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We propose a simple model that captures the salient properties of distribution networks, and study the
possible occurrence of blackouts, i.e., sudden failings of large portions of such networks. The model is defined
on a random graph of finite connectivity. The nodes of the graph represent hubs of the network, while the edges
of the graph represent the links of the distribution network. Both, the nodes and the edges carry dynamical two
state variables representing the functioning or dysfunctional state of the node or link in question. We describe
a dynamical process in which the breakdown of a link or node is triggered when the level of maintenance it
receives falls below a given threshold. This form of dynamics can lead to situations of catastrophic breakdown,
if levels of maintenance are themselves dependent on the functioning of the net, once maintenance levels
locally fall below a critical threshold due to fluctuations. We formulate conditions under which such systems
can be analyzed in terms of thermodynamic equilibrium techniques, and under these conditions derive a phase
diagram characterizing the collective behavior of the system, given its model parameters. The phase diagram
is confirmed qualitatively and quantitatively by simulations on explicit realizations of the graph, thus confirm-
ing the validity of our approach.
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I. INTRODUCTION

In recent years, the study of physical properties of net-
works has received much attention. This is partly a response
to the fact that modern societies are increasingly relying on
network based technologies, including mobile and land-line
telecommunication, the Internet or, lately, grid computing,
but also on traditional transport infrastructure, such as rail or
road networks. Much of the interest is also fueled by the
realization that complex systems in biology �1–3�, chemistry
�4�, sociology �5�, and economy �6,7� can be analyzed using
various network related techniques and paradigms �8,9�. The
issues here are to understand the workings of a given com-
plex system in terms of properties of the underlying network
in terms of which it might be described, and given some
fundamental understanding has been obtained, perhaps go
further and characterize the way in which the efficiency of a
system would depend on properties of the net.

Network properties of interest include statistical measures
characterizing structural and topological aspects globally
over a network, such as the degree distribution, clustering
coefficients, centrality, percolation thresholds, and more, as
well as more specific information concerning, e.g., the pres-
ence or absence of certain motifs in �local� connectivity pat-
terns.

Connectivity issues aside, both the nodes and the links in
a network may be further characterized by �graded� quality
measures. The capacity of a specific directed information
channel, the current carrying capacity of a power line, or just
a distance between two nodes in a net would constitute ex-
amples of graded link properties, whereas the computing
power of a server, the capacity of a local water reservoir, the
susceptibility of an individual to infection by a virus �or an
opinion, or by the desire to acquire a new gadget� would be
examples of properties specifically associated with “nodes.”

It goes without saying that functionality as well as effi-
ciency of network based operations will depend in various

degrees on the properties of a given network. Points of con-
cern then are robustness of efficiency, and—on a more basic
level—of functionality against unexpected failures of links or
nodes, or the resilience of network based operations against
directed attacks �10–13�. Clearly these issues have implica-
tions in the realm of biological evolution; they would have to
influence design decisions in engineering contexts, or politi-
cal decisions, e.g., when setting up supply infrastructure. On
a day-to-day basis, financial institutions are nowadays re-
quired to set aside capital to cover financial losses incurred
by process failures �operational risk�; as processes in organi-
zations would normally be set up in a way to mutually sup-
port each other, collective effects creating the possibility of
extreme events in large process networks are clearly relevant
�14,15� and need to be properly quantified in order to set
aside the right amount of capital. Erring in either direction
would be costly �for different reasons� and affect the com-
petitiveness of the organization in question.

The present investigation is concerned with issues of re-
silience of network functionality against random failures or
directed attacks in supply infrastructure and distribution net-
works, such as power grids, various forms of information
transfer networks �telephone, Internet�, traffic systems �logis-
tics�, or metabolic networks, where these issues are particu-
larly relevant. Failures of nodes and/or links can threaten the
basic functionality of the network and if cascading through
the system �or affecting hubs of central importance�, even
lead to a global breakdown. Examples are major blackouts in
power grids, massive gridlock in traffic systems, or death of
an organism.

We shall look at a simplified setting in which the break-
down of a link or node is triggered when the level of main-
tenance or support it receives falls below a given threshold,
leaving the case where failures are induced by loads exceed-
ing critical levels to a future study �16�. The simplified set-
ting renders our model a generalization of previously studied

PHYSICAL REVIEW E 76, 041120 �2007�

1539-3755/2007/76�4�/041120�8� ©2007 The American Physical Society041120-1

http://dx.doi.org/10.1103/PhysRevE.76.041120


models for operational risk �14,15� that includes dynamical
properties link variables in the analysis.

Our paper is organized as follows. In Sec. II we introduce
our model, describing its coupled link and node dynamics
and interpreting the parameters of the model in terms of a
priori and conditional probabilities for link and node failure.
Conditions are identified under which the system can be ana-
lyzed using thermodynamic equilibrium methods. The statis-
tical mechanics approach to analyze long term properties of
the model under these conditions is briefly outlined in Sec.
III. Results in terms of a phase diagram characterizing the
collective behavior of the system, given its model parameters
are presented and discussed in Sec. IV. The phase diagram is
confirmed qualitatively and quantitatively by simulations on
explicit realizations of the graph, thus confirming the validity
of our approach. Section V concludes with a summary and
an outlook on future lines of research.

II. MODEL

We describe a distribution network as a set of N vertices
or nodes that are interconnected by Ne dynamic edges or
links. The nodes are thought of as relay stations that organize
the �re�distribution of “goods” through the links by which
they are connected. With each node i we associate a dynami-
cal variable vi that can be either 1 or 0, designating whether
the node is up and running �vi=1� or in a nonoperational
state �vi=0�. Similarly, with each pair �ij� of nodes which are
connected in the distribution network in question, we asso-
ciate a dynamic two-state link variable �ij that describes
whether a link is operational ��ij =1�, or down ��ij =0�.

The distribution network can be thought of as a dynamical
structure on a �random� graph. The structure of the underly-
ing graph is completely determined by the symmetric con-
nectivity matrix c= �cij : i� j=1, . . . ,N�, with cij =1 if nodes i
and j are connected, and cij =0 otherwise. In this paper, we
restrict ourselves to the ensemble of so-called Erdös-Rényi
graphs, which are determined by the following probability
distribution:

P�c� = �
i�j

�	1 −
C

N

�cij,0

+
C

N
�cij,1��cij,cji

, �1�

i.e., every possible link �ij� is present with probability C
N .

This typically results in a random graph where the coordina-
tion numbers Li of the nodes are Poisson distributed with
parameter C �the average connectivity�: PC�L�= CL

L! e−C. The
total number of links in the graph is then given by Ne= CN

2 , as
each edge connects exactly two nodes. For any finite C �in
comparison to N�, the graph is sparse, the nodes have finite
connectivity, and the number of nodes N and the number of
edges Ne are of the same order of magnitude.

A dynamical evolution of the node and link variables on
the graph can be described and motivated in analogy with
previous operational risk modeling �14� as follows. Define a
node support as

hi = �
j��i�

cij�ij�aijv j + bij� + �i, �2�

and a link support as

hij = ãijviv j + b̃ij�vi + v j� + dij . �3�

In these expressions, the parameter aij would quantify the
contribution of node j to the support of i, while bij could
describe external support to i that is funneled through the
link �ij�, while �i would describe a baseline support inde-
pendent of the dynamical state of the system itself.

Similarly, ãij would describe a contribution to the main-
tenance of link �ij� that originates from a collaboration of the

nodes connected by it, while b̃ij would quantify separate con-
tributions from adjacent functioning nodes which would ex-
ist without collaboration, and dij would again characterize a
baseline support independent of the dynamical state of the
system itself.

We suggest a probabilistic asynchronous dynamics which
stipulates that vertices and nodes fail, if they receive less
than a critical threshold support. Without loss of generality
the thresholds can be taken to be zero �by appropriate defi-
nition of baseline support levels�. Thus, in formal terms we
have

vi�t + �t� = ��hi�t� + �i�t�� , �4�

�ij�t + �t� = ��hij�t� + �ij�t�� , �5�

where the vertex and edge noises are taken to be independent
and white, and either zero mean Gaussians with variances �
and �̃, respectively,

�i�t�� j�t��� = �2�i,j�t,t�, �6�

�ij�t��kl�t��� = �̃2��ij�,�kl��t,t�, �7�

or thermal noises with probability density functions

p��i� =
1

2

d

d�i
tanh		�i

2

 , �8�

p��ij� =
1

2

d

d�ij
tanh	 	̃�ij

2

 . �9�

By integrating over the noises in Eqs. �4� and �5� one obtains

P„�ij�t + �t� = 1… = �ij�t + �t�� = 
„hij�t�/�̃… �10�

P„vi�t + �t� = 1… = vi�t + �t�� = 
„hi�t�/�… , �11�

in the case of Gaussian noises, with 
�x� denoting the inte-
grated unit-variance normal density, while the corresponding
result for the thermal noise model would be

P„�ij�t + �t� = 1… = �ij�t + �t�� = 
	̃„hij�t�… , �12�

P„vi�t + �t� = 1… = vi�t + �t�� = 
	„hi�t�… , �13�

with


	�x� =
1

2
�1 + tanh		x

2

� . �14�

The collective properties of the system do not crucially de-
pend on which noise model is chosen as long as the noise
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levels are properly matched. We shall in what follows mostly
work with the thermal noise model.

Note that the current formulation of the dynamics is in
terms of resources or the lack of them as responsible for the
functioning or the failure of nodes and links. In particular,
one would sensibly expect the parameters aij and ãij as well

as the bij and b̃ij to be positive within this interpretation. The
case where failure of links or nodes is triggered by load
levels exceeding certain critical values is left to a separate
study �16�.

The parameters dij and �i are related to the a priori prob-
ability that the isolated link �ij� or the isolated node i, re-
spectively, are up. In a similar vein the aij and ãij as well as

the bij and b̃ij can be related to conditional probability of
node or link failure �or survival� for given configurations of
node and link-states, in analogy to operational risk modeling
�14,15�.

In the present investigation, we will restrict our attention
to a case in which the model parameters satisfy a number of
symmetry relations, which ensure that the long time behavior
of the system can be described by thermodynamic equilib-
rium theory. These are

∀ij: aij = ãij, bij = b̃ij , �15�

and

∀i�j: aij = aji, bij = bji, �16�

as well as aii=0 and bii=0 and equality of noises of the link
and node dynamics,

	 = 	̃ . �17�

These conditions together are sufficient to ensure that the
stochastic dynamics �13� and �12� satisfies detailed balance
with respect to the Gibbs-Boltzmann equilibrium distribution
at inverse temperature 	 that is generated by the energy
function

H = − �
�ij�

cij�ij�aijviv j + bij�vi + v j� + dij� − �
i

�ivi

�18�

�see the Appendix�. This feature allows one to study the col-
lective behavior of the distribution networks by the methods
of equilibrium statistical mechanics, which greatly simplifies
the analysis, and will be the main focus of the remainder of
the present paper.

Clearly a full dynamical study is required whenever any
of the symmetry assumptions is violated. However, it is well
known that thermodynamic equilibrium theory often gives a
fair qualitative description, provided the violations are not
too drastic.

III. THEORETICAL ANALYSIS

For the analysis of the model described in the previous
section, we use the replica method for sparsely connected
systems �17–20�. In contrast to previous models studied with
this method, we have the new ingredient that not only the

nodes but also the links have dynamical variables, though we
shall find that this introduces only minor complications in the
analysis.

The general strategy is to calculate the free energy of the
model, from which all relevant thermodynamic quantities
can be derived. The free energy is expected to be self-
averaging, entailing that, in the large system limit and under
very general conditions on the disorder distribution in the
model �i.e., c, aij, bij, dij, and �i�, the average of the free
energy over all disorder configurations coincides with its
typical value: the free energy of any explicit realization of
the problem drawn from this ensemble will be equal to the
average with probability 1.

Given the Hamiltonian �18�, the disorder dependent par-
tition function Z and the �dimensionless� free energy F are
obtained from

Z�c,�a,b,d,��� = Tr�v� Tr���
’ exp�− 	H� ,

F�c,�a,b,d,��� = − ln„Z�c,�a,b,d,���… ,

where Tr� denotes a trace over those �ij for which cij =1. In
order to average the free energy over the disorder, we use the
replica trick ln�Z��D=limn→0 n−1 lnZn�D, so that we have
to calculate the average of the replicated partition function
Zn�D as follows:

Zn�D = �Tr�v�� Tr����
’ exp�	�

�
	�

�ij�
cij�ij

��aijvi
�v j

�

+ bij�vi
� + v j

�� + dij� + �
i

�ivi
�
��

D

. �19�

Here  �D indicates the average over the disorder. At this
point we do not yet need to specify the disorder distribution
for the �aij ,bij ,dij ,�i�. We start by performing the average
over the connectivity matrix c and the trace over the link
variables ����, which can be easily done as the replicated
partition sum factorizes over these variables. This is a well-
known fact, which has been extensively used in the study of
Ising models with annealed bond disorder �21�.

After some relatively standard manipulations, which in-
volve introducing the order parameter

��ṽ� �
1

N
�
i=1

N

�ṽ,ṽi
, ṽ � �v�: � = 1, . . . ,n� , �20�

and its conjugate �̂�ṽ� to enforce the definition, one arrives at
the following compact expression for Zn�D:

Zn�D =� D���ṽ��̂�ṽ��e�N�C/2G1���−G2��,�̂�+G3��̂���. �21�

The functionals appearing in Eq. �21� are given by

G1 = Trṽ,w̃ ��ṽ���w̃��
�

�1 + e	�av�w�+b�v�+w��+d���a,b,d − 1,

G2 = Trṽ ��ṽ��̂�ṽ� ,
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G3 = lnTrṽ exp���ṽ� + �̂�ṽ����, �22�

where we have used the shorthand �ṽ����v�.
For the analytic continuation n→0, we need to make an

ansatz about the symmetry between the replicas, and assume
replica symmetry �RS�

��ṽ� = �
0



d��x�
x�ṽ�

�1 + x�n , �23�

�̂�ṽ� = �0�
0



d�̂�x̂�
x̂�ṽ�

�1 + x̂�n . �24�

Further introducing

C0 = 1 + e	d, C1 = 1 + e	�b+d�, �25�

C2 = 1 + e	�a+2b+d�, �xl�L = �
l=1

L

xl, �26�

and following standard reasoning, we arrive at the typical RS
free energy per node

F = −
1

	
	C

2
G1��� − CG2��,�̂� + G3��̂�
 , �27�

where

G1 = �
0



�d��xl��2ln�C0 + C1�x1 + x2� + C2x1x2��a,b,d,

G2 = �
0



d��x�d�̂�x̂�ln�1 + xx̂� ,

G3 = �
L

PC�L��
0



�d�̂�x̂l��Lln�1 + e	��x̂l�L���. �28�

It is understood that Eq. �27� has to be evaluated in the
saddle point with respect to � and �̂. This implies that � and
�̂ have to satisfy the self-consistency equations

��x� = �
L

LPC�L�
C

�
0



�d�̂�x̂l��L−1��x − e	��x̂l�L−1���,

�̂�x̂� = �
0



d��x���	x̂ −
C1 + C2x

C0 + C1x

�

a,b,d
. �29�

From the free energy, one can obtain physically relevant
quantities, such as the fraction mn of working nodes,

mn = �
L

PC�L��
0



�d�̂�x̂l�L�
e	��x̂l�L

1 + e	��x̂l�L

, �30�

the fraction m� of working links,

m� = �
0



�d��xl��2
M0 + M1�x1 + x2� + M2x1x2

C0 + C1�x1 + x2� + C2x1x2
, �31�

in which Mi=Ci−1, and the internal energy

U = −
C

2
�

0



�d��xl��2� E0 + E1�x1 + x2� + E2x1x2

C0 + C1�x1 + x2� + C2x1x2
�

a,b,d

− �
L

PC�L��
0



�d�̂�x̂l��L� �e	��x̂�L

�1 + e	��x̂�L���

, �32�

with E2= �a+2b+d�e	�a+2b+d�, E1= �b+d�e	�b+d�, and E0

=de	d .
One should note that the inverse temperature 	 can be

absorbed into the parameters �a ,b ,d ,�� and is only used to
derive some of the physical quantities. In what follows, we
implicitly assume that 	=1.

At this point one should also note that although the links
are dynamical variables, it was not necessary to introduce a
separate order parameter to describe the link distribution. It
turns out that in any such model the trace over the link vari-
ables �irrespective of the type of variable� can be carried out
directly as the partition function factorizes over the links.

It should be noted that the saddle-point equations �29� can
only be solved numerically using, e.g., a population dynam-
ics algorithm �22�. The analysis of these equations, and the
implications different types of solution have concerning the
possible occurrence of sudden global system failures are pre-
sented in the next section.

IV. RESULTS

We solve Eqs. �29� numerically for fixed 	=1 and various
connectivities C and distributions of a, b, d, and �, using a
population dynamics algorithm �22�.

After extensive numerical experiments we have obtained
the full �at least five-dimensional� phase diagram, and we
find that the parameter space can be qualitatively divided
into four distinct regions: �O� the operational state �mn�1�
is the only stable solution; �N� the nonoperational state �mn

�0� is the only stable solution; �CO� coexistence of the
stable operational state with a metastable nonoperational
state; and �CN� coexistence of the stable nonoperational state
with a metastable operational state.

We have not found any region where more than two lo-
cally stable phases coexist. The boundaries between the
single-solution and multiple-solution regions are spinodal
surfaces �associated with dynamical transitions�.

As plots of phase diagrams in more than two dimensions
are not easy to interpret quantitatively, we have restricted
ourselves to presenting two-dimensional plots in the �a ,��
plane, for several combinations of the other parameters, thus
indicating the major trends and characteristics of the full
phase diagram. In all plots, the numerical precision is of the
order of the line widths.

With reference to Figs 1–4, we refer to the boundary be-
tween the �O� and �CO� region as the upper spinodal, and the
boundary between the �N� and �CN� region as the lower
spinodal. The upper spinodal demarcates the locations in pa-
rameter space where the nonoperational �N� phase ceases to
exist as a metastable phase, while the lower spinodal gives
the locations where the operational �O� phase becomes
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unstable. The boundary between the �CO� and �CN� regions
is given by the surface in parameter space where the free
energies of the two solutions coincide, i.e., they mark the
thermodynamic equilibrium transition.

The two spinodals and the thermodynamic transition may
meet �end� in lines �more precisely, lower dimensional sur-
faces� of critical points �analogous to critical points of liquid-
gas systems�, so that it is always possible to go from the �O�
to the �N� region continuously, following some path through
the phase diagram that avoids any transitions.

Except when explicitly mentioned, all plots shown have

been made for constant parameters a, b, d, and �. We have
also solved the model with varying parameters, e.g., aij
�N�a� ,��. The general tendency is that an increase in the
variance � leads to a reduction of the �CO� and �CN� regions
�pulling the spinodals closer to the transition�, while the ther-
modynamic transition remains virtually unchanged. This im-
plies that an increase in the variability of the resources re-
duces the region where the working system is locally stable,
thus increasing the likelihood of sudden system failures.

Since both mn and m� depend on the same distributions �
and �̂, either observable can be used to monitor the dynami-
cal transitions. In general, any discontinuity in mn corre-
sponds to a discontinuity in the same direction in m�, al-
though the amplitude of the discontinuity depends on the
relative strength of the various parameters. We note that the
operational risk model �without dynamical link variables� as
presented in �15� can be recovered by taking the parameter
d→.
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FIG. 1. A section of the phase diagram in the �a ,�� plane, with
b=d=0 for three different average connectivities: C=4 �full lines�,
C=6 �dashed lines�, and C=8 �dotted lines�. For each, the top line
is the upper spinodal �marking the boundary between the �CO� and
the �O� region�, the middle line is the equilibrium transition, and the
bottom line is the lower spinodal �marking the boundary between
the �CNO� and the �N� region�. Note that for average connectivities
C=6 and 8, the transition and the lower spinodal are so close that
they cannot be distinguished on the scale of this plot, thus reducing
the �CN� region to a very narrow strip.
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FIG. 2. A section of the phase diagram in the �a ,�� plane, with
d=0, C=4 for three different values of b: b=3 �full lines�, b=0
�dashed lines�, and b=−3 �dotted lines�. For each, the top line is the
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is the lower spinodal.
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FIG. 3. A section of the phase diagram in the �a ,�� plane, with
b=0, C=4 for three different values of d: d=3 �full lines�, d=0
�dashed lines�, and d=−3 �dotted lines�. For each, the top line is the
upper spinodal, the middle line is the transition, and the bottom line
is the lower spinodal.
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FIG. 4. The fraction of nodes that are 1 �mn�, as a function of a
and � for C=4, b=d=0, both starting from the �N� phase and the
�O� phase.
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The �CO� and �CN� regions are of particular interest with
respect to the possible occurrence of sudden global system
failures. Starting from a state where the working system is
globally stable, one may, by gradually increasing the average
load or by gradually reducing the available resources, push
the system over the thermodynamic transition into a region
where the operational �O� phase no longer corresponds to the
global minimum of the free energy, without realizing it, as
there are no detectable signatures of such a �first order� equi-
librium transition.

If the system is pushed further in this direction, it will
certainly collapse once the spinodal is reached. However, as
long as the system is still relatively close to the equilibrium
transition point, it may continue operating for a very long
time until a rare unfavorable fluctuation tips it over the edge,
and a global collapse takes place. Both the system size, and
the distance from the spinodal will determine the likelihood
that rare unfavorable fluctuations actually manage to desta-
bilize the system. The time before the collapse occurs, fluc-
tuates wildly, hence it is impossible to accurately predict the
timing of global system failures.

In order to confirm the validity of our analytical solution,
we have also performed Monte Carlo simulations of the
model using a variant where node and link variables are
pooled and random sequentially updated according to the
Metropolis algorithm. In general, our simulation results for
spinodals perfectly coincide with the theoretical predictions
to within numerical precision. Therefore we have not pre-
sented separate figures that compare the two. We do, how-
ever, include a simulation illustrating hysteresis as one of the
parameters is varied across the transition region �Fig. 5� as
well as a run on a small system in Fig. 6, exhibiting the

eventual collapse through bubble nucleation of a metastable
�O� phase into the globally stable �N� phase.

Incidentally, the agreement between the theoretical �RS�
predictions and the corresponding simulation results, is a
strong indication that there is no replica symmetry breaking
in the studied region of parameter space. There are two main
reasons for this. First, the interesting and relevant region in
parameter space corresponds to predominantly cooperative
relations between node and link variables, so that the degree
of frustration in the system is low. Apart from this, effects of
frustration are further reduced due to the dynamical nature of
the links.

V. CONCLUSION AND OUTLOOK

We have investigated the performance of distribution net-
works realized as sets of nodes interacting via dynamical
links arranged on a �random� graph. In the present investiga-
tion, we restricted ourselves to so-called Erdös-Renyi graphs
with Poissonian connectivity distributions. We have formu-
lated the coupled node and link dynamics in such a way that
breakdown of a link or node is caused when a level of sup-
port it receives falls below a given threshold. We have iden-
tified conditions under which the collective behavior of such
systems can be analyzed using equilibrium statistical me-
chanics, and we perform such an analysis using replica and
mean-field techniques for finitely connected random systems.

The model generalizes previous models of operational
risk, in which link-dynamics is included as an essential new
ingredient. Formally the conventional operational risk situa-
tion can be recovered by considering a limit in which the
links are infinitely resilient against failure, thereby freezing
out the dynamics of links.

A phase diagram characterizing the global behavior of the
system and its dependence on the system parameters has
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FIG. 5. Monte Carlo simulation of a system of 105 nodes, with
parameters C=4, ��=−8, b�=0, and d�=0, exhibiting hysteresis
of mn as a function of a� across the transition. Connecting solid
lines are for uniform parameters ��=0�, dotted lines are for nonuni-
form parameters with �=0.5. The symbols “�” indicate that we
started from the �O� solution, while “+”indicates we started from
the �N� solution. Note that the fluctuations of mn over the measuring
sweeps are of the order of the line widths. We used 102 equilibra-
tion and measuring sweeps for each value of a�.
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FIG. 6. Simulation of a distribution network of 75 nodes, with
constant parameters C=4, ��=−8, b�=0, d�=0, and �=0. Plot-
ted is mn as a function of time �measured in Monte Carlo steps per
degree of freedom�. Starting from the metastable �O� phase, the
system collapses after about 105 sweeps to the globally stable �N�
phase. Note that the large fluctuations of mn are due to the small
system size.
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been obtained, which confirms and quantifies intuitions one
would have about such a system. In the region of parameter
space of interest for an interpretation as distribution net-
works the system can be in one of two possible phases, an
operational phase �O� where most nodes and links are up and
running, and a nonoperational phase �N� where most nodes
and links are down. In certain regions of parameter space,
both phases can coexist; these are further divided into sub-
regions where either the operational phase �CO� or the non-
operational phase �CN� are the absolutely stable ones. These
subregions are separated by a thermodynamic first order
equilibrium transition. Coexistence regions are bounded by
spinodal surfaces, which mark locations in parameter space
where the metastable phases become unstable �and therefore
cease to exist�. We find that spinodals can meet in lower-
dimensional surfaces of critical second-order transitions
�much as in liquid-gas systems�.

One observes the following main trends. By increasing
average connectivity C, or by increasing the resilience of
links against spontaneous failure �parametrized by d��,
or—to a lesser extent—by increasing the resilience of nodes
against spontaneous failure �parametrized by ��� the coex-
istence region is moved to lower values of the parameter a�,
which quantifies the individual contributions to node support
as well as the cooperative link support. These trends are
clearly in line with intuition one would have about systems
of this type, concerning the beneficial roles of redundancy of
resources or the reliability of nodes and links. There is a
concurrent increase of the width of the coexistence region in
the a�-�� plane, though throughout most of the coexistence
region the operational �O� phase appears to be the absolutely
stable phase �the nonoperational phase the metastable one�.

For systems described by our theory, a characterization of
phases as stable or metastable could provide a more system-
atic and more general approach to assess the stability of a
system than current versions of so-called “well-being analy-
sis” �23,24� for power grids. Within a well-being analysis,
states are classified according to whether they would survive
the failure of a link or node chosen from a preestablished
contingency list �which would contain important supply units
or transmission lines� without shedding load �such states are
characterized as “healthy”�, or only at the cost of shedding
load �in which case states are called “marginal”�, while the
“at risk” states are those in which load is shed. Thermody-
namic stability would not only check the stability of the sys-
tem against individual failures within a handcrafted list, but
also against rare unfavorable fluctuations which include
combined events. If desired, thermodynamic stability could
indeed be supplemented by checking stability against failure
of selected elements, by looking at the collective behavior of
the system �evaluating restricted partition functions and free
energies� with a selected fraction of nodes and/or links fro-
zen in the nonoperational state.

From the point of view of assessing the risk of failure of
the net, the coexistence regions are clearly the most impor-
tant regions in parameter space. In these regions, an all op-
erational state of the system coexists with a nonoperational
state. Parameter changes, which drive the system into the
coexistence region, would not be detectable in the collective

behavior of the system and, as already noted in �15�, the
same is true, in particular, also for parameter changes that
exchange the relative stabilities of the operational �O� and
the nonoperational �N� phase. As a consequence, parameter
changes that would result in making catastrophic breakdown
of the system an event that is eventually bound to occur
under normal operating conditions would go unnoticed.

In the present investigation we have restricted ourselves
to situations in which the system parameters satisfy a set of
symmetry relations, allowing us to use equilibrium methods
to analyze collective behavior. We have checked by simula-
tions that moderate violations of these symmetry conditions
do not substantially alter the macroscopic properties of the
system. This has also been observed for �somewhat simpler�
models of operational risk �15�, in which the violation of
detailed balance by either changing the noise model or by
adopting asymmetric interactions, has not led to qualitative
changes in the collective behavior of the system. Neverthe-
less, proper dynamics techniques and/or numerical simula-
tions would be required to study this issue in greater detail
for the present model.

Changing the topology of the net �e.g., introducing scale-
free link distributions� as they are often observed in real
world networks is easily accomplished and we are currently
looking at this case �16�.

A more important point concerns the mechanisms trigger-
ing failures of nodes or links. In many distribution networks
the dominant mechanism is related to traffic along certain
links or through certain nodes exceeding critical values,
which triggers the failure of a given element, and rerouting
traffic appears as a crucial ingredient responsible for cascad-
ing failures in the system. This aspect is not covered in the
present investigation, but it is clearly of great importance. An
investigation taking these constraints into account is under
way.

APPENDIX: DETAILED BALANCE

Here, we show that under the conditions stated in Eqs.
�15�–�17�, the dynamics �12�–�14� satisfies detailed balance
with respect to the Gibbs-Boltzmann distribution with
Hamiltonian �18�.

We first consider a transition �v ,��→ �v ,��� with vi=0,
vi�=1, and v j�=v j, �ij� =�ij ∀ j� i, for which

Prob��v,���� = W���v,�����v,��� = 
	�hi� , �A1�

where W���v ,�����v ,��� is the transition probability, and hi

=hi��v ,��� is the node support �2� for node i in the state
�v ,��.

For the reverse transition �v ,���→ �v ,��, we have that
W���v ,����v ,����=
	�−hi� with the node support hi un-
changed, as it is independent of vi. Hence,

W���v,�����v,���
W���v,����v,����

=

	�hi�


	�− hi�
= e	hi = e−	�H��v,����−H��v,����,

�A2�
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i.e., the ratio of the equilibrium distributions of the states
�v ,��� and �v ,��. This establishes detailed balance for all
transitions involving node variables.

Next, we consider a transition �v ,��→ �v ,��� with �ij =0,
�ij� =1, and vi�=vi ∀ i, �kl� =�kl ∀ �kl�� �ij�. Using the
symmetry conditions �15�–�17�, we obtain the corresponding
ratio of transition probabilities,

W���v,�����v,���
W���v,����v,����

=

	�hij�


	�− hij�
= e	hij = e−	�H��v,����−H��v,����,

�A3�

where hij is the link support �3� which is independent of �ij.
This establishes detailed balance for all transitions involving
link variables.
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