
A Bayesian Formulation of Search, Control and theExploration/Exploitation Trade-o�Richard Rohwer and Huaiyu ZhuDept. of Computer Science and Applied MathematicsAston University, Birmingham, UK B4 7ETAugust 15, 1995AbstractA new approach to optimisation is introduced based on a preciseprobabilistic statement of what is ideally required of an optimisationmethod. It is convenient to express the formalism in terms of thecontrol of a stationary environment. This leads to an objective func-tion for the controller which uni�es the objectives of exploration andexploitation, thereby providing a quantitative principle for managingthis trade-o�. This is demonstrated using a variant of the multi-armedbandit problem. This approach opens new possibilities for optimisa-tion algorithms, particularly by using neural network or other adap-tive methods for the adaptive controller. It also opens possibilitiesfor deepening understanding of existing methods. The realisation ofthese possibilities requires research into practical approximations ofthe exact formalism.1 IntroductionOptimisation methods can be compared according to various criteria, suchas the computation time they require, the accuracy of the solutions theyproduce (as a function of computation time), and the classes of functions onwhich they are e�ective. It is normal practice to invent a method and test itagainst these criteria using numerical simulations and/or theoretical resultssuch as convergence proofs. This is useful, but it would be better still to beable to derive an optimisation method by �rst stating the criteria and then�nding the method which best satis�es them. Even if it were not practical tosearch for the best method, which itself would entail solving an optimisationproblem, a precise formula for evaluating optimisation methods provides thebest starting point for approximations.It is possible to formalise these ideas by regarding optimisation as thecontrol of a stationary environment. The optimisation method is identi�ed1



with a \controller" � which selects arguments x to a function g. 1 The envi-ronment is fully speci�ed by the function g, and simply responds to \controlaction" x with \response" g(x) (and perhaps further information h(x), suchas some derivatives of g at x). The response of a non-stationary environmentwould depend on an internal state as well as the control action, which willnot be considered here. A controller seeks to maximise some \reward" R,which is a function of the time-sequence of environmental responses. For anoptimisation problem, (for de�niteness, a maximisation problem) one sensi-ble de�nition of the reward is the largest function value observed during thenumber of function evaluations T that one is willing to carry out.Although they are not ordinarily de�ned this way, typically optimisa-tion algorithms have an implicit controller, �xed once and for all, whichprescribes how new function arguments are to be selected based on previ-ous function evaluations. For example, in �rst- and second-order gradientdescent methods [6, 17] the next argument is chosen as a function of theprevious one or two function values and gradients, and perhaps other datastructures which are incrementally updated, such as an inverse Hessian ap-proximation. Simulated annealing [13] selects arguments from a prescribedBoltzmann distribution. Genetic algorithms use [9] an ad hoc formula toupdate a set of function evaluations. Regarding optimisation as a controlproblem leads naturally to the idea of upgrading these implicit controllers toadaptive controllers, possibly implemented by neural networks, in order toobtain an optimisation method best suited to a problem or class of problems.An optimising controller itself requires an objective to optimise. Herea formal expression for such an objective is derived from �rst principles.This embodies a quantitative theory of the exploration/exploitation trade-o�, introducing an entirely new approach to this issue, as far as we are aware.This is illustrated with a simple example. We are using this as a startingpoint for workable approximations to obtain better optimisation methods,and to better understand existing ones.An adaptive controller has two sub-tasks, system identi�cation and,based on this, reward optimisation. In function maximisation, the iden-ti�cation step amounts to the creation of a (possibly quite crude) modelof the function g, based on some of the \samples" (x; g(x); h(x)), normallythe more recent ones. Optimisation is done on the basis of this model. Forexample, at time step t in gradient descent, g is modelled by its tangentplane in a neighbourhood of the latest argument sample xt, and an optimalchoice for xt+1 is made based on this model. These two tasks are partiallyconicting. Whereas identi�cation requires exploration to gather informa-tion about the environment, optimisation is best served by exploitation of1We shall use the term \function" to mean either a deterministic function, ie. a functionin the ordinary sense, or a stochastic function, ie. a random �eld. This more relaxedinterpretation is advantageous not only because it has wider scope of applications, butalso because some fundamental issues of optimisation are identical for both cases.2



existing knowledge with the sole objective of increasing the reward. Thisexploration/exploitation tradeo� is a fundamental dilemma to which thecontrol-based approach presented here supplies a quantitative solution, atleast in principle.Section 2 explains the main idea in detail while developing notation.Then a formula for \optimal optimisation" is developed in section 3 for asomewhat restricted case. The N -armed bandit problem is used in section4 to show that this formula expresses the exploration/exploitation tradeo�.Discussion and conclusions follow in section 5.2 Optimisation as a control problemIn a maximisation problem, the maximum of a �xed function g is sought.The word \�xed" is used cautiously because g is not known in a sensewhich makes the implied `knowledge' of the solution x� = argmaxx g(x)particularly helpful. E�ectively, g is only partially known because thereis insu�cient time to exhaustively evaluate it, even though the knowledgeof how to do so is readily available. Only the partial knowledge is madeavailable to the system identi�cation task. Let this knowledge be called ktat time t. In general, kt will be a set of quantities computable from thepast data Dt def= [x1; y1; :::; xt; yt], where yt = (rt; h(xt)) with rt = g(xt). Forexample, if past data is never discarded, as in Tabu search [7, 8], then kt canbe the data itself. The dimension of kt would increase with t in this case.Another possibility is to choose a �xed-dimension form for kt which can beupdated using a function K of the formkt+1 = K(xt+1; yt+1; kt)(1)The search direction in the conjugate gradient algorithm constitutes knowl-edge of this type. Another example is a sample mean or sample varianceof the data, together with the time t itself. Whether the relationship isof the form (1) or otherwise, the function relating kt to Dt will be calledkt = K(Dt), with the speci�c meaning of K being clear from the context.In general, a controller � provides a distribution P (xt+1jkt; �) fromwhichthe next argument is selected. This paper will focus on controllers whichutilise all past data (or a su�cient statistic [5] of this data) to arrive at an op-timal policy which is therefore deterministic [2, 10]. In this case P (xt+1jkt; �)is a singular distribution. The more general case will be discussed briey insection 5.Bayesian probability theory provides the essentially unique logically con-sistent way to quantify uncertainty [4, 11] and and \reasonably good deci-sion rules" are Bayesian decision rules [5, 3]. Therefore it is best to describethe partial knowledge of the environment g with a probability distributionP (gjkt; �), the probability that the function is g given that knowledge kt3



was acquired using controller �. Of course, this is not meant to suggestthat g is produced by a random process, even though that is one way tointerpret a probability distribution. Here P (gjkt; �) expresses only our ig-norance of a de�nite deterministic or stochasitc2 function g. (Whether g isknown; ie., P (gj � � �) is singular, is independent of whether g is determinisitc;ie., P (rtjg; � � �) is singular.) The distribution conditioned on no knowledge,P (g), describes the class of functions to which the method is to be applied.Then with P (gj�) = P (g) and P (ktj�) = Rg P (ktjg; �)P (gj�), Bayes' rulespeci�es P (gjkt; �) asP (gjkt; �) = P (ktjg; �)P (g)=P (ktj�):(2) If the controller � and the function g are both deterministic, then theycompletely determine the data Dt which in turn determines the knowledgekt. Then formally, at least, there is a function Dt(g; �), in terms of whichP (ktjg; �) = �(kt �K(Dt(g; �))) in terms of the Dirac delta distribution.Other distributions conditioned on the knowledge can be de�ned in termsof P (gjkt; �), such as the probability that the next function evaluation willbe rt+1 if the next argument supplied is xt+1:P (rt+1jxt+1; kt; �) = Zg P (rt+1jxt+1; g)P (gjkt; �):(3)Here the fact that kt and � contribute no more knowledge than g jus-ti�es using P (rt+1jxt+1; g; kt:�) = P (rt+1jxt+1; g), and the irrelevance ofxt+1 to knowing g justi�es P (gjxt+1; kt; �) = P (gjkt; �). The distributionP (rt+1jxt+1; g) can have any form if g is stochastic. It is a singular distri-bution P (rt+1jxt+1; g) = �(rt+1 � g(xt+1)) if g is deterministic.A sensible reward in a maximisation problem is R = maxt rt wherert = g(xt). If knowledge of the best sample seen so far is retained, then avery similar reward is R = rT , where T is the maximum number of timesteps allowed, because the controller can simply re-select this rememberedpoint at the �nal time step.If the reward were known as a function R(xt+1) of the argument to beselected at time t + 1, then the optimal policy would be simply to choosext+1 to maximise R. The knowledge kt su�ces only to specify a distributionover rewards P (Rjxt+1; kt; �), but this can be used to de�ne the expectationvalue hRjxt+1; kt; �i = RRRP (Rjxt+1; kt; �). The function g can always betransformed to a utility function for which the expectation value expressesessentially arbitrary preferences about the distribution [19]. Let us restrictattention to the controller which always chooses the best sample xt+1 accord-ing to this expectation value, in which case the dependence on the controller2Here we consider only stochastic functions which can be decomposed as a deterministicfunction added to a stationary independent random process. Technically, a subscript tshould be appended to g to represent that the random process produces a di�erent outputat each time step, but this formality will be ignored.4



� in every expression does not need to be explicitly noted. Let us furtherrestrict attention to the reward R = rT , so the control policy is to choosext+1 to maximize hrT jxt+1; kti. A formula for this expectation value is de-rived in the following section for the case of retaining all past data, kt = Dt.A slightly more complicated formula can be obtained for the general case.3 Expected reward given all past dataIf the �rst t function evaluations Dt are known, an expression is required forhrT jxt+1; Dti in terms of information available at time t, in order to make anoptimal choice for the next argument to select, xt+1 = argmaxxt hrT jxt+1; Dti.Such an expression can be obtained by working backwards from time T � 1to time t.At time T , given knowledge of DT�1, one would choose xT to maximizehrT jxT ; DT�1i = ZrT rTP (rT jxT ; DT�1):(4)This choice de�nes a function �T (DT�1).Not all of the data DT�1 is known at time t < T . At time T � 1, thebest one can do is to choose xT�1 to maximize hrT jxT�1; DT�2i, which canbe writtenhrT jxT�1; DT�2i = ZrT�1 hrT jxT�1; rT�1; DT�2iP (rT�1jxT�1; DT�2):(5)The expectation value in the integrand can be written as hrT jDT�1i, orhrT jDT�1i = ZxT hrT jxT ; DT�1iP (xT jDT�1):(6)Having established that the controller will select xT = �T (DT�1), the distri-bution P (xT jDT�1) is seen to be a Dirac delta distribution P (xT jDT�1) =�(xT � �T (DT�1)), sohrT jxT�1; DT�2i= ZrT�1 ZxT hrT jxT ; DT�1i �(xT � �T (DT�1))P (rT�1jxT�1; DT�2)= ZrT�1 hrT jxT = �T (DT�1); DT�1iP (rT�1jxT�1; DT�2):(7) Continuing in this manner, the distributions over the arguments andrewards combine in a Markovian fashon to givehrT jxt; Dt�1i = Zrt ::: ZrT�1 hrT jxT = �T (DT�1); DT�1iT�1Y�=t+1P (r� jx� = �� (D��1); D��1) P (rtjxt; Dt�1)(8) 5



for any t < T . Maximizing this expectation value with respect to xt de�nes�t(Dt�1), given that �� is already de�ned for � > t.This expression gives the optimal sampling strategy for maximising thefunction. It involves an expected �nal reward hrT jxT ; DT�1i conditioned ondata DT�1, not all of which is available at time t. Di�erent values for theunavailable data would have di�erent implications for the expected reward,so an average is taken, weighted by the probabilities as known at time t. Thisaverage will be driven up if data is found which has higher rt values thanthe current hrT i, but the probability of such data turning up may be low.This is the exploration/exploitation trade-o�, and expression (8) gives it aquantatative form with each value of the integrand representing a di�erentfuture scenario.4 Illustration: An N-armed banditAn \N -armed bandit" gives a simple illustration of the exploration/exploitationtrade-o� problem. The function g is a stochastic function of 1 N-valued vari-able x. The value g(x) is given by a Gaussian distribution with mean �xand unit variance. This is a very simple example of a function which can-not be entirely determined by a �nite amount of data. In this case this isbecause the function is stochastic, but similar conclusions can be expectedif the source of the uncertainty is incomplete knowledge of a deterministicfunction.There has been a large body of work on the N -armed bandit [21, 14,12, 18, 1] with the objective of maximizing a possibly discounted sum offunction values Pt trt, with 0 <  � 1. However, the objective of interesthere is quite di�erent, to maximise rT for some given �nal time T . Puttingall the weight on the last time step can be accomplished by taking  !1,so it might be interesting to attempt to examine this case by conventionalmethods in order to make contact with the results below. We shall leave thisaside, because the main point of the exercise is not to improve on banditmethodology but to illustrate that equation (8) does indeed quantify theexploration/exploitation tradeo�.Let the prior distribution of �i be a GaussianN(ai0; 1=ni0), whereN(�; �2)denotes the Gaussian distribution with mean � and variance �2. Let ait =h�ijDti and nit = ni0 +# f� � t : x� = ig, with the notation #A meaningthe number of elements in set A. These are su�cient statistics for �i. Thenthe posterior P (�ijDt) is N(ait; 1=nit).For the �nal step T ,hrT jxT = i; DT�1i = ai;T�1;(9)so the optimal policy is�T (DT�1) = argmaxi fai;T�1g ;(10) 6



with hrT j�T (DT�1); DT�1i = maxi fai;T�1g :(11)Now consider step T � 1. It holds thathrT jxT�1; DT�2i= ZrT�1 hrT jxT = �T (DT�1); DT�1iP (rT�1jxT�1; DT�2)= ZrT�1 maxi fai;T�1gP (rT�1jxT�1; DT�2):(12)In the rest of this section, except where explicitly noted, we shall onlyconsider distributions conditional on DT�2 and xT�1 = k, so to simplify thenotation, we shall make these two conditions implicit. With these conditionsin mind, it can be shown from the updating rule for ak;t thataj;T�1 � 8><>: N  ak;T�2; 1nk;T�2(nk;T�2 + 1)! ; j = k;N (ak;T�2; 0) ; j 6= k:(13)Let a(i)T�2 denote the quantities fai;T�2 : 8ig, sorted in decreasing order,with k(i)T�2 denoting the original index of the ith sorted quantity. That is,a(1)T�2 is the maximum, which is identical with ak(1)T�2 ;T�2. 3 It then followseasily that maxi fai;T�1g = 8<: maxnak;T�1; a(1)T�2o ; k 6= k(1)T�2;maxnak;T�1; a(2)T�2o ; k = k(1)T�2:(14)It is then straightforward to derive from that (13) and (14) thathrT jxT�1 = k;DT�2i = 8>>>><>>>>: f  a(1)T�2; ak;T�2; 1nk;T�2(nk;T�2 + 1)! ; k 6= k(1)T�2;f  a(2)T�2; ak;T�2; 1nk;T�2(nk;T�2 + 1)! ; k = k(1)T�2;(15)where f(a; b; �2) is de�ned as hmax fx; bgi with x � N(a; �2), and is givenexplicitly asf(a; b; �2) = a+ b2 + b� a2 erf �b� ap2� �+ �p2� exp �(b� a)22�2 ! :(16)3We ignore the zero probability cases where a(i)T�2 = a(i+1)T�2 , which can be made todisappear by an in�nitely small perturbation.7



The optimal policy at step T � 1 isxT�1 = �T�1(DT�2) = argmaxk hrT jxT�1 = k;DT�2i :(17)This favours those k such that ak;T�2 is large or nk;T�2 is small. Intuitively,this means that the optimal strategy is to choose the state which is mostunder-tested for its worth.Note that by f(a; b; �2) = f(b; a; �2) it can be easily veri�ed thatDrT jxT�1 = k(1)T�2; DT�2E = DrT jxT�1 = k(2)T�2; DT�2E(18)whenever n(1)T�2 = n(2)T�2. Therefore for the two-armed bandit problem, forN = 2, the only factor a�ecting �T�1(DT�2) is n(1)T�2 � n(2)T�2; the optimalpolicy is simply to choose the less tested state with out any regard to theexpected rewards of both states.Figure 1 shows a contour plot of hrT jxT�1 = k;DT�2i as a function ofak;T�2 and nk;T�2 for particular values of a(1)T�2 and a(2)T�2. Other values givequalitatively similar plots. Given DT�2, the N possible choices of xT�1 = kwill produce N points on this plot, and the one on the highest contour(toward the lower right) should be selected for the next evaluation. Pointslying on the same contour are equally good choices. Therefore the contoursshow precisely how the need for exploration (low n) is balanced with theneed for exploitation (high a).5 ConclusionsAn approach to optimisation has been introduced based on a precise formula-tion of what is required, ideally, of an optimisation method. It is convenientto express this in terms of the control of a stationary environment. Thisleads to an objective function for the controller which uni�es the objectivesof exploration and exploitation into a single objective, thereby providing aquantitative principle for managing this trade-o�. We are not aware of anyprevious attempts of this nature, although there has been extensive researchinto objective functions for exploration [15], and many techniques for man-aging the exploration/exploitation tradeo� have been invented [20, 16]. Oneof our current research directions is to place some of these methods into thegeneral context.Here we have set out only the �rst steps of this approach, and demon-strated that it does indeed yield a quantitative expression of the explo-ration/exploitation trade-o� in a simple case. It is also clear that in generalit will not be practical to use the exact formalism; instead it must serve as abasis for approximations. Even though severe approximations may be nec-essary to make the problems of computing and optimising the controller'sobjective function less di�cult than the original problem, we feel that this8
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Figure 1: Contour plot of hrT jxT�1 = k;DT�2i as a function of ak;T�2 andnk;T�2 for a(1)T�2 = :1 and a(2)T�2 = :09.basis for approximation is in a deep sense correct, and therefore a betterstarting point than any ad hoc method.Only the case in which the controller has access to all past data, or asu�cient statistic of this data, has been investigated in any detail here. Weare currently developing the more general case, which is of greater practicalinterest. In particular, it would be interesting to use a neural network for thecontroller, or an adaptive generalisation of the conjugate gradient method,or an adaptive genetic algorithm. All these methods employ a �nite numberof parameters, and must therefore lose track of information about past data.Without a su�cient statistic, the argument used in section 2 to concludethat the optimal controller is deterministic does not hold, so it is of interestto determine whether a stochastic method turns out to be optimal in somecases, exactly or as a good approximation. In particular, it would be of greatinterest to be able to evaluate simulated annealing [13] in this framework.6 AcknowledgementThis work was partly supported by EPSRC grant GR/J17814.References[1] V. Anantharam, P. P. Varaiya, and J. C. Walrand. Asymptotically9
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