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Supply chain formation is the process by which a set of produeihin a network determine the subset of
these producers able to form a chain to supply goods to one i@ ecoasumers at the lowest cost. This problem has
been tackled in a number of ways, including auctions, negiotis, and argumentation-based approaches. In this
paper we show how this problem can be cast as an optimizatiarpafrwise cost function. Optimizing this class
of energy functions is NP-hard (Boykat al., 2001) but efficient approximations to the global minimum can be
obtained using loopy belief propagation (LBP). Here we itlatmax-sum LBP-based approach to the supply chain
formation problem, involving decentralized message-padsatgreen supply chain participants. Our approach is
evaluated against a well-known decentralized doublei@untethod and an optimal centralized technique, showing
several improvements on the auction method: it obtains bedtatiens for most network instances which allow
for competitive equilibriurii while also optimally solving problems where no competitiveitiopium exists, for
which the double-auction method frequently produces inefficsolutions.
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1. INTRODUCTION

As the drive for efficiency and adaptability becomes an increasing focusdustry,
together with rising levels of uncertainty about market conditions, the abilityutokty
form effective, mutually beneficial trading partnerships becomes istrglg important.
Although the concept of virtual enterprises - ad-hoc coalitions of baseseformed to pool
resources and create synergies in order to respond to emergergdsuspportunities - may
have yet to reach the level of popularity its proponents had hoped &pyihciples of such
arrangements, along with outsourcing, remain integral to the businessspescof many
organizations (Nachirat al., 2007).

Traditional non-computational approaches to supply chain formation effeciant pro-
cesses, with time wasted on contract tendering and negotiations. Time gusstral human
irrationality may lead to the establishment of inefficient supply chains, a protiiat could
be mitigated or avoided with the use of computational techniques. Indeddteimiques
have already proven their worth in a commercial setting, with combinatorial nitrititzte
sourcing auctions having produced over $5 billion (Sandholm, 200&adfworld savings
to businesses.

Agent-based computational approaches to supply chain formation maeetipbsup-
ply chain participants - businesses capable of forming a link in the yet-tmimpleted
chain - as boundedly-rational self-interested computational agentse Huyents deliberate
between themselves, typically either through negotiations or auctions, gi@stibset of
agents capable of forming the most efficient supply chain. At the condwdithese de-

T Competitive equilibrium in Walsh and Wellman (2003) is a seprafducer costs which permits a Pareto optimal state in
which agents in the allocation receive non-negative ssrahd agents not in the allocation would acquire non-pesstivrplus
by participating in the supply chain.
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liberations, which are typically completed in a fraction of the time required of theuala
approach, the supply chain is formed instantly.

Agent-based approaches to SCF may either be centralized or decedtr@kzdralized
approaches typically make use of combinatorial auctions to determine allagatibth the
NP-hard winner determination problem usually being solved by using inpeggramming.
The use of integer programming implies complete knowledge of the bids of allsggeean-
ing that it relies on an assumption of centralization which may not alwaysprésthe real
world. redCentralized approaches also encounter problems with scalability whendafmplie
larger problem instances. Decentralized approaches to the SCF prolaleeronly minimal
assumptions about the participating agents, giving them a wide range lafadyiliy, but
present a difficult problem in determining the optimal allocation, given thahigonly
possess local information about the structure of the network and théilktgs of other
agents.

We suggest that LBP is a useful technique for the supply chain formatadrigm for a
number of reasons. The algorithm is distributed, meaning that the scalabiligsigsesent
in integer programming-based approaches, such as combinatorial auatidriMDPs, are
avoided. LBP is also decentralized, with participants acting only on the bakisal in-
formation. This presents an advantage over other techniques foricabiptierence such as
graph cuts or the junction tree algorithm, which require significant modificatiorand
thus complete knowledge of the structure of the underlying network. Bydiangp such
modifications, LBP also allows for the preservation of the trading relatioagbriiginally
presentin the graph - an agent passes messages only to the buyssbersaf its associated
goods. Finally, LBP allows agents to assign reserve prices to their go@isn@nner no
different to the way such values would be held by participants in a onersaiket-based
protocol, and to share these values only with relevant participants. Pinegerties mean
that the economic self-interest of participating agents is preserved.

In this article, building on previous work in Winsper and Chli (2010), wepaise a max-
sum loopy belief propagation (LBP) based approach to decentralipptysthain formation
which is capable of producing efficient results over a range of netwepddogies. With our
use of LBP, we are frequently able to produce results comparable tofthatentralized
approach while working in a distributed and decentralized manner. Thef tisis message
passing-based technique also allows us to take full advantage of th@aagegtructure of
our networks.

In section 2, we provide details of previous models of decentralized soppiy forma-
tion, and explain why LBP is a useful approach for supply chain formatioen networks
are represented graphically. In section 3, we provide details of our modpired by work
previously conducted in Walsh and Wellman (2003), and provide the defaiisvo we
applied the LBP algorithm to the decentralized supply chain formation probleatio& 4
describes our experimental procedure, while section 5 shows oltisrard compares them
to the results obtained by Walsh and Wellman (2003) and the optimal centralizeddne
Section 6 provides some conclusions about our work, while section 7 igsnéifeas of
related future research.

2. BACKGROUND

2.1. Supply Chain Formation

Multi-agent systems enable us to model a number of properties charactefistioply
chains, including uncertainty, decentralized decision making by self-gtesteagents and
the process of self-organization by participants. It is no surprise, thanapplication of the
agent-based paradigm to several aspects of supply chains haswmegoang focus of multi-
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agent systems research for several years, particularly in supply clzaagement (Pardoe
and Stone, 2006; Wellmaet al, 2003), most notably the TAC SCM game (Colliesal.,
2006), and in the area of supply chain formation (Walsh and Wellman, 1988)majority
of the literature on decentralized supply chain formation and related workea&lassified
into one of two broad areas: research which focuses on the usedaifateam-based methods
as a means for determining allocations, and studies which model the supasteaseries
of auctions.

Distributed negotiation is an approach which is well-suited to the modeling oflysupp
chain formation: each individual procurement and sale decision by @aticipant in the
supply chain can be modelled as a multi-party negotiation, with bids or offersiatio
participants to express their capabilities and preferences to potentiargepartners. The
Contract Net protocol (Davis and Smith, 1983), a technique for distilqoteblem-solving
based on task decomposition and negotiation, formed the basis of manybagedtmodels
of distributed negotiation. While the usefulness of the standard Contragprigcol to
supply chain formation is limited by its myopic, greedy approach and subseunadility
to deal with resource contention, a number of other negotiation-baseasabes have been
applied to the supply chain formation problem. Waetgal. (2006) uses argumentation-
based negotiation for decision making in supply chain formation, while Kim drw(2010)
proposes a heuristic-based agent negotiation method for supply chaiation. The results
of Kim and Cho (2010) suggest that their negotiation method is capabledfiping reli-
ably near-optimal allocations in their scenario, outperforming branchsandd search. One
common limiting factor present in negotiation-based approaches to supptyfolaation,
shared by both Wanet al.(2006) and Kim and Cho (2010), is a reliance upon dedicated “me-
diator” agents in order to facilitate allocations through preference arabdayp elicitation
and aggregation. The use of these mediator agents implies an assumptioitralizzion
which precludes the application of these methods in areas where this assuismiptibvalid.

The other main approach to supply chain formation involves modeling the scipaiy
as a network of auctions, with first and second-price sealed bid augdtionisle auctions and
combinatorial auctions among the most frequently-used methods. Supplyfohagtion
through auctions is a popular approach for a number of reasons: raiatie frequently used
in real-world tendering and sales situations, many auctions possess arrafrifieresting
game-theoretic properties such as incentive compatibility and individuahedityy and
auctions are often able to form satisficing solutions to the supply chain fomaioilem.

Perhaps the most comprehensive series of studies on supply chainidoroging auc-
tions comes from Walsét al, who examine the efficiency of supply chains formed using si-
multaneous double auctions (Walsh and Wellman, 2003), one-shot dogkilensBabaioff
and Walsh, 2003) and combinatorial auctions (Waisal., 2000).

In Walsh and Wellman (2003), the authors propose a market protocol wdthnig
restrictions referred to as SAMP-SB, which uses a series of simultamsgesding dou-
ble auctions. SAMP-SB was shown to be capable of producing highhesailocations -
solutions which maximize the difference between the costs of participatingigeosiand
the values obtained by participating consumers - over several netwadtwses, although
it frequently struggled on networks where competitive equilibria did nott.eXlse authors
also proposed a similar protocol with the provision for decommitment in ordentedy the
inefficiencies caused by “dead ends”, solutions in which one or morupess acquire an
incomplete set of complementary input goods and are unable to produceubmit good,
leading to negative utility. This use of a post-allocation decommitment stage oamized
as an imperfect approach, however, due to the possible problemsdcbyatendering the
results of auctions as non-binding.

Babaioff and Walsh (2003) proposes a one-shot double auction msohareferred
to as Trade Reduction auctions, based upon existing work that sacpécest allocative
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efficiency in order to guarantee incentive compatibility, individual rationadityl budget

balance. The authors propose both a centralized and a distributed afgfoitbdetermining

allocations; however, their distributed algorithm relies on the use of medfatazach good,

communication between these mediators, and a central coordinator agesé fHttors

combine to indicate an assumption of centralization which, as mentioned earlienaha
always be valid.

In Walshet al.(2000), the authors use a combinatorial auction protocol on a sultbet of
networks in Walsh and Wellman (2003) to attempt to find allocations under straidding
behavior by agents. Combinatorial approaches to supply chain formatiothe advantage
of being able to avoid the problem of dead ends in the presence of inpytiementarities
by allowing agents to bid for bundles of goods. Due to the strategic biddihgvimmes
adopted by the agents in Walsh al. (2000), the results of the combinatorial protocol did
not represent a signficant improvement on the double auction protoitblthe quality of
the solutions found to be influenced in large part by the amount of availakéus in the
networks.

Recent work has seen the proposal of mixed multi-unit combinatorial asdfMiU-
CAs) for supply chain formation (Cerquides al, 2007), with the standard combinatorial
model of bids being placed for bundles of goods replaced by negotiati@nstransforma-
tions”, essentially commitments by bidders to produce a set of output goeeis giset of
input goods. There exist several approaches to solving the NPwiamr determination
problem associated with MMUCASs, and the quality of the solutions produgethdse
techniques tends to depend on the characteristics of the network beird) (@sens and
Endriss, 2008). Although all existing MMUCA solvers rely on integer pamgming and thus
may face difficulties with scalability, work by Giovannuaat al. (2008) has improved the
applicability of MMUCAS to larger supply chain formation problems by propgsin integer
program mapping which improves the computational efficiency of the wingterchination
problem (WDP) calculation by taking advantage of the structural progestithe network.
Finding a local, decentralized solver for MMUCASs remains an ongoing @ressearch.

Although auctions and negotiations are by far the most commonly-employeddaels
in agent-based approaches to the supply chain formation problem, LBfebasised as a
method for task allocation for several years in the related area of agsatiwecentralized
coordination (Crick and Pfeffer, 2003; Voieg al., 2010). Winsper and Chli (2010) recently
applied an LBP-based approach to the supply chain formation problemgribigh the
passing of messages in LBP is comparable to the placing of bids in standdiachsbased
approaches. The results presented in this paper suggest that LBRdecaf consistently
optimal allocations over a range of network structures. The decentraizeédlistributed
nature of LBP also allows for the avoidance of the scalability issues graseantralized
approaches such as combinatorial auctions. In this article we provideadtdetail on this
promising approach to the supply chain formation problem, and preseitioadtresults
which serve to further illustrate the advantages of this approach.

2.2. Probabilistic Graphical Models

Probabilistic graphical models are a means for encoding probability distnitsubicer a
set of variables using graphs (MacKay, 2003). Graphical models mairected or undi-
rected. Directed graphical models, known as Bayesian networks {Bisesent qualitative
dependence between variables - an arc from ridol@ode; indicates that causeg, as well
guantitative statistical dependence - an arc between nodes also codsdp a conditional
probability of the state of a child node given its parents):;|z;) represents the probability
of z; givenz;. Undirected graphical models - Markov Random Fields (MRFs) - arkilse
for representing symmetric dependencies between variables. In MRirsBals, adjacency
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(through an undirected edge) of nodes indicates dependence, whigs mdiich are not
directly connected are strictly independent. LBP is easily applicable asfat@gproximate
inference in both BNs and MRFs.

Though the task dependency networks of Walsh and Wellman (2003)edentte base
representation of our supply chain networks do not encode depemdanthis case, an arc
from i to j now meang is able to supply a good whichis able to consume, rather than any
notion of causality - they are easily convertible into a form structurally identic&RFs
when explicit representation of goods is removed. We are able to usedtiegtion costs
of producer agents and consumption values of consumer agents agussdior evidence at
each node, and encode a simple series of compatibility constraints as paimstifenctions.
From this point, with what is essentially a pairwise MRF with evidence at eadf, wee are
able to use LBP as a means for finding the optimal allocations in our networks.

2.3. Loopy Belief Propagation

LBP is a decentralized and distributed approximate inference scheme inythérap-
plication of Pearl’s belief propagation algorithm (Pearl, 1988) to graphiodels containing
cycles. It uses iterative stages of message passing as a means for egtthmtimarginal
probabilities of nodes being in given states: at each iteration, each nalde gnaph sends
a message to each of its neighbors giving an estimation of the sender's laimit the
likelihoods of the recipient being in each of its possible states. Nodes thaatauheir
beliefs about their own states based upon the content of these messadjéise cycle of
message passing and belief update continues until the beliefs of eachetmiee stable.

The most commonly used version of LBP, the sum-product algorithm, is usstinaate
marginal probabilities at individual nodes. Because we are interestattingi the optimal
state configuration of the network as a whole rather than the most likely statg ohe node,
we use a well-known variant of LBP, the max-sum algorithm, to estimate the maxanum
posteriori (MAP) assignment of our supply chain networks.

While LBP is known to converge to exact results in a finite number of iterations o
tree-structured graphs, there is no such guarantee for more loguysgiend if convergence
is reached, the solution will be an approximation, unless the graph contains single
loop (Weiss, 2000). Recent work (Vinyads al., 2010) has established worst-case bounds
on the quality of solutions produced by max-sum LBP, although thesemfeasahold only
when all unary and pairwise potentials are non-negative, which is noafein our model.
Despite these limitations, LBP has seen great success in a number ofrackeaing Turbo
Codes (McEliecest al, 1998) and Low Density Parity Check codes (Frey and MacKay,
1998), stereo vision (Felzenszwalb and Huttenlocher, 2004), as svielithe related field of
communication in sensor networks (Crick and Pfeffer, 2003; Farieedll., 2008).

Max-sum LBP is well-suited as a means for allocation determination in supply cha
formation for a number of reasons. First, as mentioned earlier, the formaltsoduced
in Walsh and Wellman (2003) for the representation of supply chains asiggsndency
networks - bipartite directed acyclic graphs with nodes representingipeos, consumers
and goods linked by edges representing potential flows of goods, dbowasy conversion
into pairwise MRFs suitable for inference once explicit representationadgin the graphs
is removed. Replacing the process of bidding in auctions with message gpassimeen
agents allows participants to share their beliefs about the optimal structtine stipply
chain without revealing any more private cost information than they wouldhim@en
auction. LBP operates in a decentralized and distributed manner, preperpertant for
the realistic representation of separate self-interested business entitadly, EBP is able
to quickly and reliably produce exact results (in our case, this cornelsptm a result with
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optimal efficiency) in tree-structured and single-cycle networks while dtéinobeing able
to produce good approximations of the optimal in more loopy networks.

3. MODEL

The base representation of our supply chain networks is as task aggntetworks in
the form of bipartite directed acyclic graphs. An example of this repreentis given in
Figure 1. There are two types of node: individual producers anduwuoars, which are rep-
resented by rectangles in our network diagrams, and goods repigbgriicles. Directed
edges indicate potential flows of goods. An edge leading from a prottuaegood indicates
that the producer is capable of producing the good, while an edge lelidinga good to
a producer or consumer means that the producer or consumer is ablestor@the good.
Consumers, as their name suggests, cannot produce goods.

P1 —»(1)—>{ P3

0.362 0.535

C1
1.216

P2 »(2)—>| P4
0.619 0.854

FIGURE 1: A sample supply chain network - Simple - from Walsh and Wellman (2003).
Producers (P1, P2, P3, P4) and consumers (C1) are represgnictdngles, while goods
are represented by circles. Edges between vertices indicate potemtmlbofigoods. Num-
bers below producers represent production costs, while numbems befsumers indicate
consumption values.

This representation, first proposed in Walsh and Wellman (2003), allowthé clear
statement of network structures while retaining fidelity to the structure ofwedt supply
chains. For example, in Figure 1, we see that producer P1 is able toggrgdod 1 at a cost
of 0.36, which producer P3 needs to consume in order to produce g@igost of 0.53
plus the cost of acquiring good 1, for consumer C1. Similarly, produ2és Bble to produce
good 2, for possible consumption by producer P4, which is also able physcgnsumer C1
with good 3. If both producers P3 and P4 are able to acquire their singlegopd, C1 must
make a choice about which producer to purchase from. Ideally it will ehdloe producer
able to supply the good at the lowest accumulated cost, in this example P3gl€4dvimith
a final positive consumption value ©f216 — (0.362 + 0.535) = 0.319. In line with Walsh
and Wellman (2003), goods represent a single unit of a commodity whichislintsible,
and equivalent in all aspects other than price; for reasons of simpligitglanty, we do not
attempt to model aspects such quality, multi-unit transactions or deliveryraonts in this
article, although this representation subsumes the multi-unit case.

3.1. Agents

Our supply chain networks are made up of multiple interlinked producers aitning
supply a good or goods to one or more consumers.
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3.1.1. Producers. Producers are capable of producing a single unit of a single type of

output good, and to do so are required to have obtained a single unitlofoéshe goods
in their set of input goods, which may be zero, one, or many. This singterestriction
is made to allow for comparison with Walsh and Wellman (2003); our repregmnta
readily generalizable to the multi-unit case. Producers which do not eegay inputs to
produce their output good are known as no-input producers, andtfee initial echelon of
the supply chain. In the case of a producer requiring multiple inputs, wetethe goods as
complementary - a producer is unable to produce its output good if it is ofgyt@alcquire
a subset of its required input goods. Producers assign a reséceelprto their output
good, which is a producer-specific constant encoding the cost dipiog the good plus an
additional fixed profit margin.

3.1.2. Consumers. Consumers require a single unit of a single good from their set of

consumable goods. In each network, each consumer is assigned amtatimption value
V.. this is the personal valuation the consumer holds for obtaining one of isunwble
goods.

3.2. Conversion to MRF form

To convert the task dependency networks given in Walsh and Wellm@&3) 2tto pair-
wise MRF form, two simple modifications must be made: First, the explicit reptatsam
of goods is removed from the network. Where edges previously linkexfjant to a good
or a good to an agent, edges now link agents directly, though they peebernotion of an
edge between agents meaning a potential route of exchange. Secommoye direction
from the edges in the graph. With the graph converted into pairwise MR, foe are now
in a position to define the states and costs required for the running of LBP.

P1 P3

C1

P2 P4

FIGURE 2: The Simple supply chain network converted into MRF form. Edges now link

agents directly, and are undirected.

3.3. States

Due to the fixed structure of the networks, for each agent there existisearfumber of
purchases and sales (if the agent is a producer) in which the agenblis, via. it acquires
all its input goods and sells its output good. We encode each of these afmeshange
relationships as states, with each state defining a list of suppliers and raifingeagent is
a producer, and a single supplier for consumers. For example, a pastsiteldor producer
P3 in Figure 1 is “Buy from P1 and sell to C1”. The number of states antggesesses
increases with the number of producers able to supply its input goodstha number of
producers or consumers able to consume its output good. As well as adistive states,
we also allow for the inactive state, where the agent does not acquireduge any goods.
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3.4. Cost Function

We allow for two distinct types of cost, denoted@$x,, ) , the unary cost for agentof
being in stater,, andg,,(z., z,) , the pairwise cost of connected agentandv being in
statesr,, andx,. Our method aims to minimize these costs and thus the cost function given
below:

€@, an) =D fol@) + D Guo(@u o) (1)

veV (u,v)eE

Wherex1, , zy is the set of agentd, (x,) is the unary cost of agentbeing in stater,,,
and g, (z,, z,) is the pairwise cost of linked agentsandv, being labeled with states,
andzx,. With all else equal, the lower the result of our cost function, the moreiegitithe
allocation. We use the efficiency of the allocation as a measure of the quadityad@ition.

3.4.1. Unary Cost. Each agent associates each of its states with a cost. These values
represent the cost to the value of Equation 1 were the agent to be absiijin¢hat state in
the allocation. For all agents, the cost of being in the inactive state is zer@réducers,
all active states incur a positive cost, equal to the reserve price of tldeiger in question.
Consumers assign a negative cost V. to all states in which they acquire a good, where
V. represents the consumer’'s consumption value, the value the consuriges assthe
acquisition of its consumable good.

3.4.2. Pairwise Cost. Pairwise costs encode the compatibility of two of the states of a
pair of neighboring agents. Two states are compatible if aggestate lists agentas a buyer
and the list of sellers ifj’s state includeg and vice versa, or if ageris state does not list
agentj as a buyer angl's state does not list ageihas a seller and vice versa, or if both states
are inactive states. If the states are compatible, the pairwise cost is eqeabtdf the two
states do not meet any of these conditions, they are incompatible, and thespaiost of
this combination of states is equal to positive infinity.

3.4.3. Example of States and CostsTo provide an example of our system of costs in
practice, we now show the set of states and the unary and pairwiseatoss {in Table 1)
in the Simple network, as shown in Figure 1. The Simple network is made up dfdcd se
four producers and a single consumer, as well as three potential frqa®duction. The
possible states of our agents are:

o Pl:ty,ts.

— t; = "“Inactive”. to = “Sell to P3".
o P2 uy,us.

— uy = “Inactive”. uy, = “Sell to P4".
e P3: vy, vs.

— v; = “Inactive”. v = “Buy from P1 and sell to C1".
o P4:wy,ws.

— w1 = “Inactive”. wy, = “Buy from P2 and sell to C1".
o C1:xq,x9,x3.

— x1 = “Inactive”. x5 = “Buy from P3". z3 = “Buy from P4".
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ProducerP1 does not require any inputs, and is only capable of selling to one agent -
producerP3 - meaning its sole active statetig, representing the state of not buying any
inputs, and selling ta?3. ConsumerC'1 has two valid active states: buying frof3 and
selling to no-one =5 - and buying fromP4 and selling to no-ones.

With our list of states complete, we now show the unary costs of the statesvénstates
incur a unary cost ofi, while active states depend upon the type of agent in question. For
producers, the unary cost is equal to the reserve price of the mouhguestion. Consumers
incur a unary cost di — V., whereV, is the consumption value of the consumer in question.
Thus, our unary costs are as follows:

PLl:fpi(t1) = 0. fpi(t2) = 0.362.

P2: fpa(u1) = 0. fpa(uz) = 0.619.

P3: fp3(vi) = 0. fps(va) = 0.535.

P4: fps(wi) = 0. fpa(w2) = 0.854.

Cl: for(z1) = 0. for(z2) = —1.216. feor(z3) = —1.216.

Finally, we show in Table 1 the pairwise costs associated ®&Im the Simple network:

Table 1: Pairwise costs betweéti and P3, andP3 and(C'1, in the Simple network.

Pairwise Costs

Pl < P3 P3+ C1
grsci(vi, 1) = gorps(xi,v1) =0
gpips(ti,v1) = gpspi(vi,t1) =0 grsc1(v1,22) = go1ps(xe, v1) = 00
gprip3(t1,v2) = gpapi(ve,t1) = 00 gp3sci(v1,x3) = goips(x3,v1) =0
gpip3(tz,v2) = gpsp1(v2,t2) =0 gpsc1(v2,T2) = go1p3(x2,v2) =0

gp3c1(v2,x3) = go1ps(3,v2) = 00
The next section introduces the details of max-sum LBP, the technique weyetop
minimize our cost function.

3.5. Supply Chain Formation using max-sum LBP

The value of an agent’s belief about one of its states represents thisdgief about
the cost to the efficiency of the network as a whole were it to be assignestdbe, given the
content of the messages it has received. Accordingly, LBP beginsgtiafizing the beliefs
of each agent about each of their possible states to zero. Each agempttses a message
containing a vector of belief values to each of its neighbors in the netwarke @ll agents
have passed a message to each of their neighbors, each agent itpdtiesfs based upon
the content of the messages it received. This process of messagey@ass belief update
continues until the beliefs of our agents about the MAP assignment of themebecome
stable, at which point we determine the final state of each agent andrpeffe allocation.

3.5.1. Belief Update. For each of agent’s possible states, we use equation 2 to calcu-
late u’s belief in that state. At initialization, each agent holds a belief of zero abach of
its states.

WEN,,

bel,(x,) denotes agent’s belief in its stater,,. This belief is made up of two parts: first
is the unary cosf,,(x,) to w incurred by being in state,. This is added to the sum of the
beliefs about state,, contained within the messages,_,,(z,,) received fromu’s set of
neighborsw € N,.
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3.5.2. Messages. At each step of LBP, each agent in the network passes a message to
each of its neighbors, consisting of a vector of values representingitiess beliefs about
each of the recipient’s states. This involves sendeomparing the compatibility of each
individual statex,, from its own set of states with each individual statefrom recipient
v's set of states, taking into accoumt belief about its own state,,, as well as the belief
value about state, contained within the message passed froio u in the previous step.
Messages can therefore be interpreted as encoding both a compatibilitgroemgthrough
the pairwise cost) and a cost component (through the encoding ofaasindone’s current
beliefs, if the states are compatible).

mu—)v(l‘v) = mina:u (belu (J:u) — My—uy (xu) + Guov (xua -Tv)) (3)

Equation 3 shows the process of calculating a message to be passedyérom o
agentv. bel, (z,,) corresponds to agents belief in its own stater,,. We subtract from this
the belief passed from to v about stater,, in the previous round of messages, represented
asmy—(x,,). Finally, we add the pairwise cost incurred by agenendwv being in states
x, andzx,. We repeat this process for each of ageist possible states, comparing them
in turn to agenw’s statex,. Once the set of possible costs for stajedependent on’s
set of states have been determined, we take the minimum of these valuesdahtbatie
vector of beliefs to be passed from aganb agentv. This process is repeated for each of
v's possible states, resulting in a final vector of values to be passeduftorn. Before we
perform allocation, we determine the “final state” of each agent - the statenvergence,
in which the agent believes holds the lowest cost.

3.6. Convergence

We make use of a convergence detector agent, as recommended in Vhiskelanan
(2003) for scenarios with multiple agents in initially non-quiescent states,hwdoatrols
termination but is otherwise uninvolved in the workings of the algorithm, pvesgithe
distributedness of our approach.

Once the LBP algorithm has begun, each agent reports to the convemdgtector agent
at each iteration specifying whether the state in which they believe holds tlesti@ost
has changed since the previous iteration. If the current number of ilesas@reater than
the size of the spanning tree - as explained in the following paragraphd albagents
reported that their lowest-cost state has remained the same as the prevaiimitéhen the
convergence detector agent halts the algorithm, and allocation is perfofimegrocess of
allocation is outlined in Section 3.7.

As mentioned in Section 2.3, LBP is known to converge on tree-structuegghgiin a
number of iterations equal to the diameter of the graph (Musdtal,, 1997). Although not
all of our networks are trees, we take this value as the earliest numberatiotes at which
it can be said that LBP has converged. In the absence of an efficistiputed and fully
general technique for finding an exact value for the graph diametegr{idaet al., 2009),
we use distributed depth-first search to find a spanning tree of the,gragldetermine the
diameter of the spanning tree using distributed breadth first search id@evupper bound
for the value of the actual diameter of the graph (Magrtal., 2009).

The distributed depth-first search algorithm proceeds as follows: ingtelization of
the network, the convergence detector agent designates a randoinasiges root node. This
agent then randomly picks a neighboring agent and adds it to the cangjmateing tree.
The updated candidate spanning tree is sent to the chosen agent, agdnhiten randomly
chooses one of its own neighbours which is not part of the candidatmisigtree. It then
updates the tree and passes control to the chosen agent, with the pmuéessng until the
chosen agent has no neighbors which are not currently part of tlgdedie spanning tree. In
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this situation, the active agent backtracks, passing control back to¢néagich originally
activated it. This agent then chooses another of its own neighbors whidt gart of the
candidate spanning tree. This process continues until control is plaaskedo the root node
and the root node has no unexplored edges.

With each node aware of who its neighbors are in the final spanning teeise a
series of distributed breadth first searches to find the diameter of thd treeonvergence
detector designates one agent randomly as the root node. This nadeas@essage to each
of its neighbors in the spanning tree informing them that they are one leas! ftam the
root. These agents then send a message to each of their neighborshicmnilvey have not
already received a message indicating that they are two levels from thamndaso on. Once
an agent has sent messages to each of its neighbours, it sends aentesdatp the agent
which activated it, indicating its current level. This value is passed badsatarough the
tree until it reaches the root node. The root node then sends the maxifithese values,
equal to the maximum shortest path between the root and any other nodesipati@ng
tree, to the convergence detector agent. The convergence detesrtbttan assigns another
agent as the root node, and the process is repeated until the shstaste between all
pairs of nodes - the diameter of the tree - is determined.

It is important to note that while the use of a convergence detector agemss®
shorten the running time of the algorithm, it is not required for the algorithm aduysre
solutions and thus does not represent a single point of failure. Werreslow two potential
alternatives to the use of a dedicated convergence detector ageitdtioas requiring full
decentralization.

A random agent present in the original network can perform the fumctithe conver-
gence detector agent if the use of such an agent is not permissible LBRdeas reached
a number of iterations equal to the diameter of the spanning tree, the ageresndia
distributed breadth-first search similar to that used to find the diameter gbdmaisg tree.
This time, agents send messages to their neighbors indicating whether tleeyehatied
convergence or not. These messages are propagated back to theCsmpenthe agent has
received a message indicating the convergence status of each nodeeétwbek - it is aware
of the identities of each agent, though not their costs or capabilities, thtbaglonstruction
of the spanning tree - then it either terminates the algorithm if all agents haverged, or
restarts it for a number of steps equal to the diameter of the spanning lreeleSignated
agent is not aware of the beliefs of its neighbours about their own statdghus has no
incentive to manipulate the calling of convergence.

In situations where neither of the above two techniques are practical, thrittagy can
instead be run for a pre-designated number of iterations. This requaethéhalgorithm is
run for a longer period of time than if convergence detection were usgdides not affect
the quality of solutions produced.

3.7. Allocation

Once the final states of each of the agents have been determined, werftamphe
process of allocation. For each of the agents in the network, we remges éehding to
other agents which are not listed in their final state if there are no othengecglconsumers
of that good; in the case of agents being in the inactive state, we remowvieladiioedges.
We then iterate through the agents once more, this time checking to see iftlggvessults
of the previous stage of allocation, each producer was able to acquihe glbods in its set
of input goods. If a producer is determined to have acquired an incongdéteve remove
their outgoing edges. At the conclusion of this process, producers witlitgoing edge are
regarded as having produced a good in the allocation, while consumeramititoming
edge have regarded as having acquired their consumable good in tlaiatoc
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3.8. Allocation Value

We determine the value of our allocations by the equation given below, whésehe
set of consumers to acquire a godd,is the consumption value obtained by each of those
consumersp is the set of producers in the allocation who produce a good,/gnig the
production cost of each produgerThis is equivalent to Equation 1.

Val=> Vo= > R, (4)

ceC peP

3.9. Payments

Once the allocation has been performed, each active producereagegpayment equal
to their reserve price plus the accumulated cost of their inputs from ther lmfytheir
output good. All active producers therefore recover their total aafspggoduction plus the
additional fixed margin encoded in the reserve prides allows producers to make a profit,
motivating participation by economically self-interested producicsive consumers may
acquire goods at a cost below their consumption value. In an allocation evfttelad ends”,
i.e. all producers in the allocation produce their output good, the sum dfiffezences
between the payments made by active consumers and their consumptionisageal to
the allocation value.
3.10. Alternative Approaches

There are, of course, other possible approaches to this problemilaswearket-based
approaches such as auctions and negotiations, fully centralized teebrsgoh as mixed
integer programming are capable of finding optimal allocations in fractionsseicand;
various global search algorithms would also be capable of finding optimabéibos. My-
opic techniques such as greedy search may generate optimal solutioesvanks without
resource contention, such as the Simple network. However, their inabilityotodbead
means they are unsuitable for networks where a decision to allocate & gg#rd to a
certain producer, such as good 4 being allocated to producer P6 in¢leeyeBad network
(see Figure 5), may lead to infeasible solutions. As mentioned in Sectionct,ggaphical
inference techniques such as graph cuts and junction trees are atsblg@adternatives;
however, the need for complete knowledge of the underlying networlatgsvthe useful-
ness of these techniques to decentralized applications, and such modificatiether they
involve clustering nodes or cutting edges, serve to destroy the traditignslaips (and thus
the logical paths for flows of information) originally present in the netwd®P is able
to deal with resource contention and produce efficient results whilsepriag the original
structure of the network, and operates in a distributed and decentralizedema

4. EXPERIMENTS

4.1. Network Structures

We test our LBP-based method over the full set of network structuoes Walsh and
Wellman (2003), one network from Wellman and Walsh (2000), and thrdiéi@ull net-
works of our own creation. These networks exhibit a variety of stratpmoperties intended
to show the performance of LBP under varying conditions. Upon initializatfoeach of
the networks, the reserve price of each producer is set to a decimal diwn from the
interval U (0, 1). These values are re-computed and changed after each run. Cdiosump
values, taken from Walsh and Wellman (2003), are fixed at the values ginderneath
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each consumer (C1, C2 and so on) in each of the following figures, emesy run. We
implemented our system in Java.

FIGURE 3: Simple network, from Walsh and Wellman (2003)

FIGURE 4: Two-Cons network, from Walsh and Wellman (2003)

FIGURE 5: Greedy-Bad network, from Walsh and Wellman (2003)
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FIGURE 9: Harder network, from Walsh and Wellman (1999)

The Simple network, shown in Figure 3, is a small three-tier network with tweiples
sources for the supply of C1l's consumable good, good 3. Two-Gihvwsyn in Figure 4,
introduces the issue of complementary goods - P4 needs both goods ltarpiddiuce
its output. Because of this, only one of the consumers in this network caatiséesl at
one time. The Greedy-Bad network, shown in Figure 5, introduces furtiaplementarity
issues. Producer P6 is a possible seller of one of Producer P7'gjiopds, good 5. However,
in order to produce good 5, P6 requires good 4, which is also one ofriptits. Because P7
is necessarily present in the single optimal solution to this network, it mustdmgy 5 from
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FIGURE 11: Four-tier Many-Alts network

P5, even if the price is more expensive than when bought from P6. €higrk serves to
show the weakness of greedy search-based techniques for shpplyf@rmation - although
P7 may be able to acquire good 5 more cheaply from P6, in doing so it setigerest of
the supply chain infeasible.

Figure 6 shows Unbalanced, a larger network with several instancesmflementarity.
The Many-Cons network, shown in Figure 7 is a larger tree-structuegdank in which
multiple consumers can be satisfied simultaneously. The Bigger network, ireFdgis a
large-scale network with many feasible solutions. Harder, shown in Fijoes be seen as
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FIGURE 12: Huge network

a much larger version of Greedy-Bad: despite the scale of this netwanle #xists only
one possible solution due to the presence of a number of complementaritethréb-tier
Many-Alts network, shown in Figure 10, models a scenario when theresexiarge number
of buyers and sellers of an identical good, similar to a commodities market.olingiér
Many-Alts network, in Figure 11, increases the complexity of the problemtogducing an
additional tier of producers. Producers in the second tier of this netarerkaced with 144
possible alternatives for sourcing and sales. Finally, the Huge netslookyn in Figure 12,
models a very large-scale supply chain, with six tiers of production and tdmesumers.

4.2. Performance Evaluation

To evaluate the performance of our method, we perform LBP on eaclorietwtil a
convergent state is reached, using the final state of each agent asithéobour allocations.
If convergence is not reached, i.e. the state which each believes heldsvist cost contin-
ues to oscillate, LBP continues to run for a maximum of 250 steps. We reardgstlt at the
end of these 250 steps as normal. We compare the value of our allocatiossoatithally
efficient value, determined using mixed integer programming, and to the re$ults re-
implementation of the auction protocols given in Walsh and Wellman (2003): SSBIP
and SAMP-SB-D.

SAMP-SB uses a series of double auctions, one per good, which rutiamously and
independently. Winner determination is performed according to the (Mpfixs rule, with
a single winning buyer with a bid at or above the (M+1)st price and a singieimg seller
with a bid at or below this price. Buyers and sellers bid place ascendingab@sding a
simple set of rules, with producers seeking to pay no more for their comisigteaf input
goods than they expect to receive from the sale of their output goodsuBwers aim to
acquire their single consumable good as cheaply as possible. Allocatioridened as for
LBP, as described in Section 3.7, with production costs of active prosltelking the place
of reserve prices in the allocation value calculation.

SAMP-SB-D is a modification of SAMP-SB which allows inactive producetBose
producers who do not produce an output good in the allocation - to decdromitontracts
to buy inputs for which they would pay a positive price, a situation refetoess a “dead
end”. In such a situation, decommitment means that the incoming edges otpredn a
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dead end are removed, and the production cost of decommiting prodac¢czunted in the
value of the allocation. Producers further down the chain who areteffdxy this decommit-
ment are, in turn, also allowed to decommit. Once the decommitment stage is completed,
value of the allocation is calculated as outlined in Section 3.7. Decommitment allowefo
avoidance of this potential source of inefficiency, though at the cosgrafering contracts
between bidders non-binding.

As with Walsh and Wellman (2003), we gather 100 results for each networkBP,
SAMP-SB and SAMP-SB-D, discarding runs in which the optimally efficienitig is non-
positive. Due to this fairly small sample size the results produced by our reimepkations
of SAMP-SB and SAMP-SB-D differ slightly to those given in Walsh and Wetir(2003),
but in all cases they follow similar trends and thus give a fair representatitre perfor-
mance of these auction protocols.

4.3. Competitive Equilibrium

For fair comparison with SAMP-SB and SAMP-SB-D, we divide our resfdtsnet-
works Unbalanced, Two-Cons, Greedy-Bad and Harder into instawbere the sets of
reserve prices (for LBP) or production costs (for SAMP-SB) admitgetitive equilibrium,
and instances where they do not. We generated 100 instances eanipetitive equilibrium
and non-competitive equilibrium for these networks, determining the pcegenotherwise)
of competitive equilibrium using mixed integer programming. Competitive equilibrasn,
defined in Walsh and Wellman (2003), is a set of reserve prices/produgts in which
producers in the optimal allocation obtain non-negative surplus by beiivg agnd produc-
ers not in the allocation would acquire non-positive surplus by beingeadidditionally, all
consumers in the optimal allocation are required to obtain the consumable gomdgives
them the maximum non-negative surplus, and consumers not in the allocatite receive
non-positive surplus by obtaining any good.

p(1) 2 0.98
P1
0.98 p(2)+p(3)+p(4)+0.28 < p(5)
2 p(1)+p(2)+0.7
P2
P7_—>(6)—>{ c1
0.37

p(3)<0.3 ‘\\ ,
03 42023,/ 0.28
P4 -
0.23

0.57 3425<p(6)> 3.425
p(4) + p(5) + 0.57

FIGURE 13: An instance of the Greedy-Bad network with sample prices that doemoiip
competitive equlibrium

Figure 13 shows an optimal allocation to the Greedy-Bad network with a setefve
prices that do not permit competitive equilibrium. Active producers and tmesociated
goods are in grey, while inactive producers and goods which arerndtiped in the allo-
cation are in white. Edges associated with unproduced goods are dasbeder for P5 to
receive its reserve price, the price of good 5 must be greater thanrhefsine prices of
Producer P5’s inputs plus P5’s reserve price. However, becaastvim Producer P6 must
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not be able to make a profit if it was to participate, the price of good 5 musbalsower
than the sum of the prices of Producer P6'’s inputs plus its reserve priceuch the same
way, good 6 must be exchanged at a price below Consumer C1’s cotisaunaglue, but
above P7’s reserve price plus the sum of the prices of its inputs. Betaeigoods cannot
be exchanged at prices which fulfil all of the inequalities given the sageft reserve prices,
competitive equilibrium does not exist in this instance of the network.

Input complementarities - a situation where a producer has to make a choiceehe
two or more identical goods from two or more different producers - aqgired for the
non-existence of competitive equilibrium; because networks Simple and-Kang are
polytrees, competitive equilibria always exist for these networks. AlthdahgiBigger and
Huge networks do contain input complementarities, we, as with Walsh and Weg[RD@a),
in the case of Bigger, were unable to generate no-equilibrium instantessef networks.

4.4. Efficiency

We divide our results into one of four efficiency classes: negative, zeboptimal and
optimal. Recall equation 4, which allows us to determine the value of an allocatien.
optimally efficient allocation within a network, given a set of producer ¢dstshe one
which maximizes this value. We use the optimally efficient allocation as a benclionine
results we obtain using our LBP method. We determine the optimally efficient atladar
each run using mixed integer programming. We classify our results using®Rarethod
as follows:

4.4.1. Negative. A negative-valued allocation is an allocation in which the reserve prices
(LBP)/production costs (SAMP-SB) of active producers exceedsdhsumption values of
active consumer(s). This is caused by dead ends: inactive predwter acquire one or
more input goods but do not produce an output, either due to no buiyey toeind for their
potential output good, or due to the producer acquiring an incompletd sghud goods.

In LBP, dead ends may produced by the double-counting of belief valuesed by loopy
networks, or by non-convergence. SAMP-SB-D avoids the probfetaad ends by allowing
producers in such situations to decommit from contracts to buy their inputite Whimilar
post-allocation decommitment stage is possible with LBP, we omit this functionality¢o gi
a clearer picture of the performance of our proposed approach.

4.4.2. Zero. A zero-valued allocation is one in which all producers are assigned to an
inactive state, meaning that no goods are bought or sold. Zero-vdloedt®mns are more
desirable than negative-valued allocations, but less desirable thaptisa@loor optimal
allocations.

4.4.3. Suboptimal. Suboptimal allocations are allocations in which a positive non-optimal
solution was found. This can be caused by the presence of deadcenlg,finding an
allocation without dead ends when an allocation of higher value existed.

4.4.4. Optimal. An optimal allocation means that our algorithm was able find the allo-
cation which produced the maximum efficiency available, meaning we achibeesame
value as the centralized benchmark, determined by local search.
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5. RESULTS

5.1. Efficiency Classes

In keeping with our desire for as fair a comparison between the methodssaibie,
the efficiency classes of the results produced by SAMP-SB and SARAP-8re identical
to those we use for our LBP-based method. For SAMP-SB and SAMB-SBzero result
means that no solution was found, and no dead ends were created. @tjisvialent to our
zero result in which no convergence is reached. The definitions aftimegsuboptimal and
optimal allocations given in (Walsh and Wellman, 2003) are identical to oums.ability
for inactive producers to decommit from contracts and thus eliminate théepnadf dead
ends under the SAMP-SB-D protocol means that there is no negativiertly category for
SAMP-SB-D.

Table 2: Distribution of efficiency classes from LBP, and the SAMP-S8 8AMP-SB-
D protocols from Walsh and Wellman (2003). Classes are Negative, Betmptimal and
Optimal.

LBP % of SAMP-SB % of SAMP-SB-D % of
instances instances instances
Network  Neg Zero Sub Opt Neg Zero Sub Opt Zero Sub  Opt

Simple 0.0 00 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0

Unbalanced
CE 0.0 1.0 0.0 99.0 0.0 0.0 17.0 83.0 0.0 6.0 94.0
No CE 0.0 3.0 0.0 97.0 95.0 0.0 10 4.0 92.0 1.0 7.0

Two-Cons
CE 0.0 00 2.0 98.0 180 0.0 11.0 71.0 0.0 6.0 94.0

No CE 0.0 0.0 0.0 100.0 250 1.0 740 0.0 0.0 100.0 0.0
Bigger 20 10 0.0 970 00 00 20 980 00 20 980
Many-Cons 0.0 0.0 0.0 100.0 36.0 0.0 54.0 10.0 0.0 0.0 100.0

Greedy-Bad
CE 0.0 0.0 0.0 100.0 20 0.0 19.0 79.0 0.0 0.0 100.0
No CE 0.0 0.0 0.0 100.0 99.0 0.0 1.0 o0.0 96.0 0.0 4.0
Harder
CE 0.0 37.0 0.0 63.0 60.0 0.0 3.0 37.0 3.0 420 55.0
No CE 1.0 870 0.0 120 1000 0.0 0.0 0.0 99.0 0.0 1.0
Huge 0.0 3.0 96.0 1.0 00 0.0 37.0 63.0 0.0 37.0 63.0

Many-Alts3 0.0 9.0 0.0 091.0 00 0.0 0.0 100.0 0.0 0.0 100.0
Many-Alts4 0.0 9.0 0.0 91.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0

We see from Table 2 that LBP is able to match SAMP-SB’s performance faones
Simple and Bigger, while producing less efficiency on Huge and slightly lesheitwo
Many-Alts networks. The inability for LBP to converge to the optimal on the élogtwork
is attributable to the large number of undirected cycles present in the netatnkr than
its size - as we note in Section 6, LBP is guaranteed to converge to the optinralesn
regardless of their size. The presence of undirected cycles leads doubé counting of
beliefs by nodes within the cycles, which in turn leads these agents to passetio/alues
to the other nodes in the network. This may lead to agents being assignectatctates
in the final allocation. For all other networks, LBP strongly outperform$BASB. It is
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also clear that in most cases, the existence of competitive equilibrium hdtenban the
results produced by LBP; as would be expected given our non-mbalsetd approach, the
distribution of reserve prices/production costs for producers doeappear to matter as
much for LBP as it does for SAMP-SB. Even if we compare our results wiltb#st case
for SAMP-SB, using only those results in which competitive equilibria existavneestill
able to show a clear advantage in the proportions of our runs showing oetificgency,
with marked reductions in negative, zero and suboptimal solutions in aimastsais.

Our results are also comparable to those produced by SAMP-SB-D, with isigfila
ficiency class proportions between the two methods for most networks iftbalyesults
where competitive equilibria exist for SAMP-SB-D are compared. In thse cAAMP-SB-D
generates optimal allocations with equal frequency to LBP for networkslanced, Bigger
and Greedy-Bad, though like SAMP-SB it struggles when competitive eqaildye not
present, with the allocations produced by LBP in the absence of thesiicosdnce again
vastly more efficient.

While the use of a post-allocation decommitment protocol similar to SAMP-SB-Ddvou
have slightly improved the performance of LBP on the Bigger network byering the
two negative-valued allocations into zero-valued allocations, the consigigmality of our
results suggests that such an addition would largely be unnecessarpeformance of
our method is aided by the fact that, when viewed as undirected grapgh&rke Simple,
Greedy-Bad and Many-Cons are all acyclic - LBP is guaranteed tacgavo the correct so-
lution on networks with this structure. The strong performance of LBP oattier networks,
however, shows that this network structure is not a prerequisite foradilecefficiency, and
that LBP is still able to produce optimal results on more loopy networks.

5.2. Average Efficiency

Table 3 shows the average efficiency achieved over 100 runs fhrmeswork by LBP,
SAMP-SB and SAMP-SB-D as a fraction of the available efficiency. Aerage efficiency
of 1.000 indicates that 100% of the available efficiency was capturedabnoéshe hundred
runs for that particular network instance, and represents the besiblgosesult. Negative
values indicate that over 100 runs the method recorded negative aedfiagency in that net-
work. For example, a result showing -1.000 average efficiency meamaéthod achieved,
on average, -100% of the maximum available efficiency value. Becausgemmeasuring
results as a fraction of the efficient value, strongly negatively effidiestlts can lead to
average efficiency values below -1.000.

We see from Table 3 that once again, LBP essentially equals or significamggrforms
SAMP-SB for the majority of networks, capturing, with the exception of thegBigand
Huge networks, a higher proportion of the efficient value than SAMRsZBle to. As with
the previous set of experiments, if our results are compared to only thHoee wompetitive
equilibria are present for SAMP-SB-D, then we see that SAMP-SB-Dlesta capture 30%
more for the Huge network, around 6% more of the average efficiencytB® for the
Bigger network, and around 1% more for Unbalanced, with essentialgllgqear-optimal
or optimal results for the other networks. However, LBP strongly outper$ SAMP-SB-D
in the absence of competitive equilibria, capturing at worst 18% more drmesa86% more
of the available efficiency in networks Harder and Greedy-Bad, ctispdy.
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Table 3: Average efficiency in each network produced by the praploBe-based technique,
and the SAMP-SB and SAMP-SB-D protocols from Walsh and Wellman (2@0@=sult of
1.000 is equal to the capture of an average of 100% of available efficiaide a result
of -1.000 is equal to an average capture of -100% of available effici®ate that while

1.000 is the maximum achievable positive value, it is possible to produce vegatrall
efficiencies below -1.000.

LBP average SAMP-SB average SAMP-SB-D average

Network efficiency efficiency efficiency
Simple 1.000 1.000 1.000
Unbalanced
CE 0.988 0.951 0.996
No CE 0.944 -4.224 0.066
Two-Cons
CE 0.998 0.719 0.963
No CE 1.000 0.215 0.543
Bigger 0.941 0.998 0.998
Many-Cons 1.000 0.174 1.000
Greedy-Bad
CE 1.000 0.941 1.000
No CE 1.000 -3.316 0.047
Harder
CE 0.734 -0.691 0.684
No CE 0.192 -2.664 0.006
Huge 0.646 0.908 0.911
Many-Alts 3 0.91 1.000 1.000

Many-Alts 4 0.91 1.000 1.000
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5.3. Messages and Bids Before Convergence

Table 4: Average numbers of messages passed before convegyahtke average total
bandwidth required in each network using the proposed LBP-basedigeehcompared
with the average numbers of bids placed in each network before quéesaad the average

number of bids placed and price quotes sent in the SAMP-SB protoaol Ykalsh and
Wellman (2003).

LBP average LBP average SAMP-SB average SAMP-SB average

Network number of  total bandwidth number of number of
messages passed required bids placed bids placed and
price quotes sent
Simple 46.4 120.78 107.96 411.46
Unbalanced
CE 367.54 1626.0 615.51 3045.83
No CE 368.0 1621.5 871.93 4649.17
Two-Cons
CE 90.86 270.3 534.01 2070.68
No CE 84.0 305.32 661.14 2678.82
Bigger 1440.0 17945.28 888.91 6956.41
Many-Cons 399.36 1166.0 2620.12 9153.11
Greedy-Bad
CE 90.0 284.24 543.32 1934.6
No CE 90.0 292.16 801.15 2995.02
Harder
CE 11626.48 79547.2 1769.03 16190.65
No CE 12260.32 175237.9 731.06 8091.07
Huge 4548.36 14429.28 3164.4 15412.44
Many-Alts 3 5336.64 188665.9 107.43 1962.99
Many-Alts 4 11504.0 515839.4 179.88 3670.55

Table 4 shows a comparison between the mean averages over 100rreastHmetwork
of the total number of messages pasard the total bandwidth required before convergence
in LBP versus the mean average total number of bids placed, and bidsl plateprice
quotes sent, before quiescence - a state in which no agent wishes gedtsahid for any
good - in SAMP-SB. We measure the total bandwidth required by LBP byrdewy the
total number of belief values sent between agents in each run. Recdintingalue allows
us to perform a like-for-like comparison with the total bandwidth require@AMP-SB, as
measured by adding the total number of price quotes sent to the numbes qidied.

We see that, in most cases, LBP requires the passing of far fewer ragegsageach
convergence than the number of bids needed for SAMP-SB to reactcguee. One ex-
ception to this is the Bigger network - 1440 is the minimum total number of messagges th
can be passed before LBP can be said to have converged for thisrkeand is equal to
the diameter of the network plus one (an additional iteration is necessaryetonitee that
the states have not changed) multiplied by the number of messages pass#upie step.
The other exception is with the two Many-Alts networks. Although LBP cagwerreliably
at or near the minimum number of iterations for this network, the large numimees$ages
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passed is due to the strong interconnectedness of these networksof a2 producers
in each tier is connected to every producer in the previous and next tigrs network, and
must pass a message to each of them at each iteration.

We see similar outcomes when comparing the total bandwidth required by LBEheith
total number of bids placed plus price quotes sent in SAMP-SB. LBP relrablyires less
bandwidth than SAMP-SB on both small networks and large networks with [tavcion-
nectedness, such as Many-Cons and Bigger, but tends to requéatalgal more bandwidth
on large, highly interconnected networks like Harder and the two Manyr&lworks.

5.4. Scaling

In this section, we examine how the efficiency of the allocations producedB® L
SAMP-SB and SAMP-SB-D are influenced by three network properties:number of
agents in the network, the average degree of connectivity betweetsaged the number
of tiers of agents in the network. Since LBP is a distributed and decentraigedthm,
computational scalability is not an issue. This is also true of SAMP-SB andFS8B-D.

We see from Figures 14, 15 and 16 that, over the networks we testedgea\aficiency
in LBP appears to be weakly negatively correlated to the number of ageththe number
of tiers, while there is little or no correlation between the average efficieidgi® and aver-
age interconnectedness. SAMP-SB and SAMP-SB-D show no correlagtween average
efficiency and network structure. It is clear from our results that, addvoe expected, LBP
performs flawlessly on tree-structured networks, such as Simple or-2ang, achieving
perfect allocative efficiency. This is a guarantee which holds regegdiiethe network’s size.
The performance of LBP on networks with loops cannot, unfortunatelguaranteed, and a
full set of convergence conditions for LBP has yet to be found. Hgaijn, is true regardless
of the size of the network, meaning an analysis of the efficiency prodoicedset of even
larger networks would not be instructive. The absence of a conveegguarantee is the one
unavoidable weakness of the algorithm: in much the same as SAMP-SB an®-S8vD
are generally unable to deal with the non-existence of competitive equilibtiBi, may
sometimes difficulties when applied to loopy networks.
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5.5. Game-theoretic Properties

As previously mentioned, auction-based approaches are often dafarsupply chain
formation due to their possession of various game-theoretic propertigssisection, we
analyse the game theoretic properties of our LBP-based approadurapdre them to those
of SAMP-SB and SAMP-SB-D. Although LBP is not incentive compatible, istimngly
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budget balanced and guarantees perfect allocative efficiency nétarorks are acyclic;
individual rationality could also be guaranteed with a post-allocation decomntitstesge
similar to that used by SAMP-SB-D.

5.5.1. Individual Rationality. A mechanism is classified as individually rational if a
participant cannot receive negative utility by participating. As with SAMER-&e cannot
guarantee the individual rationality of our approach given that thestsethe possibility of
dead ends being present in our allocations. Producers involved iredelagpurchase inputs
but are unable to sell their outputs, and so receive negative utility. SABHD guarantees
individual rationality through its post-allocation decommitment stage, which alboaduc-
ers involved in dead ends to decommit from their contracts to buy goods ateaio longer
needed, and thus avoid negative utility. Individual rationality could beaneed in our
approach using a similar process of post-allocation decommitment.

5.5.2. Incentive Compatibility. A mechanism is incentive compatible if the dominant
strategy for participants is to truthfully reveal their private valuations.rAsent, our mech-
anism is not incentive compatible for either buyers or sellers due to théhftgbarticipants
may potentially increase their utility by inflating their reserve prices. Howekiere is an
uncertain upper limit to this potential increase in utility - if a producer reporgsarve price
which is too high, there may be, depending on the network structure andgbheed pro-
duction costs of other producers, an alternative, cheaper allocatidméh #ihe misreporting
agent does not participate. The upper limit is uncertain due to the factrbdigers have
no information about the structure of the network as a whole, nor do they Kre reported
costs of any agents other than those which they are directly linked to. Thisissae for
sellers in any real-life market-based scenario.

5.5.3. Budget Balance. Our approach involves no payments either to or from the mecha-
nism, and is therefore strongly budget balanced. This property is asemirin both SAMP-
SB and SAMP-SB-D, where no payments are made to or by the auctions.

5.5.4. Allocative Efficiency. The results presented in Tables 2 and 3 suggest that our
approach is capable of reliably producing more efficient allocations t#viPSSB and
SAMP-SB-D on the network instances tested. LBP guarantees peltfezdtave efficiency
on acyclic networks, due to its ability to reliably converge to the optimal MAP assént
on graphs which do not contain loops. If LBP converges on a netwdikavsingle loop,
the resulting allocation is also guaranteed to have perfect allocative effjcBecause there
is no guarantee of the quality of solutions produced by LBP on networksmgtte than a
single loop, allocative efficiency for these networks is also impossible taagtee. Of the
networks we tested, two - Unbalanced and Bigger - contain multiple loops,Biadhowed
strong allocative efficiency for both.

6. CONCLUSIONS

In this paper, we present a new method for decentralized supply chaiation, using
work by Walsh and Wellman (2003) as both a foundation for the structuoerofetworks,
and as a basis for comparison to our results. Our LBP-based methaddingvidecentralized
message passing to propagate beliefs held by our agents, is able to pgdoiffoantly bet-
ter at finding efficient allocations for most networks than the establisheagph utilizing
simultaneous ascending double auctions we compare it to, whilst making mogsms of
centralization.

For the majority of networks tested, we were able to show that max-sum LB#tes a
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to match or outperform the results obtained by the auction-based methodcimgpdonsis-
tently optimal or near-optimal average efficiency results regardlesssofstmictures. With
one exception, our method is able to avoid the problem of consistent subbiytihalloca-
tive efficiency encountered by the auction-based approach whenetitingoequilibrium is
not present, continuing to produce optimal or near-optimal allocationsnoest networks.

We believe that our method provides an interesting avenue for futuraroesiey merit
of its ability to produce more efficient allocations than an established auctiogod in a
comparable scenario whilst operating in a decentralized manner. Oussaiere limited
information about their reserve price and production capabilities to theihberg in the
network. This means that participants reveal no more private informatiog aar method
than in an open auction. By allowing our agents to share information abautr¢iserve
price, and about which goods they wish to buy and sell, we are able taigaduighly
efficient allocations over a range of network topologies.

7. FUTURE WORK

In using Walsh and Wellman (2003) as a basis for our work, we tradedassityil-
ity of potentially complex extensions in favor of an expressive graphalesentation of
supply chain networks and a basis for fair comparison. While the abstracive have
made (abstractions are present to some degree in all agent-baseacapgrm supply chain
formation) serve to limit the practical value of our approach were it to béeapas-is, work
is ongoing to increase the fidelity of our model to the numerous constrairgsrria real-
world supply chain formation. Through the implementation of such extensiomsim to
enrich our model to a point at which makes application of our technique pessia more
realistic scenario, such as the TAC SCM game or simulations of real-worjilyscipains.

The most obvious first extension would be to introduce a stronger pritémgeat into
our approach. At present, reserve prices in our model are fixecllBying producers to
change their margins (and thus the prices of their goods) during the guohibBP we
grant them increased autonomy, though at the cost of making the pedastermining the
optimal allocation more difficult. Promisingly, LBP has been shown to be resigiahe
effects of alterations to observations (equivalent to our unary costbeinelated area of
sensor network communication (Crick and Pfeffer, 2003).

Further potential extensions might involve expanding the properties alsggtmtake
into account factors such as quality, quantity, delivery dates and ltpfnalties. Produc-
ers could be improved by implementing properties to model production capadtyha
possibility of strategic behavior - at present all agents are truth-tellingilewebnsumers
might be imbued with richer preferences over goods. A temporal, dynamecasould
be introduced, with trading relationships forming and dissolving over time, witt &aind
reputation interesting issues to be taken into account in this sceidee additions would
require agents to be outfitted with a much larger number of states than in {heagh
presented in this article, but a larger number of states is not a great olesta application
of the algorithm to more realistic problem scenarios because of its distribnagate, the
simplicity of the calculations made by each agent, and the compact repatise of both
states and beliefs.
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