
Computational Intelligence, Volume 27, Number 000, 2011

Decentralized Supply Chain Formation using Max-Sum Loopy Belief
Propagation

M ICHAEL WINSPER ANDMARIA CHLI

Computer Science, Aston University, Birmingham, UK

Supply chain formation is the process by which a set of producers within a network determine the subset of
these producers able to form a chain to supply goods to one or more consumers at the lowest cost. This problem has
been tackled in a number of ways, including auctions, negotiations, and argumentation-based approaches. In this
paper we show how this problem can be cast as an optimization ofa pairwise cost function. Optimizing this class
of energy functions is NP-hard (Boykovet al., 2001) but efficient approximations to the global minimum can be
obtained using loopy belief propagation (LBP). Here we detail a max-sum LBP-based approach to the supply chain
formation problem, involving decentralized message-passingbetween supply chain participants. Our approach is
evaluated against a well-known decentralized double-auction method and an optimal centralized technique, showing
several improvements on the auction method: it obtains better solutions for most network instances which allow
for competitive equilibrium† while also optimally solving problems where no competitive equilibrium exists, for
which the double-auction method frequently produces inefficient solutions.
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1. INTRODUCTION

As the drive for efficiency and adaptability becomes an increasing focusin industry,
together with rising levels of uncertainty about market conditions, the ability to quickly
form effective, mutually beneficial trading partnerships becomes increasingly important.
Although the concept of virtual enterprises - ad-hoc coalitions of businesses formed to pool
resources and create synergies in order to respond to emergent business opportunities - may
have yet to reach the level of popularity its proponents had hoped for, the principles of such
arrangements, along with outsourcing, remain integral to the business processes of many
organizations (Nachiraet al., 2007).

Traditional non-computational approaches to supply chain formation are inefficient pro-
cesses, with time wasted on contract tendering and negotiations. Time constraints and human
irrationality may lead to the establishment of inefficient supply chains, a problem that could
be mitigated or avoided with the use of computational techniques. Indeed, such techniques
have already proven their worth in a commercial setting, with combinatorial multi-attribute
sourcing auctions having produced over $5 billion (Sandholm, 2008) of real-world savings
to businesses.

Agent-based computational approaches to supply chain formation model potential sup-
ply chain participants - businesses capable of forming a link in the yet-to-be-completed
chain - as boundedly-rational self-interested computational agents. These agents deliberate
between themselves, typically either through negotiations or auctions, aboutthe subset of
agents capable of forming the most efficient supply chain. At the conclusion of these de-

†Competitive equilibrium in Walsh and Wellman (2003) is a set ofproducer costs which permits a Pareto optimal state in
which agents in the allocation receive non-negative surplus and agents not in the allocation would acquire non-positive surplus
by participating in the supply chain.

‡ Address correspondence to Michael Winsper, Computer Science, Aston University, Birmingham, B4 7ET, UK;
email: winsperm@aston.ac.uk

iC 2011 The Authors. Journal CompilationiC 2011 Wiley Periodicals, Inc.
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liberations, which are typically completed in a fraction of the time required of the manual
approach, the supply chain is formed instantly.

Agent-based approaches to SCF may either be centralized or decentralized. Centralized
approaches typically make use of combinatorial auctions to determine allocations, with the
NP-hard winner determination problem usually being solved by using integerprogramming.
The use of integer programming implies complete knowledge of the bids of all agents, mean-
ing that it relies on an assumption of centralization which may not always present in the real
world. redCentralized approaches also encounter problems with scalability when applied to
larger problem instances. Decentralized approaches to the SCF problemmake only minimal
assumptions about the participating agents, giving them a wide range of applicability, but
present a difficult problem in determining the optimal allocation, given that agents only
possess local information about the structure of the network and the capabilities of other
agents.

We suggest that LBP is a useful technique for the supply chain formation problem for a
number of reasons. The algorithm is distributed, meaning that the scalability issues present
in integer programming-based approaches, such as combinatorial auctions and MDPs, are
avoided. LBP is also decentralized, with participants acting only on the basis of local in-
formation. This presents an advantage over other techniques for graphical inference such as
graph cuts or the junction tree algorithm, which require significant modifications to and
thus complete knowledge of the structure of the underlying network. By avoiding such
modifications, LBP also allows for the preservation of the trading relationships originally
present in the graph - an agent passes messages only to the buyers andsellers of its associated
goods. Finally, LBP allows agents to assign reserve prices to their goods ina manner no
different to the way such values would be held by participants in a one-shot market-based
protocol, and to share these values only with relevant participants. Theseproperties mean
that the economic self-interest of participating agents is preserved.

In this article, building on previous work in Winsper and Chli (2010), we propose a max-
sum loopy belief propagation (LBP) based approach to decentralized supply chain formation
which is capable of producing efficient results over a range of networktopologies. With our
use of LBP, we are frequently able to produce results comparable to that of a centralized
approach while working in a distributed and decentralized manner. The useof this message
passing-based technique also allows us to take full advantage of the graphical structure of
our networks.

In section 2, we provide details of previous models of decentralized supplychain forma-
tion, and explain why LBP is a useful approach for supply chain formationwhen networks
are represented graphically. In section 3, we provide details of our model,inspired by work
previously conducted in Walsh and Wellman (2003), and provide the details of how we
applied the LBP algorithm to the decentralized supply chain formation problem. Section 4
describes our experimental procedure, while section 5 shows our results and compares them
to the results obtained by Walsh and Wellman (2003) and the optimal centralized method.
Section 6 provides some conclusions about our work, while section 7 identifies areas of
related future research.

2. BACKGROUND

2.1. Supply Chain Formation
Multi-agent systems enable us to model a number of properties characteristicof supply

chains, including uncertainty, decentralized decision making by self-interested agents and
the process of self-organization by participants. It is no surprise, then, that application of the
agent-based paradigm to several aspects of supply chains has been an ongoing focus of multi-
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agent systems research for several years, particularly in supply chain management (Pardoe
and Stone, 2006; Wellmanet al., 2003), most notably the TAC SCM game (Collinset al.,
2006), and in the area of supply chain formation (Walsh and Wellman, 1999). The majority
of the literature on decentralized supply chain formation and related work can be classified
into one of two broad areas: research which focuses on the use of negotiation-based methods
as a means for determining allocations, and studies which model the supply chain as a series
of auctions.

Distributed negotiation is an approach which is well-suited to the modeling of supply
chain formation: each individual procurement and sale decision by eachparticipant in the
supply chain can be modelled as a multi-party negotiation, with bids or offers allowing
participants to express their capabilities and preferences to potential exchange partners. The
Contract Net protocol (Davis and Smith, 1983), a technique for distributed problem-solving
based on task decomposition and negotiation, formed the basis of many agent-based models
of distributed negotiation. While the usefulness of the standard Contract Net protocol to
supply chain formation is limited by its myopic, greedy approach and subsequent inability
to deal with resource contention, a number of other negotiation-based approaches have been
applied to the supply chain formation problem. Wanget al. (2006) uses argumentation-
based negotiation for decision making in supply chain formation, while Kim and Cho (2010)
proposes a heuristic-based agent negotiation method for supply chain formation. The results
of Kim and Cho (2010) suggest that their negotiation method is capable of producing reli-
ably near-optimal allocations in their scenario, outperforming branch-and-bound search. One
common limiting factor present in negotiation-based approaches to supply chain formation,
shared by both Wanget al.(2006) and Kim and Cho (2010), is a reliance upon dedicated “me-
diator” agents in order to facilitate allocations through preference and capability elicitation
and aggregation. The use of these mediator agents implies an assumption of centralization
which precludes the application of these methods in areas where this assumption is not valid.

The other main approach to supply chain formation involves modeling the supplychain
as a network of auctions, with first and second-price sealed bid auctions, double auctions and
combinatorial auctions among the most frequently-used methods. Supply chainformation
through auctions is a popular approach for a number of reasons: auctions are frequently used
in real-world tendering and sales situations, many auctions possess a number of interesting
game-theoretic properties such as incentive compatibility and individual rationality, and
auctions are often able to form satisficing solutions to the supply chain formation problem.

Perhaps the most comprehensive series of studies on supply chain formation using auc-
tions comes from Walshet al., who examine the efficiency of supply chains formed using si-
multaneous double auctions (Walsh and Wellman, 2003), one-shot double auctions (Babaioff
and Walsh, 2003) and combinatorial auctions (Walshet al., 2000).

In Walsh and Wellman (2003), the authors propose a market protocol with bidding
restrictions referred to as SAMP-SB, which uses a series of simultaneousascending dou-
ble auctions. SAMP-SB was shown to be capable of producing highly-valued allocations -
solutions which maximize the difference between the costs of participating producers and
the values obtained by participating consumers - over several network structures, although
it frequently struggled on networks where competitive equilibria did not exist. The authors
also proposed a similar protocol with the provision for decommitment in order to remedy the
inefficiencies caused by “dead ends”, solutions in which one or more producers acquire an
incomplete set of complementary input goods and are unable to produce theiroutput good,
leading to negative utility. This use of a post-allocation decommitment stage was recognized
as an imperfect approach, however, due to the possible problems created by rendering the
results of auctions as non-binding.

Babaioff and Walsh (2003) proposes a one-shot double auction mechanism, referred
to as Trade Reduction auctions, based upon existing work that sacrificesperfect allocative
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efficiency in order to guarantee incentive compatibility, individual rationalityand budget
balance. The authors propose both a centralized and a distributed algorithm for determining
allocations; however, their distributed algorithm relies on the use of mediatorsfor each good,
communication between these mediators, and a central coordinator agent. These factors
combine to indicate an assumption of centralization which, as mentioned earlier, may not
always be valid.

In Walshet al.(2000), the authors use a combinatorial auction protocol on a subset ofthe
networks in Walsh and Wellman (2003) to attempt to find allocations under strategic bidding
behavior by agents. Combinatorial approaches to supply chain formation hold the advantage
of being able to avoid the problem of dead ends in the presence of input complementarities
by allowing agents to bid for bundles of goods. Due to the strategic bidding behaviors
adopted by the agents in Walshet al. (2000), the results of the combinatorial protocol did
not represent a signficant improvement on the double auction protocol, with the quality of
the solutions found to be influenced in large part by the amount of available surplus in the
networks.

Recent work has seen the proposal of mixed multi-unit combinatorial auctions (MMU-
CAs) for supply chain formation (Cerquideset al., 2007), with the standard combinatorial
model of bids being placed for bundles of goods replaced by negotiationsover “transforma-
tions”, essentially commitments by bidders to produce a set of output goods given a set of
input goods. There exist several approaches to solving the NP-hardwinner determination
problem associated with MMUCAs, and the quality of the solutions produced by these
techniques tends to depend on the characteristics of the network being tested (Ottens and
Endriss, 2008). Although all existing MMUCA solvers rely on integer programming and thus
may face difficulties with scalability, work by Giovannucciet al. (2008) has improved the
applicability of MMUCAs to larger supply chain formation problems by proposing an integer
program mapping which improves the computational efficiency of the winner determination
problem (WDP) calculation by taking advantage of the structural properties of the network.
Finding a local, decentralized solver for MMUCAs remains an ongoing areaof research.

Although auctions and negotiations are by far the most commonly-employed techniques
in agent-based approaches to the supply chain formation problem, LBP hasbeen used as a
method for task allocation for several years in the related area of agent-based decentralized
coordination (Crick and Pfeffer, 2003; Voiceet al., 2010). Winsper and Chli (2010) recently
applied an LBP-based approach to the supply chain formation problem, noting that the
passing of messages in LBP is comparable to the placing of bids in standard auction-based
approaches. The results presented in this paper suggest that LBP is capable of consistently
optimal allocations over a range of network structures. The decentralizedand distributed
nature of LBP also allows for the avoidance of the scalability issues present in centralized
approaches such as combinatorial auctions. In this article we provide additional detail on this
promising approach to the supply chain formation problem, and present additional results
which serve to further illustrate the advantages of this approach.

2.2. Probabilistic Graphical Models
Probabilistic graphical models are a means for encoding probability distributions over a

set of variables using graphs (MacKay, 2003). Graphical models may be directed or undi-
rected. Directed graphical models, known as Bayesian networks (BNs), represent qualitative
dependence between variables - an arc from nodei to nodej indicates thati causesj, as well
quantitative statistical dependence - an arc between nodes also corresponds to a conditional
probability of the state of a child node given its parent(s) -p(xj |xi) represents the probability
of xj givenxi. Undirected graphical models - Markov Random Fields (MRFs) - are useful
for representing symmetric dependencies between variables. In MRFs, as in BNs, adjacency
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(through an undirected edge) of nodes indicates dependence, while nodes which are not
directly connected are strictly independent. LBP is easily applicable as a toolfor approximate
inference in both BNs and MRFs.

Though the task dependency networks of Walsh and Wellman (2003) we use for the base
representation of our supply chain networks do not encode dependence - in this case, an arc
from i to j now meansi is able to supply a good whichj is able to consume, rather than any
notion of causality - they are easily convertible into a form structurally identical to MRFs
when explicit representation of goods is removed. We are able to use the production costs
of producer agents and consumption values of consumer agents as analogues for evidence at
each node, and encode a simple series of compatibility constraints as pairwisecost functions.
From this point, with what is essentially a pairwise MRF with evidence at each node, we are
able to use LBP as a means for finding the optimal allocations in our networks.

2.3. Loopy Belief Propagation
LBP is a decentralized and distributed approximate inference scheme involving the ap-

plication of Pearl’s belief propagation algorithm (Pearl, 1988) to graphical models containing
cycles. It uses iterative stages of message passing as a means for estimating the marginal
probabilities of nodes being in given states: at each iteration, each node inthe graph sends
a message to each of its neighbors giving an estimation of the sender’s beliefs about the
likelihoods of the recipient being in each of its possible states. Nodes then update their
beliefs about their own states based upon the content of these messages,and the cycle of
message passing and belief update continues until the beliefs of each nodebecome stable.

The most commonly used version of LBP, the sum-product algorithm, is used toestimate
marginal probabilities at individual nodes. Because we are interested in finding the optimal
state configuration of the network as a whole rather than the most likely state ofany one node,
we use a well-known variant of LBP, the max-sum algorithm, to estimate the maximuma
posteriori (MAP) assignment of our supply chain networks.

While LBP is known to converge to exact results in a finite number of iterations on
tree-structured graphs, there is no such guarantee for more loopy graphs, and if convergence
is reached, the solution will be an approximation, unless the graph contains only a single
loop (Weiss, 2000). Recent work (Vinyalset al., 2010) has established worst-case bounds
on the quality of solutions produced by max-sum LBP, although these guarantees hold only
when all unary and pairwise potentials are non-negative, which is not thecase in our model.
Despite these limitations, LBP has seen great success in a number of areas,including Turbo
Codes (McElieceet al., 1998) and Low Density Parity Check codes (Frey and MacKay,
1998), stereo vision (Felzenszwalb and Huttenlocher, 2004), as well as in the related field of
communication in sensor networks (Crick and Pfeffer, 2003; Farinelliet al., 2008).

Max-sum LBP is well-suited as a means for allocation determination in supply chain
formation for a number of reasons. First, as mentioned earlier, the formalismintroduced
in Walsh and Wellman (2003) for the representation of supply chains as taskdependency
networks - bipartite directed acyclic graphs with nodes representing producers, consumers
and goods linked by edges representing potential flows of goods, allowsfor easy conversion
into pairwise MRFs suitable for inference once explicit representation of goods in the graphs
is removed. Replacing the process of bidding in auctions with message passing between
agents allows participants to share their beliefs about the optimal structure ofthe supply
chain without revealing any more private cost information than they would in an open
auction. LBP operates in a decentralized and distributed manner, properties important for
the realistic representation of separate self-interested business entities. Finally, LBP is able
to quickly and reliably produce exact results (in our case, this corresponds to a result with
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optimal efficiency) in tree-structured and single-cycle networks while still often being able
to produce good approximations of the optimal in more loopy networks.

3. MODEL

The base representation of our supply chain networks is as task dependency networks in
the form of bipartite directed acyclic graphs. An example of this representation is given in
Figure 1. There are two types of node: individual producers and consumers, which are rep-
resented by rectangles in our network diagrams, and goods represented by circles. Directed
edges indicate potential flows of goods. An edge leading from a producer to a good indicates
that the producer is capable of producing the good, while an edge leadingfrom a good to
a producer or consumer means that the producer or consumer is able to consume the good.
Consumers, as their name suggests, cannot produce goods.

FIGURE 1: A sample supply chain network - Simple - from Walsh and Wellman (2003).
Producers (P1, P2, P3, P4) and consumers (C1) are represented by rectangles, while goods
are represented by circles. Edges between vertices indicate potential flows of goods. Num-
bers below producers represent production costs, while numbers below consumers indicate
consumption values.

This representation, first proposed in Walsh and Wellman (2003), allows for the clear
statement of network structures while retaining fidelity to the structure of real-world supply
chains. For example, in Figure 1, we see that producer P1 is able to produce good 1 at a cost
of 0.36, which producer P3 needs to consume in order to produce good 3, at a cost of 0.53
plus the cost of acquiring good 1, for consumer C1. Similarly, producer P2 is able to produce
good 2, for possible consumption by producer P4, which is also able to supply consumer C1
with good 3. If both producers P3 and P4 are able to acquire their single input good, C1 must
make a choice about which producer to purchase from. Ideally it will choose the producer
able to supply the good at the lowest accumulated cost, in this example P3, leaving C1 with
a final positive consumption value of1.216− (0.362 + 0.535) = 0.319. In line with Walsh
and Wellman (2003), goods represent a single unit of a commodity which is non-divisible,
and equivalent in all aspects other than price; for reasons of simplicity and clarity, we do not
attempt to model aspects such quality, multi-unit transactions or delivery constraints in this
article, although this representation subsumes the multi-unit case.

3.1. Agents
Our supply chain networks are made up of multiple interlinked producers aimingto

supply a good or goods to one or more consumers.
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3.1.1. Producers. Producers are capable of producing a single unit of a single type of
output good, and to do so are required to have obtained a single unit of each of the goods
in their set of input goods, which may be zero, one, or many. This single-unit restriction
is made to allow for comparison with Walsh and Wellman (2003); our representation is
readily generalizable to the multi-unit case. Producers which do not require any inputs to
produce their output good are known as no-input producers, and form the initial echelon of
the supply chain. In the case of a producer requiring multiple inputs, we refer to the goods as
complementary - a producer is unable to produce its output good if it is only able to acquire
a subset of its required input goods. Producers assign a reserve price Rp to their output
good, which is a producer-specific constant encoding the cost of producing the good plus an
additional fixed profit margin.

3.1.2. Consumers. Consumers require a single unit of a single good from their set of
consumable goods. In each network, each consumer is assigned a static consumption value
Vc: this is the personal valuation the consumer holds for obtaining one of its consumable
goods.

3.2. Conversion to MRF form
To convert the task dependency networks given in Walsh and Wellman (2003) into pair-

wise MRF form, two simple modifications must be made: First, the explicit representation
of goods is removed from the network. Where edges previously linked anagent to a good
or a good to an agent, edges now link agents directly, though they preserve the notion of an
edge between agents meaning a potential route of exchange. Second, weremove direction
from the edges in the graph. With the graph converted into pairwise MRF form, we are now
in a position to define the states and costs required for the running of LBP.

FIGURE 2: The Simple supply chain network converted into MRF form. Edges now link
agents directly, and are undirected.

3.3. States
Due to the fixed structure of the networks, for each agent there exists a finite number of

purchases and sales (if the agent is a producer) in which the agent is viable, i.e. it acquires
all its input goods and sells its output good. We encode each of these tuplesof exchange
relationships as states, with each state defining a list of suppliers and a buyer if the agent is
a producer, and a single supplier for consumers. For example, a possiblestate for producer
P3 in Figure 1 is “Buy from P1 and sell to C1”. The number of states an agent possesses
increases with the number of producers able to supply its input good(s), and the number of
producers or consumers able to consume its output good. As well as a list of active states,
we also allow for the inactive state, where the agent does not acquire or produce any goods.
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3.4. Cost Function
We allow for two distinct types of cost, denoted asfv(xv) , the unary cost for agentv of

being in statexv, andguv(xu, xv) , the pairwise cost of connected agentsu andv being in
statesxu andxv. Our method aims to minimize these costs and thus the cost function given
below:

ǫ(x1, . . . , xN ) =
∑

v∈V

fv(xv) +
∑

(u,v)∈E

guv(xu, xv) (1)

Wherex1, , xN is the set of agents,fv(xv) is the unary cost of agentv being in statexv,
andguv(xu, xv) is the pairwise cost of linked agentsu andv, being labeled with statesxu
andxv. With all else equal, the lower the result of our cost function, the more efficient the
allocation. We use the efficiency of the allocation as a measure of the quality ofa solution.

3.4.1. Unary Cost. Each agent associates each of its states with a cost. These values
represent the cost to the value of Equation 1 were the agent to be assigned with that state in
the allocation. For all agents, the cost of being in the inactive state is zero. For producers,
all active states incur a positive cost, equal to the reserve price of the producer in question.
Consumers assign a negative cost0 − Vc to all states in which they acquire a good, where
Vc represents the consumer’s consumption value, the value the consumer assigns to the
acquisition of its consumable good.

3.4.2. Pairwise Cost. Pairwise costs encode the compatibility of two of the states of a
pair of neighboring agents. Two states are compatible if agenti’s state lists agentj as a buyer
and the list of sellers inj’s state includesi and vice versa, or if agenti’s state does not list
agentj as a buyer andj’s state does not list agenti as a seller and vice versa, or if both states
are inactive states. If the states are compatible, the pairwise cost is equal tozero. If the two
states do not meet any of these conditions, they are incompatible, and the pairwise cost of
this combination of states is equal to positive infinity.

3.4.3. Example of States and Costs.To provide an example of our system of costs in
practice, we now show the set of states and the unary and pairwise cost values (in Table 1)
in the Simple network, as shown in Figure 1. The Simple network is made up of a set of
four producers and a single consumer, as well as three potential goodsfor production. The
possible states of our agents are:

• P1: t1, t2.

– t1 = “Inactive”. t2 = “Sell to P3”.

• P2: u1, u2.

– u1 = “Inactive”. u2 = “Sell to P4”.

• P3: v1, v2.

– v1 = “Inactive”. v2 = “Buy from P1 and sell to C1”.

• P4: w1, w2.

– w1 = “Inactive”. w2 = “Buy from P2 and sell to C1”.

• C1: x1, x2, x3.

– x1 = “Inactive”. x2 = “Buy from P3”.x3 = “Buy from P4”.
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ProducerP1 does not require any inputs, and is only capable of selling to one agent -
producerP3 - meaning its sole active state ist2, representing the state of not buying any
inputs, and selling toP3. ConsumerC1 has two valid active states: buying fromP3 and
selling to no-one -x2 - and buying fromP4 and selling to no-one,x3.

With our list of states complete, we now show the unary costs of the states. Inactive states
incur a unary cost of0, while active states depend upon the type of agent in question. For
producers, the unary cost is equal to the reserve price of the producer in question. Consumers
incur a unary cost of0−Vc, whereVc is the consumption value of the consumer in question.
Thus, our unary costs are as follows:

• P1:fP1(t1) = 0. fP1(t2) = 0.362.
• P2:fP2(u1) = 0. fP2(u2) = 0.619.
• P3:fP3(v1) = 0. fP3(v2) = 0.535.
• P4:fP4(w1) = 0. fP4(w2) = 0.854.
• C1:fC1(x1) = 0. fC1(x2) = −1.216. fC1(x3) = −1.216.

Finally, we show in Table 1 the pairwise costs associated withP3 in the Simple network:

Table 1: Pairwise costs betweenP1 andP3, andP3 andC1, in the Simple network.

Pairwise Costs

P1 ↔ P3 P3 ↔ C1

gP3C1(v1, x1) = gC1P3(x1, v1) = 0
gP1P3(t1, v1) = gP3P1(v1, t1) = 0 gP3C1(v1, x2) = gC1P3(x2, v1) = ∞
gP1P3(t1, v2) = gP3P1(v2, t1) = ∞ gP3C1(v1, x3) = gC1P3(x3, v1) = 0
gP1P3(t2, v2) = gP3P1(v2, t2) = 0 gP3C1(v2, x2) = gC1P3(x2, v2) = 0

gP3C1(v2, x3) = gC1P3(x3, v2) = ∞

The next section introduces the details of max-sum LBP, the technique we employ to
minimize our cost function.

3.5. Supply Chain Formation using max-sum LBP
The value of an agent’s belief about one of its states represents the agent’s belief about

the cost to the efficiency of the network as a whole were it to be assigned that state, given the
content of the messages it has received. Accordingly, LBP begins by initializing the beliefs
of each agent about each of their possible states to zero. Each agent then passes a message
containing a vector of belief values to each of its neighbors in the network. Once all agents
have passed a message to each of their neighbors, each agent updatesits beliefs based upon
the content of the messages it received. This process of message passing and belief update
continues until the beliefs of our agents about the MAP assignment of the network become
stable, at which point we determine the final state of each agent and perform the allocation.

3.5.1. Belief Update. For each of agentu’s possible states, we use equation 2 to calcu-
lateu’s belief in that state. At initialization, each agent holds a belief of zero about each of
its states.

belu(xu) = fu(xu) +
∑

w∈Nu

mw→u(xu) (2)

belu(xu) denotes agentu’s belief in its statexu. This belief is made up of two parts: first
is the unary costfu(xu) to u incurred by being in statexu. This is added to the sum of the
beliefs about statexu contained within the messagesmw→u(xu) received fromu’s set of
neighborsw ∈ Nu.
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3.5.2. Messages. At each step of LBP, each agent in the network passes a message to
each of its neighbors, consisting of a vector of values representing the sender’s beliefs about
each of the recipient’s states. This involves senderu comparing the compatibility of each
individual statexu from its own set of states with each individual statexv from recipient
v’s set of states, taking into accountu’s belief about its own statexu, as well as the belief
value about statexu contained within the message passed fromv to u in the previous step.
Messages can therefore be interpreted as encoding both a compatibility component (through
the pairwise cost) and a cost component (through the encoding of cost data in one’s current
beliefs, if the states are compatible).

mu→v(xv) = minxu

(

belu(xu)−mv→u(xu) + guv(xu, xv)
)

(3)

Equation 3 shows the process of calculating a message to be passed from agentu to
agentv. belu(xu) corresponds to agentu’s belief in its own statexu. We subtract from this
the belief passed fromv to u about statexu in the previous round of messages, represented
asmv→u(xu). Finally, we add the pairwise cost incurred by agentsu andv being in states
xu andxv. We repeat this process for each of agentu’s possible states, comparing them
in turn to agentv’s statexv. Once the set of possible costs for statexv dependent onu’s
set of states have been determined, we take the minimum of these values and add it to the
vector of beliefs to be passed from agentu to agentv. This process is repeated for each of
v’s possible states, resulting in a final vector of values to be passed fromu to v. Before we
perform allocation, we determine the “final state” of each agent - the state,at convergence,
in which the agent believes holds the lowest cost.

3.6. Convergence
We make use of a convergence detector agent, as recommended in Walsh and Wellman

(2003) for scenarios with multiple agents in initially non-quiescent states, which controls
termination but is otherwise uninvolved in the workings of the algorithm, preserving the
distributedness of our approach.

Once the LBP algorithm has begun, each agent reports to the convergence detector agent
at each iteration specifying whether the state in which they believe holds the lowest cost
has changed since the previous iteration. If the current number of iterations is greater than
the size of the spanning tree - as explained in the following paragraphs - and all agents
reported that their lowest-cost state has remained the same as the previous iteration, then the
convergence detector agent halts the algorithm, and allocation is performed.The process of
allocation is outlined in Section 3.7.

As mentioned in Section 2.3, LBP is known to converge on tree-structured graphs in a
number of iterations equal to the diameter of the graph (Murphyet al., 1997). Although not
all of our networks are trees, we take this value as the earliest number of iterations at which
it can be said that LBP has converged. In the absence of an efficient, distributed and fully
general technique for finding an exact value for the graph diameter (Magnienet al., 2009),
we use distributed depth-first search to find a spanning tree of the graph, and determine the
diameter of the spanning tree using distributed breadth first search to provide an upper bound
for the value of the actual diameter of the graph (Magnienet al., 2009).

The distributed depth-first search algorithm proceeds as follows: uponinitialization of
the network, the convergence detector agent designates a random agent as the root node. This
agent then randomly picks a neighboring agent and adds it to the candidatespanning tree.
The updated candidate spanning tree is sent to the chosen agent, and this agent then randomly
chooses one of its own neighbours which is not part of the candidate spanning tree. It then
updates the tree and passes control to the chosen agent, with the processcontinuing until the
chosen agent has no neighbors which are not currently part of the candidate spanning tree. In
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this situation, the active agent backtracks, passing control back to the agent which originally
activated it. This agent then chooses another of its own neighbors which isnot part of the
candidate spanning tree. This process continues until control is passedback to the root node
and the root node has no unexplored edges.

With each node aware of who its neighbors are in the final spanning tree, we use a
series of distributed breadth first searches to find the diameter of the tree.The convergence
detector designates one agent randomly as the root node. This node sends a message to each
of its neighbors in the spanning tree informing them that they are one level away from the
root. These agents then send a message to each of their neighbors from which they have not
already received a message indicating that they are two levels from the root, and so on. Once
an agent has sent messages to each of its neighbours, it sends a message back to the agent
which activated it, indicating its current level. This value is passed backwards through the
tree until it reaches the root node. The root node then sends the maximum of these values,
equal to the maximum shortest path between the root and any other node in thespanning
tree, to the convergence detector agent. The convergence detector agent then assigns another
agent as the root node, and the process is repeated until the shortest distance between all
pairs of nodes - the diameter of the tree - is determined.

It is important to note that while the use of a convergence detector agent serves to
shorten the running time of the algorithm, it is not required for the algorithm to produce
solutions and thus does not represent a single point of failure. We present below two potential
alternatives to the use of a dedicated convergence detector agent for situations requiring full
decentralization.

A random agent present in the original network can perform the function of the conver-
gence detector agent if the use of such an agent is not permissible. OnceLBP has reached
a number of iterations equal to the diameter of the spanning tree, the agent initiates a
distributed breadth-first search similar to that used to find the diameter of the spanning tree.
This time, agents send messages to their neighbors indicating whether they have reached
convergence or not. These messages are propagated back to the agent. Once the agent has
received a message indicating the convergence status of each node in thenetwork - it is aware
of the identities of each agent, though not their costs or capabilities, throughthe construction
of the spanning tree - then it either terminates the algorithm if all agents have converged, or
restarts it for a number of steps equal to the diameter of the spanning tree. The designated
agent is not aware of the beliefs of its neighbours about their own states,and thus has no
incentive to manipulate the calling of convergence.

In situations where neither of the above two techniques are practical, the algorithm can
instead be run for a pre-designated number of iterations. This requires that the algorithm is
run for a longer period of time than if convergence detection were used, but does not affect
the quality of solutions produced.

3.7. Allocation
Once the final states of each of the agents have been determined, we can perform the

process of allocation. For each of the agents in the network, we remove edges leading to
other agents which are not listed in their final state if there are no other producers/consumers
of that good; in the case of agents being in the inactive state, we remove all of their edges.
We then iterate through the agents once more, this time checking to see if, giventhe results
of the previous stage of allocation, each producer was able to acquire allthe goods in its set
of input goods. If a producer is determined to have acquired an incompleteset, we remove
their outgoing edges. At the conclusion of this process, producers with an outgoing edge are
regarded as having produced a good in the allocation, while consumers withan incoming
edge have regarded as having acquired their consumable good in the allocation.
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3.8. Allocation Value
We determine the value of our allocations by the equation given below, whereC is the

set of consumers to acquire a good,Vc is the consumption value obtained by each of those
consumers,P is the set of producers in the allocation who produce a good, andRp is the
production cost of each producerp. This is equivalent to Equation 1.

V al =
∑

c∈C

Vc −
∑

p∈P

Rp (4)

3.9. Payments
Once the allocation has been performed, each active producer receives a payment equal

to their reserve price plus the accumulated cost of their inputs from the buyer of their
output good. All active producers therefore recover their total costsof production plus the
additional fixed margin encoded in the reserve price.This allows producers to make a profit,
motivating participation by economically self-interested producers.Active consumers may
acquire goods at a cost below their consumption value. In an allocation with no “dead ends”,
i.e. all producers in the allocation produce their output good, the sum of thedifferences
between the payments made by active consumers and their consumption valuesis equal to
the allocation value.
3.10. Alternative Approaches

There are, of course, other possible approaches to this problem: as well as market-based
approaches such as auctions and negotiations, fully centralized techniques such as mixed
integer programming are capable of finding optimal allocations in fractions of asecond;
various global search algorithms would also be capable of finding optimal allocations. My-
opic techniques such as greedy search may generate optimal solutions on networks without
resource contention, such as the Simple network. However, their inability to look ahead
means they are unsuitable for networks where a decision to allocate a scarce good to a
certain producer, such as good 4 being allocated to producer P6 in the Greedy-Bad network
(see Figure 5), may lead to infeasible solutions. As mentioned in Section 1, exact graphical
inference techniques such as graph cuts and junction trees are also possible alternatives;
however, the need for complete knowledge of the underlying network obviates the useful-
ness of these techniques to decentralized applications, and such modifications, whether they
involve clustering nodes or cutting edges, serve to destroy the trading relationships (and thus
the logical paths for flows of information) originally present in the network.LBP is able
to deal with resource contention and produce efficient results whilst preserving the original
structure of the network, and operates in a distributed and decentralized manner.

4. EXPERIMENTS

4.1. Network Structures
We test our LBP-based method over the full set of network structures from Walsh and

Wellman (2003), one network from Wellman and Walsh (2000), and three additional net-
works of our own creation. These networks exhibit a variety of structural properties intended
to show the performance of LBP under varying conditions. Upon initializationof each of
the networks, the reserve price of each producer is set to a decimal value drawn from the
intervalU(0, 1). These values are re-computed and changed after each run. Consumption
values, taken from Walsh and Wellman (2003), are fixed at the values given underneath
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each consumer (C1, C2 and so on) in each of the following figures, overevery run. We
implemented our system in Java.

FIGURE 3: Simple network, from Walsh and Wellman (2003)

FIGURE 4: Two-Cons network, from Walsh and Wellman (2003)

FIGURE 5: Greedy-Bad network, from Walsh and Wellman (2003)
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FIGURE 6: Unbalanced network, from Walsh and Wellman (2003)

FIGURE 7: Many Cons network, from Walsh and Wellman (2003)
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FIGURE 8: Bigger network, from Walsh and Wellman (2003)

FIGURE 9: Harder network, from Walsh and Wellman (1999)

The Simple network, shown in Figure 3, is a small three-tier network with two possible
sources for the supply of C1’s consumable good, good 3. Two-Cons,shown in Figure 4,
introduces the issue of complementary goods - P4 needs both goods 1 and 2to produce
its output. Because of this, only one of the consumers in this network can be satisfied at
one time. The Greedy-Bad network, shown in Figure 5, introduces further complementarity
issues. Producer P6 is a possible seller of one of Producer P7’s inputgoods, good 5. However,
in order to produce good 5, P6 requires good 4, which is also one of P7’sinputs. Because P7
is necessarily present in the single optimal solution to this network, it must buy good 5 from
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FIGURE 10: Three-tier Many-Alts network

FIGURE 11: Four-tier Many-Alts network

P5, even if the price is more expensive than when bought from P6. This network serves to
show the weakness of greedy search-based techniques for supply chain formation - although
P7 may be able to acquire good 5 more cheaply from P6, in doing so it renders the rest of
the supply chain infeasible.

Figure 6 shows Unbalanced, a larger network with several instances ofcomplementarity.
The Many-Cons network, shown in Figure 7 is a larger tree-structured network in which
multiple consumers can be satisfied simultaneously. The Bigger network, in Figure 8 is a
large-scale network with many feasible solutions. Harder, shown in Figure9 can be seen as
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FIGURE 12: Huge network

a much larger version of Greedy-Bad: despite the scale of this network, there exists only
one possible solution due to the presence of a number of complementarities. The three-tier
Many-Alts network, shown in Figure 10, models a scenario when there exists a large number
of buyers and sellers of an identical good, similar to a commodities market. The four-tier
Many-Alts network, in Figure 11, increases the complexity of the problem byintroducing an
additional tier of producers. Producers in the second tier of this networkare faced with 144
possible alternatives for sourcing and sales. Finally, the Huge network,shown in Figure 12,
models a very large-scale supply chain, with six tiers of production and three consumers.

4.2. Performance Evaluation
To evaluate the performance of our method, we perform LBP on each network until a

convergent state is reached, using the final state of each agent as the basis for our allocations.
If convergence is not reached, i.e. the state which each believes holds the lowest cost contin-
ues to oscillate, LBP continues to run for a maximum of 250 steps. We record the result at the
end of these 250 steps as normal. We compare the value of our allocations to the optimally
efficient value, determined using mixed integer programming, and to the resultsof our re-
implementation of the auction protocols given in Walsh and Wellman (2003): SAMP-SB,
and SAMP-SB-D.

SAMP-SB uses a series of double auctions, one per good, which run simultaneously and
independently. Winner determination is performed according to the (M+1)stprice rule, with
a single winning buyer with a bid at or above the (M+1)st price and a single winning seller
with a bid at or below this price. Buyers and sellers bid place ascending bidsaccording a
simple set of rules, with producers seeking to pay no more for their combinedset of input
goods than they expect to receive from the sale of their output good. Consumers aim to
acquire their single consumable good as cheaply as possible. Allocation is performed as for
LBP, as described in Section 3.7, with production costs of active producers taking the place
of reserve prices in the allocation value calculation.

SAMP-SB-D is a modification of SAMP-SB which allows inactive producers -those
producers who do not produce an output good in the allocation - to decommitfrom contracts
to buy inputs for which they would pay a positive price, a situation referredto as a “dead
end”. In such a situation, decommitment means that the incoming edges of producers in a
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dead end are removed, and the production cost of decommiting producer isnot counted in the
value of the allocation. Producers further down the chain who are affected by this decommit-
ment are, in turn, also allowed to decommit. Once the decommitment stage is completed,the
value of the allocation is calculated as outlined in Section 3.7. Decommitment allows for the
avoidance of this potential source of inefficiency, though at the cost ofrendering contracts
between bidders non-binding.

As with Walsh and Wellman (2003), we gather 100 results for each network for LBP,
SAMP-SB and SAMP-SB-D, discarding runs in which the optimally efficient value is non-
positive. Due to this fairly small sample size the results produced by our reimplementations
of SAMP-SB and SAMP-SB-D differ slightly to those given in Walsh and Wellman (2003),
but in all cases they follow similar trends and thus give a fair representationof the perfor-
mance of these auction protocols.

4.3. Competitive Equilibrium
For fair comparison with SAMP-SB and SAMP-SB-D, we divide our resultsfor net-

works Unbalanced, Two-Cons, Greedy-Bad and Harder into instances where the sets of
reserve prices (for LBP) or production costs (for SAMP-SB) admit competitive equilibrium,
and instances where they do not. We generated 100 instances each of competitive equilibrium
and non-competitive equilibrium for these networks, determining the presence (or otherwise)
of competitive equilibrium using mixed integer programming. Competitive equilibrium,as
defined in Walsh and Wellman (2003), is a set of reserve prices/production costs in which
producers in the optimal allocation obtain non-negative surplus by being active, and produc-
ers not in the allocation would acquire non-positive surplus by being active. Additionally, all
consumers in the optimal allocation are required to obtain the consumable good which gives
them the maximum non-negative surplus, and consumers not in the allocation would receive
non-positive surplus by obtaining any good.

FIGURE 13: An instance of the Greedy-Bad network with sample prices that do not permit
competitive equlibrium

Figure 13 shows an optimal allocation to the Greedy-Bad network with a set ofreserve
prices that do not permit competitive equilibrium. Active producers and theirassociated
goods are in grey, while inactive producers and goods which are not produced in the allo-
cation are in white. Edges associated with unproduced goods are dashed. In order for P5 to
receive its reserve price, the price of good 5 must be greater than the sum of the prices of
Producer P5’s inputs plus P5’s reserve price. However, because inactive Producer P6 must
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not be able to make a profit if it was to participate, the price of good 5 must alsobe lower
than the sum of the prices of Producer P6’s inputs plus its reserve price.In much the same
way, good 6 must be exchanged at a price below Consumer C1’s consumption value, but
above P7’s reserve price plus the sum of the prices of its inputs. Because the goods cannot
be exchanged at prices which fulfil all of the inequalities given the set ofagent reserve prices,
competitive equilibrium does not exist in this instance of the network.

Input complementarities - a situation where a producer has to make a choice between
two or more identical goods from two or more different producers - are required for the
non-existence of competitive equilibrium; because networks Simple and Many-Cons are
polytrees, competitive equilibria always exist for these networks. Althoughthe Bigger and
Huge networks do contain input complementarities, we, as with Walsh and Wellman(2003),
in the case of Bigger, were unable to generate no-equilibrium instances ofthese networks.

4.4. Efficiency
We divide our results into one of four efficiency classes: negative, zero, suboptimal and

optimal. Recall equation 4, which allows us to determine the value of an allocation.The
optimally efficient allocation within a network, given a set of producer costs, is the one
which maximizes this value. We use the optimally efficient allocation as a benchmarkfor the
results we obtain using our LBP method. We determine the optimally efficient allocation for
each run using mixed integer programming. We classify our results using the LBP method
as follows:

4.4.1. Negative. A negative-valued allocation is an allocation in which the reserve prices
(LBP)/production costs (SAMP-SB) of active producers exceeds theconsumption values of
active consumer(s). This is caused by dead ends: inactive producers who acquire one or
more input goods but do not produce an output, either due to no buyer being found for their
potential output good, or due to the producer acquiring an incomplete set of input goods.
In LBP, dead ends may produced by the double-counting of belief valuescaused by loopy
networks, or by non-convergence. SAMP-SB-D avoids the problem of dead ends by allowing
producers in such situations to decommit from contracts to buy their inputs. While a similar
post-allocation decommitment stage is possible with LBP, we omit this functionality to give
a clearer picture of the performance of our proposed approach.

4.4.2. Zero. A zero-valued allocation is one in which all producers are assigned to an
inactive state, meaning that no goods are bought or sold. Zero-valued allocations are more
desirable than negative-valued allocations, but less desirable than suboptimal or optimal
allocations.

4.4.3. Suboptimal. Suboptimal allocations are allocations in which a positive non-optimal
solution was found. This can be caused by the presence of dead ends,or by finding an
allocation without dead ends when an allocation of higher value existed.

4.4.4. Optimal. An optimal allocation means that our algorithm was able find the allo-
cation which produced the maximum efficiency available, meaning we achievedthe same
value as the centralized benchmark, determined by local search.
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5. RESULTS

5.1. Efficiency Classes
In keeping with our desire for as fair a comparison between the methods as possible,

the efficiency classes of the results produced by SAMP-SB and SAMP-SB-D are identical
to those we use for our LBP-based method. For SAMP-SB and SAMP-SB-D, a zero result
means that no solution was found, and no dead ends were created. This isequivalent to our
zero result in which no convergence is reached. The definitions of negative, suboptimal and
optimal allocations given in (Walsh and Wellman, 2003) are identical to ours. The ability
for inactive producers to decommit from contracts and thus eliminate the problem of dead
ends under the SAMP-SB-D protocol means that there is no negative efficiency category for
SAMP-SB-D.

Table 2: Distribution of efficiency classes from LBP, and the SAMP-SB and SAMP-SB-
D protocols from Walsh and Wellman (2003). Classes are Negative, Zero, Suboptimal and
Optimal.

LBP % of SAMP-SB % of SAMP-SB-D % of
instances instances instances

Network Neg Zero Sub Opt Neg Zero Sub Opt Zero Sub Opt

Simple 0.0 0.0 0.0 100.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0

Unbalanced
CE 0.0 1.0 0.0 99.0 0.0 0.0 17.0 83.0 0.0 6.0 94.0

No CE 0.0 3.0 0.0 97.0 95.0 0.0 1.0 4.0 92.0 1.0 7.0

Two-Cons
CE 0.0 0.0 2.0 98.0 18.0 0.0 11.0 71.0 0.0 6.0 94.0

No CE 0.0 0.0 0.0 100.0 25.0 1.0 74.0 0.0 0.0 100.0 0.0

Bigger 2.0 1.0 0.0 97.0 0.0 0.0 2.0 98.0 0.0 2.0 98.0

Many-Cons 0.0 0.0 0.0 100.0 36.0 0.0 54.0 10.0 0.0 0.0 100.0

Greedy-Bad
CE 0.0 0.0 0.0 100.0 2.0 0.0 19.0 79.0 0.0 0.0 100.0

No CE 0.0 0.0 0.0 100.0 99.0 0.0 1.0 0.0 96.0 0.0 4.0

Harder
CE 0.0 37.0 0.0 63.0 60.0 0.0 3.0 37.0 3.0 42.0 55.0

No CE 1.0 87.0 0.0 12.0 100.0 0.0 0.0 0.0 99.0 0.0 1.0

Huge 0.0 3.0 96.0 1.0 0.0 0.0 37.0 63.0 0.0 37.0 63.0

Many-Alts 3 0.0 9.0 0.0 91.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0

Many-Alts 4 0.0 9.0 0.0 91.0 0.0 0.0 0.0 100.0 0.0 0.0 100.0

We see from Table 2 that LBP is able to match SAMP-SB’s performance for networks
Simple and Bigger, while producing less efficiency on Huge and slightly less onthe two
Many-Alts networks. The inability for LBP to converge to the optimal on the Huge network
is attributable to the large number of undirected cycles present in the network, rather than
its size - as we note in Section 6, LBP is guaranteed to converge to the optimal ontrees,
regardless of their size. The presence of undirected cycles leads to thedouble counting of
beliefs by nodes within the cycles, which in turn leads these agents to pass incorrect values
to the other nodes in the network. This may lead to agents being assigned incorrect states
in the final allocation. For all other networks, LBP strongly outperforms SAMP-SB. It is
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also clear that in most cases, the existence of competitive equilibrium has no effect on the
results produced by LBP; as would be expected given our non-market-based approach, the
distribution of reserve prices/production costs for producers does not appear to matter as
much for LBP as it does for SAMP-SB. Even if we compare our results with the best case
for SAMP-SB, using only those results in which competitive equilibria exist, weare still
able to show a clear advantage in the proportions of our runs showing optimal efficiency,
with marked reductions in negative, zero and suboptimal solutions in almost allcases.

Our results are also comparable to those produced by SAMP-SB-D, with similar ef-
ficiency class proportions between the two methods for most networks if onlythe results
where competitive equilibria exist for SAMP-SB-D are compared. In this case, SAMP-SB-D
generates optimal allocations with equal frequency to LBP for networks Unbalanced, Bigger
and Greedy-Bad, though like SAMP-SB it struggles when competitive equilibria are not
present, with the allocations produced by LBP in the absence of these conditions once again
vastly more efficient.

While the use of a post-allocation decommitment protocol similar to SAMP-SB-D would
have slightly improved the performance of LBP on the Bigger network by converting the
two negative-valued allocations into zero-valued allocations, the consistent optimality of our
results suggests that such an addition would largely be unnecessary. The performance of
our method is aided by the fact that, when viewed as undirected graphs, networks Simple,
Greedy-Bad and Many-Cons are all acyclic - LBP is guaranteed to converge to the correct so-
lution on networks with this structure. The strong performance of LBP on theother networks,
however, shows that this network structure is not a prerequisite for allocative efficiency, and
that LBP is still able to produce optimal results on more loopy networks.

5.2. Average Efficiency
Table 3 shows the average efficiency achieved over 100 runs for each network by LBP,

SAMP-SB and SAMP-SB-D as a fraction of the available efficiency. An average efficiency
of 1.000 indicates that 100% of the available efficiency was captured on each of the hundred
runs for that particular network instance, and represents the best possible result. Negative
values indicate that over 100 runs the method recorded negative average efficiency in that net-
work. For example, a result showing -1.000 average efficiency means the method achieved,
on average, -100% of the maximum available efficiency value. Because weare measuring
results as a fraction of the efficient value, strongly negatively efficientresults can lead to
average efficiency values below -1.000.

We see from Table 3 that once again, LBP essentially equals or significantlyoutperforms
SAMP-SB for the majority of networks, capturing, with the exception of the Bigger and
Huge networks, a higher proportion of the efficient value than SAMP-SBis able to. As with
the previous set of experiments, if our results are compared to only those where competitive
equilibria are present for SAMP-SB-D, then we see that SAMP-SB-D is able to capture 30%
more for the Huge network, around 6% more of the average efficiency than LBP for the
Bigger network, and around 1% more for Unbalanced, with essentially equally near-optimal
or optimal results for the other networks. However, LBP strongly outperforms SAMP-SB-D
in the absence of competitive equilibria, capturing at worst 18% more and atbest 96% more
of the available efficiency in networks Harder and Greedy-Bad, respectively.
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Table 3: Average efficiency in each network produced by the proposed LBP-based technique,
and the SAMP-SB and SAMP-SB-D protocols from Walsh and Wellman (2003). A result of
1.000 is equal to the capture of an average of 100% of available efficiency, while a result
of -1.000 is equal to an average capture of -100% of available efficiency. Note that while
1.000 is the maximum achievable positive value, it is possible to produce negative overall
efficiencies below -1.000.

LBP average SAMP-SB average SAMP-SB-D average
Network efficiency efficiency efficiency

Simple 1.000 1.000 1.000

Unbalanced
CE 0.988 0.951 0.996

No CE 0.944 -4.224 0.066

Two-Cons
CE 0.998 0.719 0.963

No CE 1.000 0.215 0.543

Bigger 0.941 0.998 0.998

Many-Cons 1.000 0.174 1.000

Greedy-Bad
CE 1.000 0.941 1.000

No CE 1.000 -3.316 0.047

Harder
CE 0.734 -0.691 0.684

No CE 0.192 -2.664 0.006

Huge 0.646 0.908 0.911

Many-Alts 3 0.91 1.000 1.000

Many-Alts 4 0.91 1.000 1.000
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5.3. Messages and Bids Before Convergence

Table 4: Average numbers of messages passed before convergenceand the average total
bandwidth required in each network using the proposed LBP-based technique compared
with the average numbers of bids placed in each network before quiescence and the average
number of bids placed and price quotes sent in the SAMP-SB protocol from Walsh and
Wellman (2003).

LBP average LBP average SAMP-SB average SAMP-SB average
Network number of total bandwidth number of number of

messages passed required bids placed bids placed and
price quotes sent

Simple 46.4 120.78 107.96 411.46

Unbalanced
CE 367.54 1626.0 615.51 3045.83

No CE 368.0 1621.5 871.93 4649.17

Two-Cons
CE 90.86 270.3 534.01 2070.68

No CE 84.0 305.32 661.14 2678.82

Bigger 1440.0 17945.28 888.91 6956.41

Many-Cons 399.36 1166.0 2620.12 9153.11

Greedy-Bad
CE 90.0 284.24 543.32 1934.6

No CE 90.0 292.16 801.15 2995.02

Harder
CE 11626.48 79547.2 1769.03 16190.65

No CE 12260.32 175237.9 731.06 8091.07

Huge 4548.36 14429.28 3164.4 15412.44

Many-Alts 3 5336.64 188665.9 107.43 1962.99

Many-Alts 4 11504.0 515839.4 179.88 3670.55

Table 4 shows a comparison between the mean averages over 100 runs for each network
of the total number of messages passedand the total bandwidth required before convergence
in LBP versus the mean average total number of bids placed, and bids placed plus price
quotes sent, before quiescence - a state in which no agent wishes to change its bid for any
good - in SAMP-SB. We measure the total bandwidth required by LBP by recording the
total number of belief values sent between agents in each run. Recordingthis value allows
us to perform a like-for-like comparison with the total bandwidth required bySAMP-SB, as
measured by adding the total number of price quotes sent to the number of bids placed.

We see that, in most cases, LBP requires the passing of far fewer messages to reach
convergence than the number of bids needed for SAMP-SB to reach quiescence. One ex-
ception to this is the Bigger network - 1440 is the minimum total number of messages that
can be passed before LBP can be said to have converged for this network, and is equal to
the diameter of the network plus one (an additional iteration is necessary to determine that
the states have not changed) multiplied by the number of messages passed in asingle step.
The other exception is with the two Many-Alts networks. Although LBP converges reliably
at or near the minimum number of iterations for this network, the large number ofmessages
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passed is due to the strong interconnectedness of these networks - eachof the 12 producers
in each tier is connected to every producer in the previous and next tiers of the network, and
must pass a message to each of them at each iteration.

We see similar outcomes when comparing the total bandwidth required by LBP withthe
total number of bids placed plus price quotes sent in SAMP-SB. LBP reliablyrequires less
bandwidth than SAMP-SB on both small networks and large networks with low intercon-
nectedness, such as Many-Cons and Bigger, but tends to require a great deal more bandwidth
on large, highly interconnected networks like Harder and the two Many-Altsnetworks.

5.4. Scaling
In this section, we examine how the efficiency of the allocations produced by LBP,

SAMP-SB and SAMP-SB-D are influenced by three network properties:the number of
agents in the network, the average degree of connectivity between agents, and the number
of tiers of agents in the network. Since LBP is a distributed and decentralizedalgorithm,
computational scalability is not an issue. This is also true of SAMP-SB and SAMP-SB-D.

We see from Figures 14, 15 and 16 that, over the networks we tested, average efficiency
in LBP appears to be weakly negatively correlated to the number of agents and the number
of tiers, while there is little or no correlation between the average efficiency of LBP and aver-
age interconnectedness. SAMP-SB and SAMP-SB-D show no correlation between average
efficiency and network structure. It is clear from our results that, as would be expected, LBP
performs flawlessly on tree-structured networks, such as Simple or Many-Cons, achieving
perfect allocative efficiency. This is a guarantee which holds regardless of the network’s size.
The performance of LBP on networks with loops cannot, unfortunately, be guaranteed, and a
full set of convergence conditions for LBP has yet to be found. This,again, is true regardless
of the size of the network, meaning an analysis of the efficiency producedon a set of even
larger networks would not be instructive. The absence of a convergence guarantee is the one
unavoidable weakness of the algorithm: in much the same as SAMP-SB and SAMP-SB-D
are generally unable to deal with the non-existence of competitive equilibrium,LBP may
sometimes difficulties when applied to loopy networks.
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FIGURE 14: A graph showing how efficiency in each of the protocols varies with thenumber
of agents in a network.
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FIGURE 15: A graph showing how efficiency in each of the protocols varies with thenumber
of tiers in a network.
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FIGURE 16: A graph showing how efficiency in each of the protocols varies with theaverage
interconnectedness of the agents in a network. We measure average interconnectedness as the
total number of edges of each agent in the network divided by the number of agents.

5.5. Game-theoretic Properties
As previously mentioned, auction-based approaches are often favored for supply chain

formation due to their possession of various game-theoretic properties. Inthis section, we
analyse the game theoretic properties of our LBP-based approach, andcompare them to those
of SAMP-SB and SAMP-SB-D. Although LBP is not incentive compatible, it isstrongly
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budget balanced and guarantees perfect allocative efficiency whennetworks are acyclic;
individual rationality could also be guaranteed with a post-allocation decommitment stage
similar to that used by SAMP-SB-D.

5.5.1. Individual Rationality. A mechanism is classified as individually rational if a
participant cannot receive negative utility by participating. As with SAMP-SB, we cannot
guarantee the individual rationality of our approach given that there exists the possibility of
dead ends being present in our allocations. Producers involved in deadends purchase inputs
but are unable to sell their outputs, and so receive negative utility. SAMP-SB-D guarantees
individual rationality through its post-allocation decommitment stage, which allowsproduc-
ers involved in dead ends to decommit from their contracts to buy goods whichare no longer
needed, and thus avoid negative utility. Individual rationality could be guaranteed in our
approach using a similar process of post-allocation decommitment.

5.5.2. Incentive Compatibility. A mechanism is incentive compatible if the dominant
strategy for participants is to truthfully reveal their private valuations. At present, our mech-
anism is not incentive compatible for either buyers or sellers due to the factthat participants
may potentially increase their utility by inflating their reserve prices. However,there is an
uncertain upper limit to this potential increase in utility - if a producer reports a reserve price
which is too high, there may be, depending on the network structure and the reported pro-
duction costs of other producers, an alternative, cheaper allocation in which the misreporting
agent does not participate. The upper limit is uncertain due to the fact that producers have
no information about the structure of the network as a whole, nor do they know the reported
costs of any agents other than those which they are directly linked to. This is an issue for
sellers in any real-life market-based scenario.

5.5.3. Budget Balance. Our approach involves no payments either to or from the mecha-
nism, and is therefore strongly budget balanced. This property is also present in both SAMP-
SB and SAMP-SB-D, where no payments are made to or by the auctions.

5.5.4. Allocative Efficiency. The results presented in Tables 2 and 3 suggest that our
approach is capable of reliably producing more efficient allocations than SAMP-SB and
SAMP-SB-D on the network instances tested. LBP guarantees perfect allocative efficiency
on acyclic networks, due to its ability to reliably converge to the optimal MAP assignment
on graphs which do not contain loops. If LBP converges on a network with a single loop,
the resulting allocation is also guaranteed to have perfect allocative efficiency. Because there
is no guarantee of the quality of solutions produced by LBP on networks withmore than a
single loop, allocative efficiency for these networks is also impossible to guarantee. Of the
networks we tested, two - Unbalanced and Bigger - contain multiple loops, andLBP showed
strong allocative efficiency for both.

6. CONCLUSIONS

In this paper, we present a new method for decentralized supply chain formation, using
work by Walsh and Wellman (2003) as both a foundation for the structure ofour networks,
and as a basis for comparison to our results. Our LBP-based method, involving decentralized
message passing to propagate beliefs held by our agents, is able to performsignificantly bet-
ter at finding efficient allocations for most networks than the established approach utilizing
simultaneous ascending double auctions we compare it to, whilst making no assumptions of
centralization.

For the majority of networks tested, we were able to show that max-sum LBP is able
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to match or outperform the results obtained by the auction-based method, producing consis-
tently optimal or near-optimal average efficiency results regardless of cost structures. With
one exception, our method is able to avoid the problem of consistent suboptimality of alloca-
tive efficiency encountered by the auction-based approach when competitive equilibrium is
not present, continuing to produce optimal or near-optimal allocations overmost networks.

We believe that our method provides an interesting avenue for future research by merit
of its ability to produce more efficient allocations than an established auction protocol in a
comparable scenario whilst operating in a decentralized manner. Our agents share limited
information about their reserve price and production capabilities to their neighbors in the
network. This means that participants reveal no more private information using our method
than in an open auction. By allowing our agents to share information about their reserve
price, and about which goods they wish to buy and sell, we are able to produce highly
efficient allocations over a range of network topologies.

7. FUTURE WORK

In using Walsh and Wellman (2003) as a basis for our work, we traded the possibil-
ity of potentially complex extensions in favor of an expressive graphical representation of
supply chain networks and a basis for fair comparison. While the abstractions we have
made (abstractions are present to some degree in all agent-based approaches to supply chain
formation) serve to limit the practical value of our approach were it to be applied as-is, work
is ongoing to increase the fidelity of our model to the numerous constraints present in real-
world supply chain formation. Through the implementation of such extensions,we aim to
enrich our model to a point at which makes application of our technique possible in a more
realistic scenario, such as the TAC SCM game or simulations of real-world supply chains.

The most obvious first extension would be to introduce a stronger pricing element into
our approach. At present, reserve prices in our model are fixed. Byallowing producers to
change their margins (and thus the prices of their goods) during the running of LBP we
grant them increased autonomy, though at the cost of making the processof determining the
optimal allocation more difficult. Promisingly, LBP has been shown to be resistant to the
effects of alterations to observations (equivalent to our unary costs) inthe related area of
sensor network communication (Crick and Pfeffer, 2003).

Further potential extensions might involve expanding the properties of goods to take
into account factors such as quality, quantity, delivery dates and default penalties. Produc-
ers could be improved by implementing properties to model production capacity and the
possibility of strategic behavior - at present all agents are truth-telling - while consumers
might be imbued with richer preferences over goods. A temporal, dynamic aspect could
be introduced, with trading relationships forming and dissolving over time, with trust and
reputation interesting issues to be taken into account in this scenario.These additions would
require agents to be outfitted with a much larger number of states than in the approach
presented in this article, but a larger number of states is not a great obstacle to application
of the algorithm to more realistic problem scenarios because of its distributednature, the
simplicity of the calculations made by each agent, and the compact representation of both
states and beliefs.
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