^E4 with the truncated E4 protein E4-16K inhibits S phase entry 

compared to expression of the polypeptides alone.  Alanine replacement of arginine 626 

45 (R45A), but not of arginines 47 (R47A) or 48 (R48A), is sufficient to relieve the 

inhibitory effect upon S phase progression (mean ± standard deviation).  The 628 

double and single asterisk(s) indicates a significance of 99.99% and 99.98% 

respectively, in the decrease in the percentage of BrdU-positive cells compared to 630 

Cos cells transfected with empty vector.  The data shown was collected from seven 

independent experiments.  The two-dimensional BrdU-PI profiles of cells 632 

expressing E4-16K, E1^E4+E4-16K, R45A+E4-16K and R47A+E4-16K are as 

shown.  (B) Immunoblot of protein extracts showing E4 protein expression in Cos-634 

1 cells.  Migration of full-length (E1^E4) and truncated (E4-16K) polypeptides are 

as indicated. 636 

 

Figure 4. The arginine-rich motif in E1^E4 is necessary for inhibition of cellular DNA 638 

synthesis initiation in vitro.  (A) Addition of bacterial recombinant wildtype 

HPV1 E4 protein (WTE4) and Cdc6 to co-incubations of NIH3T3 G1 nuclei and 640 

HeLa S phase cytosol inhibits cellular DNA synthesis in replication competent 

nuclei.  E4-mediated inhibition is relieved following addition of mutant E4 proteins 642 

containing either a deletion of residues 44 to 48 (E4!44-48) or a single alanine 

replacement of arginine 45 (E4R45A), together with Cdc6.  Data from three 644 

independent experiments are given as the mean ± standard deviation, and a single 
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asterisk indicates a >99.99% significance in the decrease of replicating nuclei 646 

compared to control replication assay containing exogenous Cdc6. (B) Immunoblot 

of chromatin-bound protein fractions prepared from NIH3T3 G1 nuclei taken 648 

through in vitro replication reactions containing wild type and mutant E4 proteins.  

The histogram shows the densities of the protein bands, after normalization against 650 

histone H1 loading, relative to those in nuclei incubated in S phase cytosol (SC). 

 652 
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TABLE 1. Percentage of BrdU positive S phase Cos-1 epithelial cells following 674 
transfection with wild type and mutant HPV1 E4 expression plasmidsa 

 676 

 

 678 

 

 680 

 

 682 

 

 684 

 

 
a
Data taken from four independent experiments and results are shown as the means 686 

± standard deviations. 

HPV1 E4 % of BrdU-positive S 
phase cells 

E4-17K 
E4-16K 
E4-17/16K 
E4-17K"2-5/16K 
E4-17K"10-14/16K 
E4-17K"21-24/16K 
E4-17K"24-27/16K 
E4-17K"27-30/16K 
E4-17K"32-33/16K 
E4-17K"44-48/16K 
E4-17K"49-53/16K 
E4-17K"57-60/16K 
E4-17K"110-115/16K 
E4-17K"61-125/16K 
pcDNA 

15.2 ± 1.8 
14.4 ± 1.5 
7.9   ± 0.3 
9.0   ± 1.5 
8.1   ± 1.7 
8.8   ± 1.7 
6.0   ± 1.8 
9.7   ± 1.5 
8.8   ± 1.6 
16.2 ± 1.6 
7.6   ± 0.9 
6.3   ± 1.1 
8.2   ± 0.6 
10.0 ± 1.2 
16.6 ± 2.1 
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