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Abstract

A new approach to optimisation is introduced based on a precise
probabilistic statement of what is ideally required of an optimisation
method. It is convenient to express the formalism in terms of the
control of a stationary environment. This leads to an objective func-
tion for the controller which unifies the objectives of exploration and
exploitation, thereby providing a quantitative principle for managing
this trade-off. This is demonstrated using a variant of the multi-armed
bandit problem. This approach opens new possibilities for optimisa-
tion algorithms, particularly by using neural network or other adap-
tive methods for the adaptive controller. It also opens possibilities
for deepening understanding of existing methods. The realisation of
these possibilities requires research into practical approximations of
the exact formalism.

1 Introduction

Optimisation methods can be compared according to various criteria, such
as the computation time they require, the accuracy of the solutions they
produce (as a function of computation time), and the classes of functions on
which they are effective. It is normal practice to invent a method and test it
against these criteria using numerical simulations and/or theoretical results
such as convergence proofs. This is useful, but it would be better still to be
able to derive an optimisation method by first stating the criteria and then
finding the method which best satisfies them. Even if it were not practical to
search for the best method, which itself would entail solving an optimisation
problem, a precise formula for evaluating optimisation methods provides the
best starting point for approximations.

It is possible to formalise these ideas by regarding optimisation as the
control of a stationary environment. The optimisation method is identified



with a “controller” 7 which selects arguments z to a function g. ! The envi-
ronment is fully specified by the function ¢, and simply responds to “control
action” z with “response” g(z) (and perhaps further information h(z), such
as some derivatives of g at #). The response of a non-stationary environment
would depend on an internal state as well as the control action, which will
not be considered here. A controller seeks to maximise some “reward” R,
which is a function of the time-sequence of environmental responses. For an
optimisation problem, (for definiteness, a maximisation problem) one sensi-
ble definition of the reward is the largest function value observed during the
number of function evaluations T’ that one is willing to carry out.

Although they are not ordinarily defined this way, typically optimisa-
tion algorithms have an implicit controller, fixed once and for all, which
prescribes how new function arguments are to be selected based on previ-
ous function evaluations. For example, in first- and second-order gradient
descent methods [6, 17] the next argument is chosen as a function of the
previous one or two function values and gradients, and perhaps other data
structures which are incrementally updated, such as an inverse Hessian ap-
proximation. Simulated annealing [13] selects arguments from a prescribed
Boltzmann distribution. Genetic algorithms use [9] an ad hoc formula to
update a set of function evaluations. Regarding optimisation as a control
problem leads naturally to the idea of upgrading these implicit controllers to
adaptive controllers, possibly implemented by neural networks, in order to
obtain an optimisation method best suited to a problem or class of problems.

An optimising controller itself requires an objective to optimise. Here
a formal expression for such an objective is derived from first principles.
This embodies a quantitative theory of the exploration/exploitation trade-
off, introducing an entirely new approach to this issue, as far as we are aware.
This is illustrated with a simple example. We are using this as a starting
point for workable approximations to obtain better optimisation methods,
and to better understand existing ones.

An adaptive controller has two sub-tasks, system identification and,
based on this, reward optimisation. In function maximisation, the iden-
tification step amounts to the creation of a (possibly quite crude) model
of the function g, based on some of the “samples” (z,¢g(z), h(z)), normally
the more recent ones. Optimisation is done on the basis of this model. For
example, at time step ¢ in gradient descent, ¢ is modelled by its tangent
plane in a neighbourhood of the latest argument sample z;, and an optimal
choice for z;41 is made based on this model. These two tasks are partially
conflicting. Whereas identification requires exploration to gather informa-
tion about the environment, optimisation is best served by exploitation of

1'We shall use the term “function” to mean either a deterministic function, ie. a function
in the ordinary sense, or a stochastic function, ie. a random field. This more relaxed
interpretation is advantageous not only because it has wider scope of applications, but
also because some fundamental issues of optimisation are identical for both cases.



existing knowledge with the sole objective of increasing the reward. This
exploration/exploitation tradeoff is a fundamental dilemma to which the
control-based approach presented here supplies a quantitative solution, at
least in principle.

Section 2 explains the main idea in detail while developing notation.
Then a formula for “optimal optimisation” is developed in section 3 for a
somewhat restricted case. The N-armed bandit problem is used in section
4 to show that this formula expresses the exploration/exploitation tradeoff.
Discussion and conclusions follow in section 5.

2 Optimisation as a control problem

In a maximisation problem, the maximum of a fixed function ¢ is sought.
The word “fixed” is used cautiously because ¢ is not known in a sense
which makes the implied ‘knowledge’ of the solution z* = argmax, g(z)
particularly helpful. FEffectively, ¢ is only partially known because there
is insufficient time to exhaustively evaluate it, even though the knowledge
of how to do so is readily available. Only the partial knowledge is made
available to the system identification task. Let this knowledge be called k;
at time t. In general, k; will be a set of quantities computable from the
past data D; def (%1, Y15 - Tt Yt), Where y, = (174, h(2y)) with 7, = g(zy). For
example, if past data is never discarded, as in Tabu search [7, 8], then k; can
be the data itself. The dimension of k; would increase with ¢ in this case.
Another possibility is to choose a fixed-dimension form for k; which can be
updated using a function K of the form

(1) keyr = K(Togt, Yegr, ke)

The search direction in the conjugate gradient algorithm constitutes knowl-
edge of this type. Another example is a sample mean or sample variance
of the data, together with the time ¢ itself. Whether the relationship is
of the form (1) or otherwise, the function relating k; to D; will be called
ky = K(Dy), with the specific meaning of K being clear from the context.

In general, a controller 7 provides a distribution P(z41|k¢, 7) from which
the next argument is selected. This paper will focus on controllers which
utilise all past data (or a sufficient statistic [5] of this data) to arrive at an op-
timal policy which is therefore deterministic [2, 10]. In this case P(@¢y1 |k, )
is a singular distribution. The more general case will be discussed briefly in
section b.

Bayesian probability theory provides the essentially unique logically con-
sistent way to quantify uncertainty [4, 11] and and “reasonably good deci-
sion rules” are Bayesian decision rules [5, 3]. Therefore it is best to describe
the partial knowledge of the environment ¢ with a probability distribution
P(g|k¢, ), the probability that the function is g given that knowledge k;



was acquired using controller 7. Of course, this is not meant to suggest
that g is produced by a random process, even though that is one way to
interpret a probability distribution. Here P(g|k;, 7) expresses only our ig-
norance of a definite deterministic or stochasitc? function g. (Whether g is
known; ie., P(g|---) is singular, is independent of whether g is determinisitc;
ie., P(r¢|g,---) is singular.) The distribution conditioned on no knowledge,
P(g), describes the class of functions to which the method is to be applied.
Then with P(g|7) = P(g) and P(ki|r) = [, P(ki|g, )P (g|7), Bayes’ rule
specifies P(g|k;, ) as

(2) P(glks,m) = P(kilg, m)P(g)/P(kir).

If the controller © and the function ¢ are both deterministic, then they
completely determine the data D; which in turn determines the knowledge
k. Then formally, at least, there is a function Dy(g,7), in terms of which
P(kilg,m) = 6(ki — K(Dy(g,7))) in terms of the Dirac delta distribution.

Other distributions conditioned on the knowledge can be defined in terms
of P(g|k¢, 7), such as the probability that the next function evaluation will
be 7441 if the next argument supplied is ;41:

(3) P(rogi|oigr, ke, m) = /P(Tt+1|xt+lvg)P(g|kt77r)‘
g

Here the fact that k; and 7 contribute no more knowledge than ¢ jus-
tifies using P(ry11|@iq1,9, k1) = P(riga|®i41,9), and the irrelevance of
Zi41 to knowing ¢ justifies P(g|ziq1, ke, m) = P(g|ky, 7). The distribution
P(ri41]2¢41,9) can have any form if g is stochastic. It is a singular distri-
bution P(ri41]2i41,9) = 6(ri41 — g(@441)) if ¢ is deterministic.

A sensible reward in a maximisation problem is R = max;r; where
re = g(a¢). If knowledge of the best sample seen so far is retained, then a
very similar reward is R = rp, where T is the maximum number of time
steps allowed, because the controller can simply re-select this remembered
point at the final time step.

If the reward were known as a function R(:41) of the argument to be
selected at time ¢ + 1, then the optimal policy would be simply to choose
2441 to maximise R. The knowledge k; suffices only to specify a distribution
over rewards P(R|z;41, k¢, 7), but this can be used to define the expectation
value (R|xy11, ke, m) = [ RP(R|2¢41, k¢, 7). The function ¢ can always be
transformed to a utility function for which the expectation value expresses
essentially arbitrary preferences about the distribution [19]. Let us restrict
attention to the controller which always chooses the best sample 2441 accord-
ing to this expectation value, in which case the dependence on the controller

2Here we consider only stochastic functions which can be decomposed as a deterministic
function added to a stationary independent random process. Technically, a subscript ¢
should be appended to ¢ to represent that the random process produces a different output
at each time step, but this formality will be ignored.



7 in every expression does not need to be explicitly noted. Let us further
restrict attention to the reward R = rp, so the control policy is to choose
Ti41 to maximize (rp|aiqr, k). A formula for this expectation value is de-
rived in the following section for the case of retaining all past data, k; = D;.
A slightly more complicated formula can be obtained for the general case.

3 Expected reward given all past data

If the first ¢ function evaluations D; are known, an expression is required for
(rr|@iy1, D¢) in terms of information available at time ¢, in order to make an
optimal choice for the next argument to select, ;41 = arg max,, (r7|zit1, Dy).
Such an expression can be obtained by working backwards from time 7" — 1
to time {.

At time T, given knowledge of Dy_1, one would choose x7 to maximize
(4) (relor, Drs) = [ rrProler, Droa),

T

This choice defines a function £7(Dr_1).

Not all of the data Dp_q is known at time t < T. At time T — 1, the

best one can do is to choose x7_1 to maximize (rr|zr_1, Dr_2), which can
be written

(5)(ralor-1, Dr2) = [ - Artlara, e, Droa) Plrraler -, Dro)
TP_1

The expectation value in the integrand can be written as (r¢|Dr_1), or

(6) (re|Droy) = [ el Dro) Plarl Droy)

Having established that the controller will select 7 = £7(Dr_1), the distri-

bution P(ar|Dr_1) is seen to be a Dirac delta distribution P(ar|D7r_1) =

é(ar — &r(Dr-1)), so
(7) <7‘T|90T—1, DT—2>

= [ [ {reler. Dro)éer — E(Dr_) PGrroalerr, Dra)

:/ (rrler = &r(Dr-1), Dro1) P(rr—1|er-1, D7_2).
TT—1

Continuing in this manner, the distributions over the arguments and
rewards combine in a Markovian fashon to give

(8)
(rrlas, Diy) = / / (rrler = &r(Dr_1), Dr_1)
T-1

[T POrler = &(Drm), Dry) P(rilae, Doet)
T=t+1



for any t < T'. Maximizing this expectation value with respect to z; defines
&(Dy—1), given that &; is already defined for 7 > ¢.

This expression gives the optimal sampling strategy for maximising the
function. It involves an expected final reward (rr|a7, Dr_1) conditioned on
data D7_q, not all of which is available at time t. Different values for the
unavailable data would have different implications for the expected reward,
so an average is taken, weighted by the probabilities as known at time ¢. This
average will be driven up if data is found which has higher r; values than
the current (rr), but the probability of such data turning up may be low.
This is the exploration/exploitation trade-off, and expression (8) gives it a
quantatative form with each value of the integrand representing a different
future scenario.

4 TIllustration: An N-armed bandit

An “N-armed bandit” gives a simple illustration of the exploration /exploitation
trade-off problem. The function ¢ is a stochastic function of 1 N-valued vari-
able z. The value g(z) is given by a Gaussian distribution with mean p,
and unit variance. This is a very simple example of a function which can-
not be entirely determined by a finite amount of data. In this case this is
because the function is stochastic, but similar conclusions can be expected

if the source of the uncertainty is incomplete knowledge of a deterministic
function.

There has been a large body of work on the N-armed bandit [21, 14,
12, 18, 1] with the objective of maximizing a possibly discounted sum of
function values Y, v'r;, with 0 < v < 1. However, the objective of interest
here is quite different, to maximise rr for some given final time T'. Putting
all the weight on the last time step can be accomplished by taking v — oo,
so it might be interesting to attempt to examine this case by conventional
methods in order to make contact with the results below. We shall leave this
aside, because the main point of the exercise is not to improve on bandit
methodology but to illustrate that equation (8) does indeed quantify the
exploration /exploitation tradeoff.

Let the prior distribution of y; be a Gaussian N (a0, 1/n40), where N (p, o?)
denotes the Gaussian distribution with mean p and variance o%. Let a;; =
(ui| D¢y and nyy = nyo + # {7 <t: x; = 1}, with the notation #A meaning
the number of elements in set A. These are suflicient statistics for ;. Then
the posterior P(p;|Dy) is N(ai, 1/n4).

For the final step T,

(9) (rrler =1, Dr_1) = a;7-1,

so the optimal policy is

(10) &r(Dr_q) = argmax; {a; 7-1},



with

(11) (relér(Dr_1), Dr—1) = m?X{“i,T—l} .
Now consider step T — 1. It holds that

(12) (rrler—1, Dr—2)

:/ (rrler = &r(Dr-1), Dr—1) P(r7—1|z1-1, D1_2)
TT—1

:/ max {a; 7—1} P(rr—i|e7—1, D1—2).
rp—1 °

In the rest of this section, except where explicitly noted, we shall only
consider distributions conditional on Dr_9 and x7_1 = k, so to simplify the
notation, we shall make these two conditions implicit. With these conditions
in mind, it can be shown from the updating rule for a; that

1
N a — b . = k?
(13) a;T—1 ™~ kT2 ngr—2(nE T2 + 1)) J
N (ak,T—Qvo)v J 7£ k.

Let agpi)_z denote the quantities {a; 7_2 : Vi}, sorted in decreasing order,
with kg)_Q denoting the original index of the ith sorted quantity. That is,

a(TllQ is the maximum, which is identical with a 3 It then follows

K T2

easily that

(1) L k(l)
(14) max {a; 71} :{ max{aprorapyp . k7 by,

max{akj_l, ag?lz} , k= k(TIZQ
It is then straightforward to derive from that (13) and (14) that

(15)

1
J ag“llzaak,T—% Tk k # ké}l%
(re|ler—1 =k, Dr_q) = ngr—2(nkT—2 + 1)
f eI 1 )
T2 CkT—2, , s

g T—2(npT—2 + 1)

where f(a,b,0?) is defined as (max{z,b}) with  ~ N(a,c?), and is given
explicitly as

b b— b— b—a)?
(16) f(a,b,UQ):a-Ql- . 2aerf<\/§:)_|_\/;_ﬂ_exp (—%)

(%) (i+1)

We ignore the zero probability cases where ay., = ay',’, which can be made to
disappear by an infinitely small perturbation.




The optimal policy at step 1" — 1 is
(17) xr_1 = Er_1(Dr_2) = argmaxy, (rr|ler—1 =k, Dr_2).

This favours those £ such that aj r_o is large or ny r—o is small. Intuitively,
this means that the optimal strategy is to choose the state which is most
under-tested for its worth.

Note that by f(a,b,c?) = f(b,a,0?) it can be easily verified that

(18) <7‘T|96T—1 = kgrllg,DT—2> = <7‘T|96T—1 = kéngaDT—2>

(1) (2)

whenever ny’, = nyp’,. Therefore for the two-armed bandit problem, for

N = 2, the only factor affecting &7_1(Dr_3) is ngpllz - ngng; the optimal

policy is simply to choose the less tested state with out any regard to the
expected rewards of both states.

Figure 1 shows a contour plot of (rr|lzr_1 =k, Dr_2) as a function of
ar,7—2 and ny 7_9 for particular values of a(TllQ and ag?lQ. Other values give
qualitatively similar plots. Given Dr_5, the N possible choices of z7_1 = k
will produce N points on this plot, and the one on the highest contour
(toward the lower right) should be selected for the next evaluation. Points
lying on the same contour are equally good choices. Therefore the contours
show precisely how the need for exploration (low n) is balanced with the
need for exploitation (high a).

5 Conclusions

An approach to optimisation has been introduced based on a precise formula-
tion of what is required, ideally, of an optimisation method. It is convenient
to express this in terms of the control of a stationary environment. This
leads to an objective function for the controller which unifies the objectives
of exploration and exploitation into a single objective, thereby providing a
quantitative principle for managing this trade-off. We are not aware of any
previous attempts of this nature, although there has been extensive research
into objective functions for exploration [15], and many techniques for man-
aging the exploration/exploitation tradeoff have been invented [20, 16]. One
of our current research directions is to place some of these methods into the
general context.

Here we have set out only the first steps of this approach, and demon-
strated that it does indeed yield a quantitative expression of the explo-
ration/exploitation trade-off in a simple case. It is also clear that in general
it will not be practical to use the exact formalism; instead it must serve as a
basis for approximations. Even though severe approximations may be nec-
essary to make the problems of computing and optimising the controller’s
objective function less difficult than the original problem, we feel that this
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Figure 1: Contour plot of (rr|e7_1 = k, Dr_3) as a function of a7_5 and

ng,T—2 for a(TllQ = .1 and ag?lQ =.09.

basis for approximation is in a deep sense correct, and therefore a better
starting point than any ad hoc method.

Only the case in which the controller has access to all past data, or a
sufficient statistic of this data, has been investigated in any detail here. We
are currently developing the more general case, which is of greater practical
interest. In particular, it would be interesting to use a neural network for the
controller, or an adaptive generalisation of the conjugate gradient method,
or an adaptive genetic algorithm. All these methods employ a finite number
of parameters, and must therefore lose track of information about past data.
Without a sufficient statistic, the argument used in section 2 to conclude
that the optimal controller is deterministic does not hold, so it is of interest
to determine whether a stochastic method turns out to be optimal in some
cases, exactly or as a good approximation. In particular, it would be of great
interest to be able to evaluate simulated annealing [13] in this framework.
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