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To make vision possible, the visual nervous system must represent the most informative features in the light pattern
captured by the eye. Here we use Gaussian scale—space theory to derive a multiscale model for edge analysis and we test
it in perceptual experiments. At all scales there are two stages of spatial filtering. An odd-symmetric, Gaussian first
derivative filter provides the input to a Gaussian second derivative filter. Crucially, the output at each stage is half-wave
rectified before feeding forward to the next. This creates nonlinear channels selectively responsive to one edge polarity
while suppressing spurious or “phantom” edges. The two stages have properties analogous to simple and complex cells in
the visual cortex. Edges are found as peaks in a scale—space response map that is the output of the second stage. The
position and scale of the peak response identify the location and blur of the edge. The model predicts remarkably accurately
our results on human perception of edge location and blur for a wide range of luminance profiles, including the surprising
finding that blurred edges look sharper when their length is made shorter. The model enhances our understanding of early
vision by integrating computational, physiological, and psychophysical approaches.
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Introduction

Important structure in an image may occur at any spatial
scale—from the sharp edges of objects to the smooth
shading on curved surfaces or the very blurred boundaries
of some shadows—and so image computations must be
carried out at many spatial scales (ter Haar Romeny,
2003). Neurophysiological studies show that receptive
fields (RFs) of visual cortical cells vary greatly in size and
typically show a tuned, band-pass response to spatial sine
waves (gratings) of different spatial frequencies (De Valois,
Albrecht, & Thorell, 1982; Kulikowski, Marcelja, &
Bishop, 1982; Movshon, Thompson, & Tolhurst, 1978).
Psychophysical studies support the idea that a set of such
cells can act as a multiscale bank of spatial filters
(Blakemore & Campbell, 1969; De Valois & De Valois,
1990; Wilson, 1983), and natural image analysis shows
that such filters provide an efficient initial coding of the
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image data that is well matched to image statistics (Field,
1987; Olshausen & Field, 1996; van Hateren & van der
Schaaf, 1998). But to what end? The concept of spatial
frequency filtering has been a driving force in vision
research for 35 years, yet it remains unclear how the
output of this multiscale population of cells or filters is
used to locate and describe the key features in images, and
despite much progress (Canny, 1986; Elder & Zucker,
1998; Georgeson, 1992, 1998; Marr & Hildreth, 1980;
Morrone & Burr, 1988; Morrone & Owens, 1987; Peli,
2002; van Deemter & du Buf, 2000; Watt & Morgan,
1985), there is no adequate standard model of feature
analysis for human vision (Hesse & Georgeson, 2005).

It is widely agreed that edges are key features in images
(Geisler, Perry, Super, & Gallogly, 2001). But what is an
edge? It is tempting to offer a priori definitions—for
example, that an edge is a point of maximum luminance
gradient, or a point of maximum phase congruence. In a
brief passage, Helmholtz argued that when the gradient in
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the optical image of a step edge was very steep, “this
sudden drop in intensity enables the eye to recognize the
position of the edge,” whereas with more blur “the falling
off is more gradual, so that there is nothing to indicate
exactly where the edge is” (Helmholtz, 1856/2000,
p. 184). Rather than appealing to gradient magnitude, Ernst
Mach (1865/1965), while citing Helmholtz’s view, cau-
tioned that “According to my experience I must also hold
as very essential the transition from concave to convex
and the point of inflection” in the light distribution. Mach
thus anticipated by over a century Marr’s notion that an
edge is indicated by zero crossings in the second
derivative (Marr & Hildreth, 1980). But, in the face of
such uncertainty, instead of trying to prescribe what an
edge is, we might rather adopt an inductive approach in
which we systematically gather data on the perception of
edges and then compare different models of edge coding.
The simplest model that accounts well for a wide range of
data may then offer a definition of what an edge is for
human vision.

Here we develop a theoretical framework for the encoding
of luminance edges. In earlier work (Georgeson & Freeman,
1997; Hesse & Georgeson, 2005), we found that points of
phase congruence (Kovesi, 2000; Morrone & Burr, 1988;
Morrone & Owens, 1987) did not, in general, predict the
perceived locations of edges nor the Vernier alignment of
contours, whereas an approach based on points of max-
imum gradient was more successful. We now expand that
approach into a more comprehensive, multiscale frame-
work and consider the potential role of derivative operators
higher than the first. We apply it to human vision through
psychophysical experiments on the perception of edge blur
and edge location. One specific, nonlinear model emerges
as strikingly successful in predicting all the perceptual
results, and we find that the “channels” for encoding edges
have two stages of spatial filtering that are analogous
respectively to simple cells and to complex cells in the
visual cortex.

A principled approach is needed, and we draw on
Gaussian scale—space theory (Koenderink, 1984; Lindeberg,
1998; ter Haar Romeny, 2003; Witkin, 1983). A key idea
is that features should be encoded using filters whose
scale is related to the scale (or blur) of the feature.
Because the scale of the feature is unknown and variable
across space, a method is needed for automatic, local,
scale selection (Lindeberg, 1998; Morrone, Navangione, &
Burr, 1995; van Warmerdam & Algazi, 1989). Scale—space
theory shows that to make observations of an input
signal at a given scale o, without prior assumptions about
the structure of the input, the natural (indeed unique)
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“window” of observation (ter Haar Romeny, 2003) is the
Gaussian function

1 —x?

- 2ﬂexp<2az>. (1)
The basic scale—space representation of an input image
I(x) then is effectively a stack of images resulting from
Gaussian smoothing of the input image at different scales.
Computations about image structure are based on the
spatial derivatives of these Gaussian-blurred images. For

example, the Gaussian first derivative scale—space repre-
sentation of the image gradients is given by

G(x,0)

® 0G(x; o)

Li(x0) = 2 (1) ®Glx:0)) = ()@ TE )

which is the convolution of the input image /(x) with a set
of Gaussian derivative operators at different scales.

Higher derivatives of order n can be treated in the same
way:

0"G(x;0)

Lxi0) = 1(x) ® “— 2, G)

where n = 1, 2, 3.... RFs of simple cells in the visual
cortex can often be well described as nth order Gaussian
derivative operators (Figure 1A), where the RF has n + 1
adjacent ON and OFF subregions (Young & Lesperance,
2001). Reports of one to four or even five lobes in the
simple cell RF (Hubel & Wiesel, 1962; Movshon et al.,
1978; Kulikowski & Bishop, 1981; Camarda, Peterhans, &
Bishop, 1985; DeAngelis, Ohzawa, & Freeman, 1993;
Ringach, 2002) suggest that derivative operators up to third
or fourth order could play a role in spatial vision.

Figure 2B is a scale—space map showing the gradient
response pattern L, across space (x) and scale (o), given
two Gaussian-blurred edges as input. How might the
location, polarity, and blur of these edges be identified?
The sign of the responses corresponds to the polarity of
the edge (dark—light or light—dark), but the biggest response
is always at the finest scale (1 pixel; top row of the map).
This is true even for much larger blur (Figure 2G). The
degree of blur is implicit in how far the response extends
through scale, and across space, but further analysis would
be needed to quantify it. The edge would be explicitly
identified, however, if the response pattern had a unique
peak at the scale and location of the edge. Lindeberg
(1998) devised a powerful, general method of “scale
selection” to achieve this goal. Lindeberg explored
algorithms in which the response measures for local-
ization and for scale selection could be different. We
simplified his method by supposing that peaks in a single
response surface (Equation 4) should identify the position
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Figure 1. (A) Receptive fields (RFs) of Gaussian derivative spatial filters up to Order 3, at several scales. Sign (polarity) of RF has been
inverted for Orders 2 and 3. (B) Proposed nonlinear, third derivative channel (N3) for edge analysis. Channel scale is given by o = y(c7+
o2). Bottom row: input luminance profile (left) has two blurred edges of opposite polarity, but this channel responds only to the positive-
going edge. The first half-wave rectifier suppresses the first filter's response (centre, dashed curve) to a negative edge. The second
rectifier vetoes negative responses (dashed curves, right) introduced by the second filter, leaving an unambiguous response peak at the

positive edge location.

and scale of the features. The Gaussian derivative
operators are multiplied by a scale-dependent gain factor
c“ to give a normalized scale-space representation, N,

® 0"G(x; 6).

N,(x;0) = c”I(x) T

(4)

By differentiating N,, with respect to o, it is straightfor-
ward to show that, for a given class of feature such as
Gaussian edge, bar, or blob, one can choose the exponent
a such that the response always peaks at the true location
and scale of the feature (Lindeberg, 1998). For Gaussian-

blurred edges (Figures 2A and 2F), o = n /2 (where n is an
odd integer, implying odd-symmetric RFs). Figures 2C
and 2H show that with this multiscale representation of
gradients, Ny, there are unique response peaks at the
correct locations and scales for the edges in the image.
These edge features have been “made explicit” (Marr,
1982). Importantly, this rendering of edge finding as a
simple peak-finding problem seems to reduce, or perhaps
eliminate, the need for more elaborate algorithms that
combine or “track” edge information across scales
(Bergholm, 1987; Zhang & Bergholm, 1997). Figure Al
(Appendix A) shows how the normalization converts
monotonic response profiles across scale into peaked ones
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that identify the edge blur. Appendix A analyzes some of
the scaling properties of these scale-normalized derivatives.

These examples used a first derivative scheme. Cortical
RFs, however, often have more than two subregions, and
the bandwidths of physiologically and psychophysically
identified filters are often narrower than the Gaussian first
derivative, but similar to the third derivative (Bruce,
Green, & Georgeson, 2003). Hence, we should consider
the possible role of higher, odd-order derivatives in edge
finding. Some initial evidence for a third derivative edge
operator comes from our recent finding of “Mach
edges”—the edges of Mach Bands (Georgeson, 2006).
Although the classic light and dark bands correspond to
peaks and troughs in the second derivative (Ratliff, 1965;
Watt & Morgan, 1985), we find that in triangle wave
gratings, blurred to different extents, Mach edges are seen
at peaks in the third derivative where there are no
corresponding peaks in the first derivative nor zero
crossings in second derivative, at any scale. This suggests
that peaks in the third derivative are a cue to edge finding,
but there is a crucial problem to be overcome.

At first sight, the third derivative representation N;
appears unpromising because the additional differentiation
introduces false-positives—two extra peaks or troughs in
the response to each edge (Figures 2D and 2I). To avoid
this problem in machine vision, Lindeberg (Lindeberg,
1998) used the first derivative to locate edges and the third
derivative to identify their scale.

We have discovered (or rediscovered; Kovasznay &
Joseph, 1955) that a simple, physiologically plausible
modification to the linear N3 scheme solves the multiple
peaks problem and makes accurate predictions about
perceived edge location and blur. The necessary modifi-
cation is to split the differentiation into two stages and to
transmit only the positive parts of the response at each
stage (Figure 1B). We denote the half-wave rectified first
stage output as R} and the normalized second stage output
as N3:

R (x;01) = max [I(x) ®

N
N;(x7 G) = Gl~5 max [RT()Q 61) ® %,O},

(6)

where o = \/(612 + 622) and o; = o/4. The choice of o; =
o/4 was an empirical one, but we show later that the
choice is not critical provided 0 < o; < ¢/2; hence, we
chose a fixed value (o/4) in the middle of that range. It
was not adjusted to fit individual experiments. The sign
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reversal introduced in Equation 6 simply ensures a
positive output for edges of positive gradient. This scheme
creates a nonlinear filter or “channel” (Figure 1B) that is
responsive to edges of only one polarity. The first rectifier
vetoes regions of negative gradient, and the second
rectifier eliminates the negative troughs of response
flanking an edge with positive gradient. Thus, the
response N3 (Figures 2E and 2J) is a simple unimodal
surface whose peak location and scale correctly identify
the position and blur of a dark—light edge, but with no
response to a light—dark edge. The problem of identify-
ing the edge is reduced to simple peak finding, with no
false-positives.

The N3 response surface (e.g., Figure 2J) is much more
compact than the N, surface (Figure 2H), implying better
resolution for N3 in both space and scale. Indeed, we
found that N, failed to resolve separate peak responses
when two edges of the same polarity and blur b were
separated by less than 4.8b, but N3 resolved the two edges
down to a separation of only 2.5b (Figure S1).

To identify dark—light edges a channel of the opposite
polarity is obviously needed. This channel, denoted N5 , is
simply obtained by reversing the sign of the first filter:

R; (x;01) = max [I(x) ® Mo]

= (7)

N; (x;0) = o' max [Rl_(x; o) ®

We applied these Gaussian scale—space models to edge
analysis in human vision. Previous psychophysical studies
have examined and modelled discrimination of edge blur
and edge position (Watt, 1988; Watt & Morgan, 1983),
and the Viewprint model (Klein & Levi, 1985) offered a
detailed scale—space framework for spatial discrimination
(hyperacuity) thresholds, based on Cauchy filters rather
than Gaussian derivatives. To study the perceptual
representation of edges and their blur, we have found
blur-matching experiments especially useful. The general
aim is to find pairs of edge profiles that are physically
different (e.g., sine wave vs. Gaussian integral) but
perceptually matched in blur. Different models can then
be tested to see how well or badly they predict the
observed equivalence.

We should emphasize from the start that all our images
were well above threshold (at contrasts around 30%)
because our aim was to study the coding of visible
features at high (but not saturated) signal levels, rather
than the detection of edges at low signal-noise ratios. The
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Blur = 4 pixels Blur = 16 pixels

Filter scale (pixels) Filter scale (pixels) Filter scale (pixels) Luminance

Filter scale (pixels)

-100 -50 0 50 100 -100 -50 0 50 100
Spatial position, x (pixels) Spatial position, x (pixels)

Figure 2. Multiscale Gaussian derivative models for edge analysis. (A) Input image is two Gaussian-blurred edges of opposite polarity.
White curve is the luminance profile, /(x). (B) Scale—space response map L: spatial distribution of responses from a set of Gaussian first
derivative filters at different scales (o = 1 to 64 pixels). Grayscale codes magnitude of response—positive (light) or negative (dark).
Midgray is zero response. Smooth curves are level contours on the response surface at equally spaced heights. The filters were not
“scale normalized” (i.e., a = 0); receptive fields (RFs) in one dimension were all derivatives of a unit-area Gaussian. Peak response to any
edge occurs at the smallest filter scale. (C) As panel B, but filter output N4 is “normalized” by the factor o (see text). Peak response scale
matches the edge blur (4 pixels). (D) As panel C, but for normalized third derivatives, N3. The two additional derivative operations create
two extra response peaks or troughs around each edge. (E) As panel D, but for the nonlinear channel N3 (Figure 1B). The first rectifier
makes the channel sensitive only to positive edges; the second rectifier removes the flanking responses. (F-J) As panels A-E, but for
input edges 4x more blurred. Ny and N3 encode edge location and blur unambiguously by the scale-space position of the peak
response, but L; and N3 do not. Our psychophysical blur-matching experiments consistently favor the nonlinear third derivative
mechanism, Nj.
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Experiment no.
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1, 2 (Figure 3)

3, 4, 5 (Figures 4, 5, and 6)

Computer graphics
Software
Grayscale monitor
Frame rate
Mean luminance
Test image size
Test image window
Gray background field
Test duration
Interstimulus interval
Interval order
Polarity of test

and comparison edges
Staircase rule
Staircase step size

after first two reversals
Order of trials within sessions

Macintosh G4

NIH Image

Eizo 6600

75 Hz

34 cd/m?

256 x 256 pixels

4.3° x 4.3° square with sharp edges

17.2° (W) x 12.9° (H)

300 ms

300 ms

Random order

Same polarity within trials;
varied between trials

one-up, one-down

1 dB (0.05 log unit)

2 staircases per condition.
All conditions randomly interleaved

Windows PC + VSG card

Pascal + VSG

Eizo 6500

60 Hz (90 Hz in Experiment 5)

75 cd/m?

512 x 512 pixels

5° x 5° circle, with smoothed edges

6.1° diameter disk

230 ms

580 ms

Test first, comparison second

Same polarity within trials;
varied between trials

one-up, one-down

1dB

2 staircases per condition.
Conditions run in randomly ordered

No. of reversals used 8
to estimate a match
No. of matches 4

per subject per condition

blocks of 20 trials, until all
staircases completed.
10

4-6

Table 1. Summary of display and procedural details for blur matching in Experiments 1-2 and 3-5.

theoretical issues raised seem to us to be quite different in
these two experimental settings. Hence, all our modelling
assumes, for simplicity, a noise-free system.

Blur matching—general method

On each trial, a test image and a comparison image
were successively presented for 230 or 300 ms. The
observer judged which temporal interval contained the
more blurred edge. The comparison image was always a
single Gaussian-blurred edge, with the same polarity as
the test edge, and its blur b, was adjusted by computer
over a series of trials, using a standard, one-up, one-down
double interleaved staircase procedure to find the compar-
ison blur that appeared to match the test edge blur,
estimated as the average of the last 8 or 10 reversal points
in the staircase run. The edges were always vertical. Their
contrast polarity randomly varied from trial to trial. If the
test image contained multiple edges (e.g., a sine wave
grating), the observer judged the edge that was in the
centre of the screen. Screen luminance was calibrated with
a digital photometer. Lookup tables in the graphics card
were used to linearize (gamma correct) the display and

control the contrast of the image. Further details of
procedure are given in Table 1, with illustrations in the
Supplementary methods.

Blur mixture experiment

The test edge I,;x consisted of two Gaussian edges
superimposed at the same location, with the same polarity,
but different blurs (b, b,):

1+ cr . [ZCD(x - XO,bl) - 1]
Imix(x) =1 s (9)
+ 2. 20(x — xo,b2) — 1]

where [ is the fixed mean luminance, x; is the position of
the edge, O(x, b) is the integral of the unit-area Gaussian
G(x, b) with space constant (blur) b, and ¢, and ¢, are the
contrasts of the two component edges. Both edges were at
the centre of the screen (xoy = 0), and overall contrast ¢; + ¢,
was constant (0.3). The ratio of contrasts of the two
component edges r = c¢{/c, was 0.1, 1, 3, 10, 30, or 100 and
the component blurs (b;, b,) were (15, 5) or (30, 10)
arcmin. Test intervals were 300 ms, separated by a gray
(mean luminance) interval of 300 ms. The comparison
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image in all experiments was a Gaussian edge of contrast
¢ = 0.3, whose blur by was varied by the staircase routine:

Loauss (x) = Io(1 + ¢.[2@(x, by) —1]). (10)

Sharpened edge experiment

Procedure was similar to the blur mixture experiment. Test
edges were modified (“sharpened”) versions of a Gaussian
edge whose original blur was b = 10, 20, or 30 arcmin. The
local contrast function C(x) = [/(x) — Ip)/ly of the original
Gaussian edge was defined by C(x) = [2®(x, b) — 1]. The
waveform C(x) (range —1 to +1) was passed through a
Naka—Rushton nonlinear transformation C/(s + | C | ), and
after appropriate scaling of amplitude the luminance profile
of the modified edge was

c.C(x)

hawntois) = o (14 s

Values of s were 0.1, 0.3, 1, 3, 10, 100, and 1000. The
maximum gradient increased as s decreased, but Michelson
contrast (¢ = 0.3) was held constant.

Sine wave edge experiment

Test waveforms were a half-period edge, single-period
edge, and a sine wave grating filling the 5° display
aperture—see Figure 4. Six spatial frequencies were tested,
ranging from 0.354 to 2.0 cycles/deg in half-octave steps
(with corresponding half-periods from 84.8 to 15 arcmin).
Michelson contrast was 0.32, duration 230 ms.

Gaussian derivative experiment

Luminance profiles of the test images were defined as
Gaussian derivative profiles of odd-order (—1, 1, 3, 5) in
the x-direction with a flat profile in the y-direction at three
scales (5.7, 11.3, and 22.6 arcmin). Subjects matched the
blur of the central edge. Order —1 is a baseline condition
where test and comparison edges are both Gaussian
integrals. Michelson contrast was (.32, duration 230 ms.

Length experiment

Test edge profiles were Gaussian integrals and four
test blurs were used (2.8, 5.7, 11.3, and 22.6 arcmin).
Length of the test edge was truncated sharply and
symmetrically about the centre of the circular 5° test
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window. Comparison edge was a Gaussian integral, 5° long,
filling the display window as usual. Michelson contrast 0.32,
duration 230 ms.

Blur mixture

When two edges with different blurs (b;, b,) and
contrasts (cy, ¢p) are added together in the same place,
how blurred does the resulting edge appear to be? Overall
contrast was constant (¢; + ¢, = 0.3), whereas the contrast
ratio (r = ¢;/c,) was varied to determine what contribution
the two component edges made to the mixture.

Symbols in Figures 3A and 3B plot the blur-matching
values by as the mixture ranged from mainly the smaller
blur (b,) through to mainly the larger blur (b;). Not
surprisingly, as more of the large blur entered the mixture,
the perceived (matched) blur increased from b, to b,
(Figure 3A: 5-15 arcmin; or Figure 3B: 10-30 arcmin).
The interest lies in the manner of this transition. Firstly,
vision does not simply average the blurs. Matched blur
was not well predicted by a contrast-weighted average of the
two component blurs (c;by + c;0,)/(c1 + ¢;) (Figures 3A
and 3B, black dash-dot curve). When the component edges
had equal contrast (r = 1), the matched blur remained
almost equal to the smaller blur value. By interpolation, the
contrast of the more blurred edge had to be about five times
greater than the less blurred edge (around r = 5) before the
matched blur reached the average of the component blurs.
Blur averaging then does not explain the perception of blur
mixtures. (A referee asked whether compressive trans-
formation of contrast before averaging might improve the
fit. To test this, we applied a power function [exponent p]
to the contrast values before calculating the weighted
average blur. For p around 0.6, there was a small [9%]
improvement in RMS error, but the fit to the data remained
poor.)

A second simple (but incorrect) idea is the luminance
template hypothesis. Suppose that, in selecting a blur
match, the observer chose the Gaussian edge whose
luminance profile was most highly correlated with the
test edge. The predicted blur matches (Figures 3A and 3B,
black dashed curve) were similar to blur averaging. In
contrast to these poor fits, the predictions of the first
derivative N; model (thin red curve) fell much closer to
the experimental data.

The most accurate of all the models we explored was
the third derivative model N5 or N5. (The two versions
make identical predictions for these experiments, in which
the luminance gradients across a given test edge are >0
everywhere [or, with reversed polarity, <0 everywhere].)
The fit was good for one observer (K.A.M.) and excellent
for the other (M.A.G.). There are no free parameters here,
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Mixture of 2 edge blurs: 15, 5 min
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Mixture of 2 edge blurs: 30, 10 min

RMS error for 7 models
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Figure 3. Perceived blur of non-Gaussian edges. (A, B) Blur mixture experiment. The blur of a Gaussian edge was adjusted to match the
perceived blur of the sum of two Gaussian edges. Relative contrast (r) of the two component edges varied. Data for two observers (circles
M.A.G.,squares K.A.M.+1 SE). Missing error bars are smaller than symbols. Curves are predictions of seven models: red—the two scale—
space models; blue—three single-scale models; and black—the luminance template and average blur hypotheses. See text. (C) RMS
error between models and data. (D, E, F) Similar to panels A and B but for the sharpened edge experiment. Test edge was formed by
modifying a Gaussian edge whose blur was 10, 20, or 30 arcmin. Lower values of parameter s sharpen the waveform. (G) RMS errors for

this experiment.

and nothing was adjusted to achieve this fit (Figures 3A and
3B, thick red curve). Taken over the 12 conditions and 2
observers, the RMS error between model and data (Figure 3C)
was 4.2 arcmin for blur averaging, 3.6 for luminance
template, 2.1 for Ny, but only 1.3 for N5. In summary, blur
matching in this experiment was fairly well predicted by the
multiscale first derivative Ny model but very well predicted
by the multiscale third derivative N3 or N3.

Similar results were obtained when, instead of blur
mixtures, the set of test edges was derived by starting with
a Gaussian edge (10, 20, or 30 arcmin), then sharpening it
to varying degrees by a nonlinear transformation (see
Methods). As the sharpening parameter (s) decreased, the
waveform was no longer Gaussian but had a steeper
gradient and appeared sharper. Most importantly, the blur-
matching values were well predicted by the N3 model
(Figures 3D, 3E, and 3F). The pattern of deviation for the
other models was fairly similar to the blur mixture
experiment. RMS error between model and data over 2

observers and 21 test conditions was 3.9 arcmin for
luminance template, 2.2 for Ny, but only 1.1 for N3 (Blur
averaging was not definable in this case).

We also examined three plausible single-scale deriva-
tive-based algorithms for blur. Discrete first, second, and
third derivatives were calculated at the smallest possible
scale (1 pixel, corresponding to 1 arcmin) using the
convolution operators [0.5 0 —0.5], [1 —2 1], and [1 —3
3 —1], respectively. Model D1 supposed that two edges
would match in blur when the widths (standard devia-
tions) of their gradient (first derivative) profiles were
equal. Model D2 supposed that blur would match when
the separations between peak and trough of the second
derivative were equal (Watt & Morgan, 1983). Model D3
supposed a blur match when the ratios of first to third
derivative were equal (Georgeson, 1994). It is clear from
Figure 3 (blue curves) that none of these single-scale
models fit the data well. RMS errors (rightmost panels)
were three to six times higher than the N3 model.
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Figure 4. Blur matching for sine wave test edges assessed against a Gaussian comparison edge. Data points are geometric means of two
subjects (M.A.G. and T.C.A.F.) with 99% confidence limits. Lines show the predictions of three scale—space models, N;, N3, and N3. Only

N3 predicted the results accurately for all three types of test pattern.

Periodic edges

The first rectifier in the N3 model plays no role when
all gradients are positive. Hence, we further challenged
that model and tested it for the presence of the first
rectifier by introducing multiple edges with positive and
negative gradients. For an existing data set (Georgeson,
1994), the test pattern was either a full sine wave grating
(Figure 4C), a single period of a sine wave (Figure 4B), or a
half-period sine wave edge (Figure 4A). These three test
images were identical within the central half-period (the test
edge) but different outside that region. They also have very
different Fourier spectra—Ilow-pass (single edge) versus
narrowband (grating). Matched Gaussian blur was found to
be directly proportional to the sine wave period (Figure 4)
and was the same for all three test types. Thus, adding sine
wave edges adjacent to the central test edge narrowed the
Fourier spectrum and increased the total contrast energy but
had no effect on perceived blur. Of the three multiscale
models (N;, N3, and N3), only N3 predicted the data
accurately in all three cases (Figures 4A, 4B, and 4C). The
linear N; model underestimated the blur matches, whereas the
linear N3 model seriously overestimated them (Figures 4B
and 4C). N3 succeeds here because the first rectifier
segments the image into regions of positive gradient,
separated by zero-valued regions (where the gradient is
zero or negative, vetoed by the rectifier). Responses in the
neighborhood of an edge are then the same whether the
image is periodic (a grating) or aperiodic (an isolated edge),
leading to the same blur code in each case (see scale—space
maps in Figure S2).

In a similar experiment, we used odd-order Gaussian
derivatives as test stimuli. Successive differentiation
increases the periodicity and the high spatial frequency

content (Figure 5, insets). Perceptually, the higher
derivatives looked progressively sharper (Figure 5, sym-
bols). Predictions of the three models diverged in much
the same way as they did for the sine wave experiment,
and again the N3 model was an accurate and clear winner
(Figure 5).

Blurring reduces the high spatial frequency content
of images. In two further blur-matching experiments,
we varied the spatial frequency content of gratings by
(a) progressively adding the odd harmonics to a sine
wave to form successive approximations to a square
wave grating and by (b) varying the relative contrast
of the two components in a compound (f + 3f) grating.
The N3 model made very accurate predictions for both
experiments (Figure S3). The linear N; model was fairly
accurate for these two experiments, but the linear N;
model was poor for the f + 3f experiment. As in the sine
wave experiment (Figure 4), it greatly overestimated the
blur.

In summary, the Gaussian integral, Gaussian derivative,
and sine wave edge profiles are all physically different,
and so it is not obvious a priori how they should be
matched. Subjects made matches with high reliability, and
model N3 was remarkably accurate in predicting the
absolute values of blur matches, across a diverse set of
conditions. Such unusual precision suggests that the
model correctly captures some of the key processes in
early visual coding of blur.

Two-dimensional filter shape

The stimuli and model have so far been expressed in
one-dimensional form. To assess the length of the filters,
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Blur matching for Gaussian derivatives
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Figure 5. Blur matching for test stimuli defined as odd-order
Gaussian derivative profiles (inset) at three scales (5.7, 11.3, and
22.6 arcmin). Symbols are geometric means of three subjects
(M.A.G., T.CAF., and T.S.M.) +1 SE. All three models (curves)
predicted a scale-invariant decrease in blur with increasing
derivative order, but the nonlinear model N3 did so most
accurately. (Note that in all experiments, stimulus polarity was
randomized across trials; predictions for positive edges [using N3]
and negative edges [using N3] are the same.)

we tested blur matching for Gaussian edges of different
lengths. Surprisingly, shorter edges looked progressively
less blurred as length was reduced (Figure 6), although the
luminance profile (in the x-direction) was unchanged. As
with our one-dimensional results, blur matching was scale
invariant: The effects of edge length were nearly the same
at all four test blurs (Figure 6) when the test length and the
resulting blur match were expressed as a proportion of test
blur. For an eightfold range of test blurs (b), the perceived
blur started to decrease as test length fell below about 6b,
and edges looked about 50% less blurred when the length
equalled b.

The scale—space model is inherently scale invariant.
RFs of the large filters are both longer and wider than for
small filters (Figure 1A), and this readily explains the
effect of length on blur. As length is reduced, responses of
the large filters drop because part of their input is
removed. Smaller filters (at the centre of the edge) remain
unaffected until the length is further reduced. Hence,
length reduction induces a bias—a shift of the peak
response in favor of the smaller filters (see scale—space
maps in Figure S4)—and because it is the peak filter scale
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that represents blur, the shorter edges are seen as less
blurred than long ones.

The decrease of blur with length depends on the aspect
ratio of the filter kernels (RFs). Figure 6 (solid curve)
shows the predictions of the N3 (or N3) model with filter
kernels that were derivatives of an isotropic (circular)
Gaussian (Figures 1A and 1B). The fit to the data was
good. The N; model with the same isotropic assumption
greatly overestimated the degree of sharpening with
length reduction, although this would be improved by
(perhaps implausibly) assuming an even shorter length—
width ratio for the N; kernels.

Finding edges and encoding their blur

There are many ways in which edges and their blur
might be encoded by spatial filtering at multiple scales.
Our analyses have shown that for human vision several
plausible candidates can be distinguished because (a) they
make different predictions about blur matching, and (b)
experimental blur matching is sufficiently precise to allow
a decision between them. On this basis, two scale—space

Blur matching vs edge length
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Figure 6. Truncating the length of an edge (inset) made it look
sharper. Here, both the blur-matching values (geometric mean of
two observers, M.A.G. and T.C.A.F.) and the test lengths are
expressed as a proportion of the true test blur (2.8, 5.7, 11.3, and
22.6 arcmin). This reveals the scale invariance of the effect. Model
N3 (or N3, equivalent for these stimuli) predicted this sharpening
very well (solid curve), but N; over-estimated it (dashed curve).
See text.
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Figure 7. Comparison of the linear (N3) and the nonlinear (N3) scale—space responses to a single edge (A-D) and to a pair of edges
(E—H). The two edges are separated by four times their blur. Dashed lines mark the true position and scale of the left-hand edge. Panel B
shows the first-stage response R, to a single Gaussian-blurred edge (A); here half-wave rectification has no impact because R, > 0.
Panel F shows response R, for the pair of edges (E) before rectification. The linear model has multiple response peaks (C) and distortion
(G), but the nonlinear model (D, H) does not. See Discussion for details.

that were “sharpened” by reshaping the luminance wave-
form, (3) Gaussian derivative waveforms, (4) compound

models (N;, N3) stood out from the others that we
considered, and of these two, the nonlinear third deriva-

tive model, N3, was consistently the better predictor of
blur matching.

This model explained the appearance and matching of
edge blur in (1) mixtures of two blurred edges, (2) edges

(f + 3f) gratings and (5) sine wave gratings, as well as
(6) the equivalence of blur in periodic and single sine
wave edges, and (7) the striking finding that shorter edges
look sharper. This entire raft of findings was predicted by
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a scale—space model that has a very specific processing
architecture (Figure 1B), and only one parameter was
chosen to fit the data.

We now summarize the key properties of N3 that make
it a viable edge finder whereas the linear model N3 is not.
There are two filter stages, each followed by a half-wave
rectifier. The first filter R; computes local gradients, at
multiple scales. For a single edge (Figure 7A), the
rectified output R is the same as R, (Figure 7B)—a
ridge in scale-space at the edge location. After differ-
entiating twice more, inverting the sign, and applying the
scale normalization, the linear response N3 has a charac-
teristic signature in scale—space—a central peak with two
“wings” of opposite polarity (Figure 7C; also Figures 2D
and 2I). Using a naive peak/trough rule, these wings could
be falsely taken as additional negative-going edges. The
first rectifier, however, guarantees that only positive peaks
in the second-filter output correspond to edge locations. It
does so because R| vetoes negative gradients. This veto
ensures that negative parts of the second-filter response
could not possibly arise from negative-going edges: They
are already suppressed at Stage 1. Thus, the second
rectifier can be routinely applied to exclude the negative
wings and isolate the edge response at the correct location
and scale (Figure 7D). Without the first rectifier, the
negative troughs could not be safely excluded as candidate
edges. In this way, the nonlinear structure of N3 over-
comes the “multiple-peaks problem” that occurs with
narrowband linear spatial filtering (V3).

In addition, the first rectifier eliminates interference
from neighboring edges in blur coding. When two edges
of opposite polarity are fairly close together (Figure 7E),
the “wings” of the N3 response to one edge interfere with
the main response peak for the other edge (Figure 7G).
There is some distortion of peak position, and the peak
scale (blur code) is shifted by as much as half an octave.
Thus, the N; model overestimated blur for all our
experiments with periodic edges, but the human observers
did not. The nonlinear channel neatly eliminates this
interference: By excluding the negative gradients at
Stage 1, the interfering “wings” are removed from Stage 2,
and the response to the preferred edge (Figure 7H) is
almost identical to that for an isolated edge (Figure 7D),
with no distortion of scale or position. In short, the first
rectifier plays two key roles: (1) It eliminates the
irrelevant peaks that would be introduced by successive
differentiation, and (2) it eliminates interference between
neighboring edges.

Spatial location of edges

The nonlinear channel implements an important con-
straint: That in order to signal an edge, the gradient and
the third derivative (at the appropriate scales) should be of
opposite sign. To see this, consider that a simple, positive-
going, blurred step edge has a peak in the first derivative,
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and a negative-going zero crossing (ZC) in second
derivative (Marr & Hildreth, 1980). Hence, the third
derivative (the slope of the ZC) is negative and of
opposite sign to the gradient (see, e.g., Figure 1 of
Georgeson & Freeman, 1997). For models based on ZCs,
checking that the first and third derivatives are of opposite
sign is a basic bit of calculus that enables real edges to be
distinguished from “phantom” edges that also have a ZC,
but which correspond to gradient minima rather than maxima
(Clark, 1989). Together, the two rectifiers and the inverted
sign of the second filter (Figure 1B and Equation 6)
implement this constraint. A response gets through the first
rectifier if the gradient is positive (Figure 7B), and through
the second rectifier if the third derivative is negative (output
from the second filter is positive; Figure 7D). Thus, a peak
in the N3" channel output, representing a positive-going
edge, requires the gradient at that point to be positive while
the third derivative is negative. The “wings” in the N;
response (Figure 7C) do not satisfy this sign constraint
and are rejected by N5. Thus, the N3 model does not
explicitly identity ZCs, but it has much in common with
models that do.

To compare the model’s edge finding more rigor-
ously with human perception, across a broad range of
luminance waveforms, we reexamined the results of
Hesse and Georgeson (2005). Predicted edge locations
for the full model (N5, N5 ) were compared with data in
which observers marked with a cursor the locations of
perceived edges in a family of “phase-coherent” one-
dimensional test images (see Supplementary methods for
details).

Figure 8 shows how well the model predicts the
observed edge locations across the entire set of images.
At phases @ = 0°, 45°, 135° (and their contrast-inversions
at ® = 180°, 225°, 315°), observers and model reported a
pair of edges flanking a light or dark bar, whereas at ® =
90° they saw a single, central edge (triangles in Figure 8).
As image blur increased (i.e., sharpness decreased), the
model accurately captured the increasing perceived
separation between pairs of edges (and it reported
plausibly larger scale values). Although a simpler,
single-scale consideration of gradient—peak locations gave
a good account of these data (Hesse & Georgeson, 2005),
it was important to establish that the multiscale, nonlinear
N3 model also does so and that it is well-behaved with no
misses and no false-positives. The role of the rectifiers
(discussed above) in suppressing “phantom” edges that
would otherwise be introduced by the narrowband filtering
(Clark, 1989) appears to be robust in this wide-ranging
test.

Although the first rectifier may be thought to introduce
harmonic distortion, it does not introduce spurious
features in this or any other test that we have carried
out. On the contrary, it is the (narrowband, N3) linear
filtering, without harmonic distortion, that does introduce
spurious features (e.g., Figures 2I and 7G). This may seem
paradoxical but begins to make more sense when we view
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Figure 8. Subjects (mean of 6; data from Hesse & Georgeson,
2005) marked the perceived locations of edges across a family of
images differing in phase (0°, 45°, 90°, 135°) and blur. Increasing
o, represents sharper images. The N3, N3 model (curves)
accurately predicted the occurrence and location of all these
edges. For this simulation only, the smallest channel scale was
taken to be 2 arcmin, and the eye’s optical blur was approximated
by Gaussian blur of 1 arcmin.

the goal of these nonlinear channels as feature analysis,
not frequency analysis.

By contrast, the influential, and also nonlinear, local
energy model (Burr & Morrone, 1994; Morrone & Burr,
1988) does not explain these data (Figure 8) because it
predicts a single feature (edge or bar) at a fixed position
that is invariant with phase and blur, quite unlike the
observed results (Hesse & Georgeson, 2005).

Links with cortical physiology

The filters in our model do not necessarily correspond
to individual neurons in the visual system, yet there are
some close parallels. We asked what the RFs of the N3
channel might look like to a physiologist, and how they
might correspond with those in V1. The first stage (R{) is
much like a simple cell with adjacent ON and OFF
subregions. Like the standard model for simple cells, it is
a linear spatial filter followed by half-wave rectification
(Figure 1B). (We omit here the complications introduced
by divisive gain controls in LGN (lateral geniculate
nucleus) and cortex. This may be a reasonable simplifica-
tion for our experiments where contrast was fixed at about
30% throughout. If the gain of the mechanisms is set by
contrast, then at fixed contrast the system will be quasi-
linear, which is what our model assumes.)
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Overlapping ON and OFF subregions

The second stage output is more complex and depends
critically on the relative scale (o,/c) of the first stage.
When o, is relatively large (Figure 9D), the RF has
nonoverlapping ON and OFF subregions separated by a
small gap, much like a simple cell (cf. Figure 2A of
Kagan, Gur, & Snodderly, 2002). When o, = o5, the
subregions abut (Figure 9C)—again like a simple cell. But
when o i relatively small (Figures 9A and 9B), the ON
and OFF regions overlap considerably—a characteristic of
complex cells (Hubel & Wiesel, 1962; Kagan et al., 2002;
Mata & Ringach, 2005; Martinez et al., 2005). In this
model, the separation or overlap of ON and OFF
subregions is controlled by the size of the first filter.

All our simulations adopted o,/c = 0.25. To see
whether this was critical, we re-ran the model for several
experiments with o;/c ranging from 0.1 to 0.9. As
expected, when the input had a single sign of gradient
(an isolated positive edge), o/c was immaterial because
the first rectifier then has no influence on the channel
output. On the other hand, for periodic waveforms
predicted blur remained close to the data for /o up to
0.5 but was increasingly overestimated (by up to a factor
of 2) as o,/o increased from 0.5 to 0.9. We conclude that
the success of N3 in predicting perceived blur does
require the first filter to be small compared with the
second filter, and that this is associated with the complex-
like RF of Figure 9B. The sequence of two nonlinear
stages (filter—rectify—filter-rectify) is essential to its
correct behavior in edge coding and has some parallel in
recent physiological findings that simple cells in layer 4 of
the cat cortex are prior to, and provide the input for,
complex cells in layers 2 and 3 (Martinez & Alonso,
2001).

Spatial frequency tuning

Despite the nonlinearities, spatial frequency tuning of
the N3 mechanism (Figures 1B and 9B) was very similar
to the band-pass tuning of the linear, Gaussian third
derivative (N;) filter. The only difference was a slight
broadening of responses on the low frequency side of the
peak (not shown). The spatial waveform of the response to
a sine grating was fairly similar to a half-wave rectified
sine wave, showing high response modulation (F1/F0~ =
1.6) that is thought to be more characteristic of simple
cells than complex cells. We note, however, that the
degree of modulation varies widely across cells, and that
many cells classed as complex in the awake monkey were
found to have high response modulation for drifting
gratings (Kagan et al., 2002).

Filter-rectify—filter

Rectifying nonlinearities are ubiquitous in sensory
physiology, and in vision, polarity specificity begins very
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Figure 9. Receptive field (RF) analysis of the nonlinear channel (Figure 1B). ON and OFF subregions of the N3 mechanism (gray and
black curves) were computed in response to single light lines (plotted as positive) or dark lines (plotted as negative). Thin curve shows the
corresponding linear Nj filter kernel. Overall scale of the channel was fixed (o = 10). When the first filter was relatively large (C, D),
the channel behaved like a typical simple cell, with adjacent, nonoverlapping subregions. When the first filter was relatively small (A, B),
the channel behaved like a complex cell, with substantial overlap of the ON and OFF regions (Kagan et al., 2002; Mata & Ringach, 2005).

All our simulations adopted o+/c = 0.25, as in panel B.

early with the separation into ON and OFF pathways at
the retinal bipolar cells (Schiller, 1992). At higher levels
of processing, the filter—rectify—filter (FRF) sequence of
operations has been studied mostly in the context of
“second-order vision”—e.g., the detection of static or
moving texture boundaries or contrast modulation (Lu &
Sperling, 1995; Schofield & Georgeson, 1999; Wilson &
Kim, 1994). We naturally wondered whether the N3
channel would respond to second-order structure as well
as to luminance edges, but we found its computed
response to contrast modulation to be weak whereas its
response to the high frequency carrier was strong. There
are two aspects of FRF channel design that can promote a
strong response to second-order modulation while sup-
pressing responses to the carrier. These are (1) full-wave
rectification after the first filter and (2) little overlap in the
orientation and/or spatial frequency tuning of the first and
second filters (Bergen & Landy, 1991; Chubb & Sperling,
1988; Dakin & Mareschal, 2000; Wilson, Ferrera, & Yo,
1992). The N5 channel, on the other hand, has half-wave
rectification and considerable overlap in the filter tunings.
These give it the interesting edge-coding properties
discussed here but make it ill suited to second-order
signal processing. Nonlinear FRF “sandwich” mecha-
nisms can evidently be exploited for different purposes

in first and second order vision, depending on the details
of the FRF structure.

Natural images, spatial filters, the rectified
contrast spectrum

Brady and Field (1995), Field (1987), and Field and
Brady (1997) have argued that a good model for spatial
filtering in early primate vision is a scheme in which there
are self-similar RFs at all scales (as in Figure 1A).
Crucially, it was proposed that these filters all have the
same peak response to their own preferred spatial
frequency. Contrast constancy (Georgeson & Sullivan,
1975) for gratings, Gabor patches, and band-pass noise is
directly predicted by this scheme (Brady & Field, 1995).
A theoretical benefit is that in a world where images on
average have a 1/f spectrum, all filters carry the same
information load—that is, all filters have the same
expected variance in their outputs over space and time,
and this allows information to be coded by neurons that
have the same limited dynamic range in their responses.

Field and Brady (1997) extended this equal-amplitude
filter model to propose an algorithm for coding the blur of
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Figure 10. Comparison of two models for encoding blur. (A, B) N3 model responses plotted over filter scale for the three waveforms
illustrated (top). Grating period and Gaussian blur were chosen so that all three waveforms had the same perceived blur. Period was
(A) 16 or (B) 64 pixels. Filled symbols identify the peak scale (found by parabolic interpolation), and those at the top of each vertical line
show how edge amplitude can be recovered by rescaling the peak response value (see text, Appendix A). (C, D) The rectified contrast
spectrum (RCS; Field & Brady, 1997) computed for the same three stimuli (top).

images. For an in-focus image with a 1/f spectrum, the
output energy across filter scales will be constant. Thus,
an image might be judged as in-focus when responses
(aggregated across space) are equal across scale, but
judged as blurred when responses decline at the smaller
scales. To cope with the fact that spatial structure is
sparsely distributed in some images, but dense in others,
they introduced a nonlinear thresholding scheme—the
rectified contrast spectrum (RCS)—in which the variance
of each channel output was computed not over the whole
image, but only over regions containing significant

structure, where local responses exceeded a threshold
(s/2, where s is the standard deviation of responses over the
whole image). Finally, the slope of the RCS (on log—log
axes) was taken as an index of image blur.

We asked how well the RCS scheme might explain the
perception of edge blur. Setting @ = n in Equation 4
produces an equal-amplitude filtering scheme of the
required kind (see Appendix B), enabling us to compare
our blur code (where a = n/2) with that proposed by
Field and Brady (1997). Figures 10A and 10B show the
N3 responses across filter scales computed for a sine
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grating, a single (half-period) sine edge, and a Gaussian
edge. Experiment 3 (Figure 4) found that Gaussian blur b
would, on average, match a sine wave edge of period p
when the ratio b/p was 0.14. This b/p ratio was therefore
used in Figure 10 so that all three types of edge would
have the same perceived blur. Figures 10A and 10B
illustrate two key properties of N3: that peaks of response
exist for both periodic and aperiodic edges, and that they
occur at the same filter scale when the waveforms are
perceptually matched in blur. In short, peak scale predicts
edge blur.

For comparison, Figures 10C and 10D show RCS
profiles computed for the same three images, using the
s/2 threshold (defined above). RCSs for the two single edges
are similar, but they have little in common with the RCS
for a grating. The grating response is scale tuned, whereas
the single-edge response increases monotonically with
filter scale. Similar divergence between the RCSs for
periodic and aperiodic edges was seen for even-symmetric
RFs (n = 2) and odd ones (n = 1 or 3) and at all threshold
levels. These properties reflect the behavior of the under-
lying linear filters, seen in Figure A2. All the RCSs are
curvilinear functions of scale, and so it is not easy to see
any simple measure—such as slope—that would encode the
blur or capture the equivalence of perceived blur between
gratings and single edges. This contrasts with the success of
the RCS in representing changes in spectral slope of natural
images, textures, or two-dimensional noise via a single RCS
slope measure. Indeed, Field and Brady (1997) anticipated
that the RCS approach would have difficulty in encoding
edge blur, partly because “altering the slope of the spectrum
is not a good model of optical blur” (p. 3382) and partly
because the RCS is still a global measure, whereas “a more
accurate measure of blur will certainly involve local
measures and will probably be best calculated on an edge
by edge basis” (p. 3381). We agree with both points, and we
propose peak finding in the N3 scale-space as an effective
and empirically supported algorithm for edge finding and
local blur coding. It remains to be seen whether the sense of
global blur obtained from an optically blurred image can be
understood as some simple aggregate of these local blur
measures (Dijk, van Ginkel, van Asselt, van Vliet, &
Verbeek, 2003).

To summarize this section, Field and Brady’s (1997)
RCS serves well to encode the spectral slope of images,
but (confirming Field and Brady’s own suggestion) the
RCS does not yet offer a simple measure of edge blur, nor
does it capture the equivalence of perceived blur between
periodic and single edges. However, Appendix B shows
that if Brady and Field’s (1995) account of filter gains and
noise were correct at some level of processing, then a
simple rescaling of those filter gains by o " would
produce an output whose gains matched those needed for
N3 . In short, the benefits of Field and Brady’s scheme, and
those of N3, could coexist at successive stages of
processing.

Georgeson, May, Freeman, & Hesse 16

Conclusions

We asked how spatial filters serve to represent lumi-
nance edges in human vision. When the filter gains at
different scales are set appropriately (“scale normalized,”
a = n/2 in Equation 4), the problem of locating edges and
determining their blur reduces to finding peaks in the
scale—space map of responses. Predictions from a linear
model (/V;) based on Gaussian first derivative filters were
in fair agreement with our blur-matching data, but the
nonlinear third derivative model was consistently more
accurate. Each channel in the N3 model has a two-stage
structure analogous to the sequence from simple to
complex cells in visual cortex, and the half-wave rectifying
nonlinearities play a crucial role in enabling edge finding
without false-positives. The N3 model draws together three
lines of thought about vision—computational, physiolog-
ical, and psychophysical. It implements a principled, scale—
space approach to the representation of key features in
early vision and does so via physiologically plausible
mechanisms, supported by some strikingly accurate pre-
dictions about human perception.

Appendix A

Some properties of the scale—-space models

Following the approach of Lindeberg (1998), we
analyze here some of the scaling properties of the family
of scale—space models defined by Equation 4, in response
to isolated Gaussian-blurred edges I(x; b) of blur b and
unit amplitude, where luminance / is the indefinite integral
of the unit-area Gaussian G(x;b).

Linear operations can be applied in any order, and so
from Equation 4 we get

2 OI(x;b) ® " 'G(x;0)
ox oxnt

N,(x,07b) =0 (A1)

The first derivative of I is simply G(x; b), and because
variances add under convolution, Equation A1l reduces to

an—l .
N,(x,0;b) = c” 4@5?? ) ) (A2)
where s = V(6 + b*). When n = 1,
o _X2
Ni(x,0;b) = .
1, 03) \/2n(c? + b?) xp (2(0‘2 + b2)>
(A3)

Downloaded From: https://jov.arvojour nals.or g/pdfaccess.ashx?url=/data/j our nals/j ov/932844/ on 12/18/2018



Journal of Vision (2007) 7(13):7, 1-21

Non-normalized s

Scaling factors

Georgeson, May, Freeman, & Hesse 17

Scale-normalized

10 ‘
4 - 1st deriv
10 ist der 10 1
riv i
. st de > 3rd deriv >
x 10° | o'
;10—2 1073 3rd deriv |
s X =
ot ,
8 3rd deriv 10" |
3 Edge blurs y
ir 10 — 2 005 10 ¢
- ?6 0 1st deriv
32| 10
L | L L
1 10 100 1 10 100 1 10 100

Filter scale, o (pixels)

Figure A1. Properties of Gaussian derivative filter responses to single Gaussian-blurred edges, taken at the edge location and plotted as a
function of filter scale. Responses to four different edge blurs are shown for linear first and third derivative filters (n = 1 or 3), either without
scale normalization (left; a = 0) or with it (right; « = n/2 in Equations A3 and A5). Centre panel shows the scale factors used to convert the
nonnormalized responses (left) into the normalized ones (right). This scale normalization ensures that, for Gaussian edges, the filter scale

at the peak response identifies the edge blur.

This shows that for NV, the spatial profile of response to a
Gaussian edge, at any filter scale o, is a Gaussian whose
spread increases with o. These profiles peak at the edge
location (x = 0). Response values at x = 0 are plotted
across filter scales in Figure Al (thin curves). As we saw
in Figure 1, without scale normalization, responses are
greatest at the smallest filter scale, but with the chosen
normalization (@ = n/2), responses show a peak where o = b.
Responses to different edge blurs have a common asymptote
at large filter scales. This means, as one might expect, that
large-scale filters cannot distinguish between sharp edges
and blurred ones.

The same general properties hold for the scale—space
third derivative N3, which (from Equation A2, with n = 3)
becomes

Ga(x2 _ 0_2 — b2)

—2
N b)) = - ).
) = T ()
(A4)
At x = 0, this simplifies to
Ny (0,030) = —— (AS)

(o2 + 2?27

plotted (dropping the negative sign) as thick curves in
Figure Al.

Figure Al also shows that the shape of the response
curves (on log-log axes) is the same for all blurs. From
Equations A3 and A4, for n = 1, 3 and for any «, response

magnitude over scale at x = 0 is a function of relative
scale, o/b:

b (ofb)
van (1 + (o/b)z)”/2

INx(0,03b)| = (A6)

This proves that response curve shape is invariant with
blur, but amplitude scales as b* .

Information in the peak response: blur and
contrast

It is straightforward to show by differentiating Equa-
tions A3 or A5 with respect to o, that when a = n/2, the
peak response occurs at scale o,.x = b, as shown in
Figure Al, right. This scaling property means that the
scale o, Of the most active filter identifies the edge blur
b. This of course is the main goal of our model.

For n =1, 3 and a = n/2, with input edge amplitude ¢
(0 < ¢ £1), the peak response values are proportional to c,
but also vary with blur b:

Ni(0,b;b) = 0.5¢h~ "2/ \/x, (A7)

N3(0,b;b) = —0.25¢h 3% /\/x. (A8)
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Figure A2. Gaussian derivative (n = 3) filter responses at x = 0, plotted over scale for edges at four different blurs (left) and for sine
gratings at four spatial frequencies (right) when normalization exponent a = n.

When a = n/2, peak response amplitude falls as b “
(Figure A1, right). Thus, there is no “contrast constancy”
in the output of these filter sets. Nevertheless, these filters
do encode edge contrast. Once the edge location and blur
have been found, edge amplitude ¢ can be recovered from
the peak response value R ., and its corresponding scale
Omax Dy inserting these two values into Equation A7 or A8
and solving for c. It follows that for all edge blurs, the
quantity Rinax(Omar)™” is directly proportional to contrast.
We examine these contrast-coding ideas more closely
elsewhere (May & Georgeson, 2007).

This appendix has considered the scale—space properties
of linear Gaussian derivative filters in response to
Gaussian-blurred edges. But all the equations and the
conclusions developed here for N3 also apply to the
nonlinear mechanism N3 because for single edges (and
any other input with nonnegative gradients), the first
rectifier is immaterial and the behaviors of N5 and N5 are
identical.

Appendix B

Here we consider an important special case where all
filters have the same peak sensitivity in the Fourier
domain. This supports the Discussion section, where we
analyze an alternative model for blur (Field & Brady,
1997) that is based on this property.

Filters with equal-amplitude spectra, « = n

In general, the edge response (Figure Al) has a peak
across scale, provided that 0 < a < n. An interesting
consequence of Equation A6 is that when o = n (or o = 0),
the edge response amplitude no longer has a peak that can

identify edge blur. See Figure S5 for scale—space maps
illustrating this. When a = n, the responses have no peak,
but instead a common horizontal asymptote at large filter
scales (Figure A2, left).

For sine gratings, however, responses remain “tuned”
across filter scales even when a = n (Figure A2, right). We
prove that result here for the case of linear filters, and we
note that it is also true for the nonlinear N5 channel. The
response amplitude of the normalized nth Gaussian
derivative operator of scale o to a sine wave grating of
spatial frequency f is easily obtained from the Fourier
transform, F:

IFulf,0)| = 0" (2nf)"exp(~272%? ). (B1)
Let the grating period p = 1/f, so that when o = n,
Fu(p.0)| = (275 /p)"expl =27 (0 /p)’]. (B2)

This implies that the response tuning and the amplitude
are scale invariant because they depend only on the
relative scale (o/p).

To get a scale-tuned response to edges requires 0 <a < n.
We used a = n/2, which (uniquely) renders the response
curve for Gaussian edges symmetrical about the peak, on
a log scale axis (Figure Al, right). As « deviates from n/2,
the response curves become more asymmetrical, and the
correct (experimentally observed) equivalence between
sine and Gaussian edges is gradually lost (not shown).
Hence, there is a strong case for the specific model in
which o = n/2.

A general consequence of this scaling is that peak
response values vary with edge blur, as b* " (see
Appendix A). When a = n, contrast constancy is obtained
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directly, as in the Brady and Field (1995) filtering scheme.
When o < n, contrast constancy can be restored after peak
finding simply through rescaling by the known factor " “
as discussed above (Appendix A) and illustrated by the
filled symbols in Figures 10A and 10B.

One might worry that the low response values for large
blurs would entail poor signal-noise ratios, but this is not
necessarily so. Suppose that, at one level of processing,
the filtering and the signal-noise ratios are correctly
represented by a scheme like Brady and Field’s (1995)
(let’s call it N5, defined as N3 but with a = n). They
proposed that the decline in contrast sensitivity at high
SFs follows from the fact that the high frequency filters
have a broader frequency bandwidth (in linear terms) and
would collect more input noise when, as seems likely, the
input noise has a fairly flat spectrum. Thus, at this level,
the smaller scale filters have a poorer signal-noise ratio. A
further processing step, rescaling all filter responses by
o "2, would convert N to behave exactly as N3 with a =
n/2. But if this final linear step—progressively attenuating
the larger scale filters—adds no further noise, then signal—
noise ratios in each filter remain unchanged, and the
smaller scale filters still have the poorer signal-noise
ratio. Despite their (now) low amplitude of response, the
larger scale filters would continue to have the better
signal-noise ratio.

We conclude that N3 or N3 cannot easily be rejected by
signal-noise ratio arguments. We also see that Brady and
Field’s (1995) filtering scheme (like N%), in which all filters
have equal peak-response amplitude, could be easily trans-
formed into N3 to find edges and encode blur, provided that
successive stages of processing are considered.
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