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Abstract — Classification is the most basic method for organizing resources in the physical space, cyber space, socio space 
and mental space.  To create a unified model that can effectively manage resources in different spaces is a challenge. The 
Resource Space Model RSM is to manage versatile resources with a multi-dimensional classification space. It supports 
generalization and specialization on multi-dimensional classifications.  This paper introduces the basic concepts of RSM, and 
proposes the Probabilistic Resource Space Model, P-RSM, to deal with uncertainty in managing various resources in different 
spaces of the cyber-physical society. P-RSM’s normal forms, operations and integrity constraints are developed to support 
effective management of the resource space. Characteristics of the P-RSM are analyzed through experiments.  This model also 
enables various services to be described, discovered and composed from multiple dimensions and abstraction levels with 
normal form and integrity guarantees.  Some extensions and applications of the P-RSM are introduced. 

Index Terms — cyber-physical society, faceted navigation, non-relational data model, resource management, resource space 
model, semantic link network, cyber-physical-socio services. 

——————————      —————————— 

1 INTRODUCTION

O create a unified model for effectively organizing and 
managing various resources with uncertainty in the 
cyber space, physical space, socio space, and mental 

space is a fundamental challenge.  

1.1 Requirement of Managing Resources in Diverse 
Spaces  

The physical space contains physical resources, which move 
and transform from one form into another according to 
physical laws.  The resources can be classified from physical 
structures or features.  Many classification tools like 
bookshelfs and drawers have been invented to effectively 
organize and manage resources in the physical space. 

The socio space includes individuals (humans, behaviors, 
events, etc), structures, and rules.  Individuals are self-
organized into classes according to different economic, 
politic or cultural statuses. 

The mental space consists of knowledge in form of 
concept, experience, commonsense, rule, and theory. 
Various taxonomies have been created as the model for 
managing knowledge. 

The cyber space contains digital resources and 
mechanisms for providing various digital services. Many 
classification mechanisms such as file system and ACM 
CCS (Computing Classification System) have been designed 
to effectively manage digital resources in the cyber space. 

The physical space, socio space, mental space, and cyber 

space will cooperate with each other to form the cyber-
physical society [39].  How to create a uniform model for 
organizing versatile resources in diverse spaces?  

Classification is the most basic method for organizing 
various resources in the cyber space, physical space, socio 
space, and mental space. Usual classification method is one 
dimensional. There are two major reasons to use multi-
dimensional classifications: 

1. Humans need to explore large-scale resource set from 
multiple dimensions (facets). For example, faceted 
browsing on the Web enables users to know multi-facet 
contents of web pages.  

2. Increasing or reducing dimension is an effective way to 
specialize or generalize knowledge in mind and 
resources in the cyber space.  

The Resource Space Model (RSM) is a resource 
management model based on multi-dimensional 
classifications [35][36].  A resource space is a multi-
dimensional classification space, where each dimension 
represents a classification method. The file system can be 
seen as a one-dimensional classification space in the cyber 
space. RSM enables users to operate resource spaces in the 
cyber space according to the classifications in their mental 
spaces. 

1.2 Managing Resources with Uncertainty 
Previous resource management approaches only concern the 
efficiency of managing resources in one space. The future 
cyber-physical society will be a complex space involved in 
many uncertain movements, behaviours and events. In many 
cases, it is hard to clearly classify a set of resources into 
definite classes.  It is necessary to explore the unified model 
for managing resources in various spaces with uncertainty. 
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Previous approaches to managing resources with 
uncertainty in the cyber space include two types: 
incorporating probabilistic methods into information 
retrieval mechanisms [3][11], and creating an appropriate 
semantic model. 

Most previous data models, like classical relational data 
model, mainly organize and manage certain data [1][8].  
Research has been done to extend traditional data models to 
manage uncertain data.  

Research on uncertain relational data models largely 
falls into two categories depending on whether the model 
satisfies the first normal form (1NF) or not. Models 
satisfying 1NF usually assume that the existence of an entity 
is uncertain and the probabilities are associated with each 
tuple to indicate this type of uncertainty [6][12]. Models 
using non-1NF usually assume that the existence of an entity 
is certain, but the attribute values of an entity are uncertain 
[4][14]. They associate probabilities with attributes of a 
tuple. These two types of probabilistic relational models 
have their own limitations. The probabilistic relational table 
satisfying 1NF is limited in ability to represent the 
probabilities of attribute values, and, using tuple 
probabilities to specify the probabilities of attributes’ values 
could lead to information loss or combinatorial explosion of 
tuples.  The non-1NF probabilistic relational models often 
accompany with complicated algebras and querying 
mechanisms. The ProbView is an attempt to overcome the 
two types of limitations [21]. It firstly transforms non-1NF 
data into corresponding annotated 1NF patterns, and then 
applies all manipulation and query operations to the 
corresponding 1NF data. But the transformation from non-
1NF into 1NF is not an equivalent transformation, so some 
useful information may be lost during transformation.  

Previous probabilistic relational data models mainly 
concern the existence of a certain entity or the possibility of 
taking different attribute values of a certain entity [5][29]. 
Little work has been done on the data model based on 
uncertain classification.  

Relevant research concerns uncertain classification and 
dataspace [13][15][31].  Dataspace is to realize effective 
personal information management by integrating resources 
from various types of data sources that may be uncertain. 
Research also concerns fuzzy database query language [28], 
uncertain ontology modeling [30], probabilistic queries on 
probabilistic database and evaluation [9, 10, 25].  A system 
integrating research on data management, accuracy and 
lineage is introduced in [32]. The combination of XML and 
relational database has been investigated to incorporate both 
advantages [19].  

Much work has been done to manage probabilistic data in 
XML (eXtensible Markup Language [18][20][24]. A 
framework is proposed to acquire, maintain and query XML 
documents with incomplete information, in which the order 
in documents and DTDs (Document Type Definition) is 
ignored [2]. A probabilistic XML approach is proposed to 
resolve conflicts during data integration, where the order in 
documents and DTDs plays an important role [21]. 
Complexity for managing probabilistic XML data is 
analysized in [27].  

1.3 Technical Path 

This paper firstly introduces the resource space model based 
on multi-dimensional classifications, and shows its 
characteristics by comparing with the relational data model 
in section 2. Then, a Probabilistic Resource Space Model, P-
RSM, is proposed in section 3 by mapping the RSM into the 
probabilistic space. The operations and the integrity 
constraints of P-RSM are introduced in section 4 and section 
5 respectively to complete the model.  The characteristics of 
P-RSM are analysed through experimental comparison in 
section 6.  Section 7 introduces some potential extensions of 
the model: the satisfactory constraints for effective resource 
management, transforming 1NF into 2NF, integrating 
resource space with semantic link network to support 
advanced applications, and automatically uploading 
resources into resource space.  Section 8 describes the 
applications of P-RSM in faceted search and managing 
service resources. 

2 THE RESOURCE SPACE MODEL RSM 
2.1 Basic Concepts 
A set of resources can be classified by multiple classification 
methods. If we view a classification method as a dimension, 
a multi-dimensional classification space can be formed by 
coordinating the classification methods. 

A resource space is an n-dimensional classification space 
represented as RS(X1, X2, … , Xn), where Xi  are dimensions 
(i.e., axes) defined by a set of coordinates. A coordinate can 
be a coordinate tree (i.e., a classification tree), where every 
node represents a basic concept or a pattern representing a 
category of resources (e.g., the words sequentially co-
occurred in a set of documents can be regarded as a kind of 
pattern, and communities in socio networks can be regarded 
as another kind of pattern). A child node is the subclass of 
its parent node.  One point in the space represents the 
resources of one category. 

The hierarchical structure of dimension supports 
generalization and specialization and it distinguishes the 
resource space from ordinary distance space.  

In the following discussion, R(C) and R(p) denote the 
resource sets that coordinate C and point p represent 
respectively. 

Axis X=(C1, C2, …, Cm) forms a fine classification on 
coordinate Ci' at another axis X’, (denoted as Ci'/X ) if and 
only if (1) R(Ck)∩ R(Cp)∩R(Ci')=∅ (k≠p, and k, p∈[1, m]), 
and (2) (R(C1)∪R(C2)∪ … ∪ R(Cm))∩R(Ci')=R(Ci'). 

As the result of the fine classification, R(Ci’) is 
classified into m classes: R(Ci'/X)={R(C1)∩R(Ci'), 
R(C2)∩R(Ci'), …, R(Cm)∩R(Ci')}. 

For two different axes X and X’, X forms a fine 
classification on X’ (denoted as X’/X) if and only if X forms 
a fine classification on each coordinate of X’.   

X and X’ are called orthogonal with each other in 
classification (denoted as X ⊥ X’) if X’/X and X/X’.  

According to above definitions, we have:  

X ⊥ X’ if and only if R(X’)∩R(X)=R(X) and R(X) 
∩R(X’)=R(X’), where R(X)=R(C1)∪R(C2) ∪…∪R(Cm). 

This indicates the following lemma: 
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Lemma 1. X ⊥ X’ if and only if R(X’) =R(X). 

Lemma 1 indicates that two axes are orthogonal in 
classification if and only if their expression ability is the 
same.  

Any point p is determined by its projections on all axes, 
p[Xi] or p.Xi denotes the projection of p on Xi. A point can 
determine a resource set, where each element is called a 
resource entry. Point and resource entry are two basic 
operation units of RSM. The resources represented by point 
p is R(p)= R(p[X1])∩R(p[X2])∩…∩R(p[Xn]). 

Fig. 1 is an example of a 3-dimensional resource space 
Spec-Apart-Gen(Specialization, Apartment, Gender) that 
manages information of students in a college. Three axes are 
Specialization = {math, chemistry, physics}, Apartment = 
{1#, 2#, 3#}, and Gender = {male, female}. Each point 
denotes a class of students. For example, the point (math, 1#, 
male) represents all of the male students who are studying 
mathematics and living in the apartment of type 1# in this 
college. Each resource entry in this point describes a student 
of the college. 

The coordinate directly at axis is called the top-level 
coordinate, from which, a classification hierarchy can be 
defined top-down. Take Fig. 1 for example, the coordinate 
chemistry at axis specialization is classified into g1, g2 and g3 
in terms of grade, and then they can be further classified 
according to class. In this tree, the label of each node is 
determined by the full path from the root. Thus, the leaf 
node ‘chemistry.g1.c1’ can be distinguished from 
‘chemistry.g2.c1’. The hierarchical resource space can be 
transformed into the equivalent ‘flat’ resource space by 
projecting each leaf node of the coordinate tree onto the axis 
where the root resides [35][36], but this projection makes a 
resource space lose abstraction layers.  

 

 

Fig. 1. A 3-dimensional resource space Spec-Apart-Gen. 

To ensure the correctness of operating resources, RSM 
defines a set of normal forms.  The following are main 
normal forms: 

The first normal form resource space (1NF) is a resource 
space where there are no duplicated axes and there are no 
duplicated coordinates at any axis, i.e., there is no 
duplicated subclasses in each class hierarchy. 

The 1NF is to avoid explicit redundancy. 

The second normal form resource space (2NF) is a 1NF 
resource space where coordinates at any axis are 
independent of each other, i.e., a coordinate is neither a part 
of another nor can represent another coordinate at the same 
axis. 

The 1NF and 2NF, to different extents, enable a resource 
space to accurately locate a class of resources. 

The third normal form resource space (3NF) is a 2NF 
resource space where different axes are orthogonal with 
each other.   

The 3NF enables any point to uniquely locate a class of 
resources. Resources in a 3NF resource space can be 
accessed from any axis.  The 4NF can be further defined by 
ruling out the empty points in resource space [35].  

The resource space shown in Fig.1 satisfies the 1NF and 
the 2NF, but it may not satisfy 3NF as the gender axis is 
usually not in orthogonal with the specialty axis (e.g., 
R(male)≠ R(male) ∩ (R(math) ∪ R(chemistry) ∪ R(physics)). 

Given the ontology of a domain, coordinates can be 
accurately specified by a set of concepts in the ontology.  
Therefore, the normal forms of a given resource space can 
be automatically verified according to the relations between 
concepts in the ontology. 

The main theory of RSM consists of the basic 
methodology of resource space, normal forms, operations on 
resource spaces and their completeness, relations between 
operations and normal forms, RSM algebra and calculus, 
expressiveness of query language, search complexity, 
storage mechanism, and decentralized RSM [35][36].  To 
establish a powerful semantic model for Web applications, 
integration and mappings between RSM, OWL, and 
database were studied [37]. 

2.2 Comparison between the Resource Space 
Model and the Relational Database Model 
Identity is the basis of the relational database model.  RSM 
regards classification as the basis since it reflects the basic 
semantics of resources.  Human’s recognition is based on 
innate classification ability.  

The following example shows the characteristics of the 
RSM.  Multi-layer tables exhibit integrated information of 
multiple generalization layers.  The high layers represent 
generalization on the lower layers. The lower layer 
constitutes a fine classification on the higher layer.  Fig. 2 is 
a multi-layer table on university human resources, which 
naturally constitutes classification trees [36].  

Since the first normal form of the relational data model 
requires a flat table and atomic values of attributes, it is 
inappropriate to use a relational table to represent such a 
multi-layer table. However, it can be naturally converted to 
the 3-dimensional resource space shown in Fig. 3, which can 
naturally reserve the generalization levels. The more layers 
the table has, the more advantages the RSM exhibits. 

The essential differences between RSM and relational 
data model are as follows: 

1. RSM is based on classification. This enables resources 
of the same class to be organized closely and retrieve at 
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the same time. The generalization and specialization on 
classifications enable users or applications to 
effectively organize and manage heterogeneous 
resources according to contents. The traditional 
relational data model is based on identity, attribute and 
values as well as the dependence between attributes. It 
does not support generalization and specialization on 
attributes.  

2. RSM is a multi-dimensional classification space and its 
normalization basis is the relations between 
classifications. It naturally supports faceted search 
(navigation or browsing) in a large resource space. The 
relational data model is based on the flat relational 
table, and its normalization basis is the functional 
dependence relations between attributes. 

3. RSM concerns the contents of resources.  The 
relational data model concerns the attributes of entities, 
and supports attribute-based operations. For open 
domain applications, resources become more and more 
important.  The contents of resources cannot be 
reflected by attributes, for example, the contents of 
texts and images cannot be reflected by their attributes. 
If patterns in the resources to be managed are available, 
some advanced functions of the resource space such as 
automatic construction, adaptation, and uploading 
resources are feasible. 

4. RSM supports a universal resource view on resources 
and generalization and specialization on 
classifications. The relational data model can manage 
multiple tables and support views on them, but it is 
difficult in maintaining the consistency between large-
scale tables, e.g., thousands of tables in some 
applications.  It is also hard for the relational data 
model to support generalization and specialization. 
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Fig. 2. Multi-layer table for managing university human resources. 

The above characteristics indicate that the relational data 
model is suitable for managing data while the RSM is more 
suitable for managing classes not only in the cyber space but 
also in the physical space, the socio space and the mental 
space. 

Although a resource space and a relational database can 
be transformed from one into the other [37], a good resource 
space (especially for a multi-dimensional resource space) 
may not be transformed into a good relational table, vice 
versa.  

The detailed differences between the RSM and other 
techniques such as the relational database model and the 
data cube were discussed in chapter 1 of reference [36]. 

 

Fig. 3. The resource space for managing university human resources. 

2.3 Managing Resources in Cyber-Physical Society 

One characteristic of the cyber-physical society is that 
various resources in the cyber, physical, socio, and mental 
spaces can be uniformly organized from different scales and 
abstraction levels in real-time and lifetime.  RSM is suitable 
for supporting this characteristic since classification is the 
most basic method for organizing resources in these spaces.  
Various sensors detect the statuses and events in the physical 
space and socio space, which can be classified and indexed 
in the resource space.  

The following is a three-dimensional resource space that 
can reflect individuals’ behaviors in room through time:  

RS(Behaviors, Time, Sensortype), where Behaviors, 
Time, Sensortype are dimensions, and Behaviors 
=(MakeFood(MakeCoffee, CookDish, MakeTea), 
Health(BloodPresure, HeartBeat, BrainSignal, 
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RespiratoryRate), Entertainment(PlayGame, PlayChess, 
PlayCard, ListenMusic)). 

Emotions in the mental space and social space will be 
reflected by the cyber space through the cyber-mental 
interface and the cyber-socio interface. The cyber space can 
alarm humans or make recommendations when abnormal 
phenomena, behaviors and events are detected in the 
physical space and socio space.  The resource space can help 
the cyber-physical society recognize the phenomena, 
behaviors, and events from multiple dimensions. 

3 THE PROBABILISTIC RESOURCE SPACE MODEL 
P-RSM 

3.1 Probabilistic Resource Space 
A probabilistic event in the Probabilistic Resource Space 
Model P-RSM is the probability that a resource belongs to a 
certain class. Prob(r∈T) denotes the membership probability 
that resource r belongs to a class T.  T can represent a class 
of resources, an axis, a coordinate, a point, or any of their 
combination by set operations. 

The following are two possible strategies for specifying 
the probabilistic distribution that a given resource belongs to 
a resource space. 

1. Specify the membership probability distribution of 
every resource on all points in the resource space. 

2. Specify the membership probability distribution of 
every resource on all coordinates at every axis. 

The second strategy is more efficient because of the 
following reasons: 

1. The number of points in resource space RS(X1, X2, … , 
Xn) is |X1|×|X2|×…×|Xn|, but the number of coordinates 
is |X1|+|X2|+…+|Xn|, where |X| is the number of 
coordinates at X.  The large number of points makes it 
difficult to specify and manage the membership 
probability of every resource to every point.  

2. Each axis in a resource space represents a classification 
method on resources. A point is defined by its 
projection on all axes. To specify the membership 
probability distribution that a resource belongs to a 
point concerns multiple classifications simultaneously. 
It is easier for users or automatic classification 
algorithms to specify the membership probability 
distribution of a resource on the coordinates of every 
axis. 

Definition 1. A probabilistic resource space <RS(X1, …, Xn), 
βri: Xi→[0, 1], i∈[1, n]> consists of a resource space  
RS(X1, …, Xn) and a membership probability function βri, for 
any resource r and axis Xi in the resource space, βri(C) 
denotes the membership probability that r belongs to 
coordinate C under the condition that r belongs to the parent 
coordinate of C. If C is a top-level coordinate at Xi, then its 
parent is Xi. 

According to above definition, any resource r in a 
probabilistic resource space RS(X1, …, Xn) can have n 
membership probabilistic functions corresponding to the 

axes. Take the probabilistic resource space RS(A, B, C) in 
Fig. 4 for example, resource r has the following three 
membership probabilistic functions: βr-A: A→[0, 1], βr-B: 
B→[0, 1], and βr-C: C→[0, 1].  

Resource r belongs to resource space RS(X1, …, Xn) if and 
only if there exists at least one axis Xi such that the 
membership probabilistic function of r at Xi has been 
explicitly specified. 

From the definition of the probabilistic resource space, 
we can specify the membership probability that a resource 
belongs to each coordinate. Axis and point are classes of 
different granularities, both of them concern set operations 
on coordinates. So, the membership probability that a 
resource belongs to an axis or a point is a complex 
probabilistic event. Without knowing the relations between 
coordinates, and the relations between coordinate and axis, it 
is difficult to calculate the membership probability that a 
resource belongs to an axis or a point according to the 
membership probability that the resource belongs to each 
coordinate. In the P-RSM, we use a real number interval to 
specify the possible membership probability that a resource 
belongs to an axis or a point.  According to the membership 
probability on each coordinate, the membership probability 
on each axis/point in a probabilistic resource space can be 
calculated by the following methods. 
 

 
Fig. 4. An example of probabilistic resource space. βr-B(b1)=0.2 means that 
the probability that resource r belongs to coordinate b1 at axis B is 0.2. 

Methods for calculating membership probability: 

1. For axis Xi={Ci1, Ci2, …, Cim}, the probability that r 
belongs to Xi falls into the interval [max{βri(Ci1), …, 
βri(Cim)}, min{1, βri(Ci1)+…+βri(Cim)}], since R(Xi)= 
R(Ci1) ∪…∪R(Cim). 

2. For point p, the probability that resource r belongs to 
p is equal to the probability that r simultaneously 
belongs to p[X1], p[X2], …, and p[Xn], that is, 
Prob(r∈R(p)) = Prob(r∈(R(p[X1]) ∩ … ∩ R(p[Xn]))). 
The event that events A and B occur simultaneously 
satisfies max{0, Prob(A)+Prob(B) −1} ≤Prob(A ∧ 
B)≤min{Prob(A), Prob(B)}. Thus, the membership 
probability that r belongs to p falls into the interval 
[max{0, ... max{0, max{0, Prob(r∈R(p[X1])) + 
Prob(r∈R(p[X2]))  − 1} + Prob(r∈R(p[X3]))  − 1} … 
+ Prob(r∈R(p[Xn]))  − 1},  
min{Prob(r∈R(p[X1])), …, Prob(r∈R(p[Xn]))}]. 
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3. For any coordinate C’ and its parent coordinate C at 
axis Xi, βri(C’) is defined as the membership 
probability that r belongs to C’ under the condition 
that resource r belongs to C, i.e., βri(C’) = 
Prob(r∈R(C’) | r∈R(C)). Since C’ is a child of C, 
Prob(r∈R(C’)) = Prob(r∈R(C’) ∧ r∈R(C)) holds. 
Since Prob(r∈R(C’)∧r∈R(C)) = Prob(r∈R(C)) × 
Prob(r∈R(C’) | r∈R(C)), we have Prob(r∈R(C’)) = 
βri(C) × βri(C’). So the probability that r belongs to 
R(C’) is βri(C) × βri(C’). 

Above formulas can be easily proved.  The following are 
two examples. In Fig. 4, the probability that r belongs to 
axis A is Prob(r∈R(A)) ∈ [max{βr-A(a1), βr-A(a2), βr-A(a3)}, 
min{1, βr-A(a1) +βr-A(a2)+βr-A(a3)}]=[0.3, 0.6]. The 
probability that r belongs to point p(a2, b2) is Prob(r∈R(p(a2, 
b2))) ∈  [max{0,  βr-A(a2) +βr-B(b2)−1}, min{βr-A(a2), βr-

B(b2)}] = [0, 0.3].  In Fig. 5, the axis Area is used to classify 
scientific publications according to their areas. In the 
classification hierarchy of coordinate CS (Computer Science) 
at axis Area, DB (DataBase) is a subclass of CS and RDB 
(Relational DataBase) is a subclass of DB. For resource r 
and its membership probability function βr, βr(RDB) 
represents the following conditional probability:  
βr(RDB)=Prob(r∈R(RDB)|r∈R(DB)). Similarly, βr(DB)= 
Prob(r∈R(DB)|r∈R(CS)). Since DB is a subclass of CS, the 
probability that r belongs to DB is Prob(r∈R(DB)) = 
Prob(r∈R(DB)∧r∈R(CS)) = Prob(r∈R(CS)) × 
Prob(r∈R(DB)|r∈R(CS)) = βr(CS) × βr(DB). In fact, the 
probability that r belongs to a sub-coordinate is the 
multiplication of all the conditional probabilities along the 
path from the top-level coordinate to this sub-coordinate. So 
the probability that r belongs to RDB is βr(CS) × βr(DB) × 
βr(RDB).  

 
 

Fig. 5. Conditional probabilities of coordinate hierarchy. 

3.2 Normal Forms of the Probabilistic Resource 
Space Model 

Dependence between categories often makes it difficult to 
correctly classify resources, and it also affects the precision 
of calculating the membership probabilities that resources 
belong to points or axes. Normalization of probabilistic 
resource spaces can help eliminate this dependence. 

The 1NF of RSM is used to eliminate the redundancy 
caused by the duplication of coordinates. It also applies to 
the P-RSM.   

In the resource space satisfying 1NF, dependence relation 
may exist between coordinates at the same axis.  This 
dependence makes users hard to select an appropriate 

coordinate when storing and retrieving resources. One 
solution is to establish a link between dependent coordinates 
so that the dependent coordinates can be accessed at the 
same time.   Based on this idea, we can define 1.5NF, which 
can help users to determine the appropriate probability that a 
resource belongs to a coordinate when operating resource 
space. 

Definition 2. A 1.5 NF resource space is a 1NF resource 
space, and the co-access links between all interdependent 
coordinates at the same axis have been established. 

The 2NF of RSM is to eliminate the dependency between 
coordinates so that a resource can be accurately located 
according to coordinates.   The following is the definition of 
the 2NF probabilistic resource space. 

Definition 3. A 2NF probabilistic resource space RS(X1, …, 
Xn) is a 1NF resource space and for any pair of coordinates 
C and C’ at Xi (1≤i≤n), a resource r satisfies Prob(r∈R(C) ∧ 
r∈R(C’))=0, where R(C) represents the resources that C 
represents. 

For a 2NF probabilistic resource space, there is no such a 
coordinate that simultaneously belongs to two parent 
coordinates.  But a resource can belong to different 
coordinates at different probabilities. This is in line with the 
fact that the resource space designers have clear 
classification in mind on the resources to be managed while 
users are sometimes unclear in determining the category of a 
resource. 

Lemma 2. Let X be an axis of a 2NF resource space and R(X) 
be the resources represented by X, Prob(r∈R(X)) 
= ( ( ))

C X

Prob r R C
∈

∈∑ ≤ 1 holds. 

The approach to transforming 1NF into 2NF will be 
discussed in section 7.2.   The independence between 
coordinates in 2NF resource space implies the following 
lemma. 

Lemma 3. For a 2NF resource space, there is no common 
superclass or subclass between coordinates at the same axis. 

A 2NF probability resource space can become a 3NF 
probability resource space by tightly coupling its axes. 

Definition 4. Let X={C1, …, Cm} be an axis, and C’ be a 
coordinate at another axis X’, we say that X is a fine 
classification on C’ (denoted as C’/X) if and only if for any 
resource r: 

1. Prob((r∈R(C’)∩R(Ci)) ∧ (r∈R(C’)∩R(Cj))) = 0, for 
1≤i≠j≤m; and, 

2. Prob(r∈R(C’))= 
( ( ')| ( )) ( ( ))

C X
Prob r R C r R C Prob r R C

∈

∈ ∈ × ∈∑  hold.  

According to definition 4 and the total probability 
theorem, axis X forms a classification on coordinate C’ if 
and only if the probability that resource r belongs to R(C’) 
can be classified into the probabilities that r belongs to 
R(C’)∩R(C1), R(C’)∩R(C2), ..., and R(C’)∩R(Cm) 
respectively. 
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Definition 5. A 3NF probabilistic resource space RS(X1, …, 
Xn) is a 2NF probabilistic resource space, and for any two 
different axes Xi and Xj (1≤i≠j≤n) in RS, Xi⊥Xj holds. 

A 3NF probabilistic resource space satisfies the following 
theorems. 

Theorem 1. Let RS(X1, …, Xn) be a 3NF probabilistic 
resource space. For any two axes Xi and Xj (1≤i, j≤n) and 
resource r in RS, 

i
( ( ))

C X
Prob r R C

∈

∈∑  =
' j

( ( ' ))
C X

Prob r R C
∈

∈∑  

holds.  

Proof. Since RS satisfies 3NF, coordinate C at axis Xi can be 
classified by axis Xj. So Prob(r∈R(C)) = 

' j
( ( ( ) ( ')))

C X
Prob r R C r R C

∈

∈ ∧ ∈∑ holds. Thus, we can get 

i

( ( ))
C X

Prob r R C
∈

∈∑ =
i ' j

( ( ( ) ( ')))
C X C X

Prob r R C r R C
∈ ∈

∈ ∧ ∈∑ ∑ . On 

the other hand, coordinate C’ at axis Xj can be classified by 
axis Xi. So, Prob(r∈R(C’)) = 

i
( ( ( ') ( )))

C X
Prob r R C r R C

∈

∈ ∧ ∈∑  holds. Thus, we can get 

j
( ( '))

C X
Prob r R C

∈

∈∑ =
' j i

( ( ( ' ) ( )))
C X C X

Prob r R C r R C
∈ ∈

∈ ∧ ∈∑ ∑ . 

Therefore 
i

( ( ))
C X

Prob r R C
∈

∈∑  = 
' j

( ( ' ))
C X

Prob r R C
∈

∈∑  holds. � 

Theorem 1 indicates that for any two axes Xi and Xj of a 
3NF probabilistic resource space, the probability that 
resource r belongs to Xi is equal to the probability that r 
belongs to Xj. 

Theorem 2. Let RS(X1, …, Xn) be a 2NF probabilistic 
resource space. For any coordinate C at axis Xi (1≤i≤n), 
Prob(r∈R(C)) ≥

[ i]=

( ( ))
p X C

Prob r R p∈∑  holds, where p is a 

point in RS and p[Xi] is the projection of p at axis Xi.  If RS 
satisfies 3NF, we have Prob(r∈R(C)) 
=

[ i]=

( ( ))
p X C

Prob r R p∈∑ .  

Proof. Let T be the union of all points whose projections on 
Xi are C. So R(T) = R(C) ∩ 

j j

j

1 j i n

( )
C X

R C
≤ ≠ ≤ ∈
I U . Since resource 

space RS satisfies 2NF, any two points in RS are independent 
of each other. Thus, we have Prob(r∈R(T)) 
=

[ i]=
( ( ))

p X C
Prob r R p∈∑ . So

[ i]=
( ( ))

p X C
Prob r R p∈∑ = 

Prob(r∈(R(C)∩
j j

j

1 j i n

( )
C X

R C
≤ ≠ ≤ ∈
I U )) holds. Prob(r∈R(C)) 

≥
[ i]=

( ( ))
p X C

Prob r R p∈∑ holds. On the other hand, 

Prob(r∈R(T)) = Prob(r∈(R(C)∩
j j

j

1 j i n

( )
C X

R C
≤ ≠ ≤ ∈
I U )) = 

Prob(r∈(R(C) ∩ j

1 j i n

( )R X
≤ ≠ ≤
I )) holds. If resource space RS 

satisfies 3NF, axis Xj (1≤j≠i≤n) can forms a classification on 
coordinate C. We can get that R(C) is a subclass of R(Xj).  So 

Prob(r∈R(T)) = Prob(r∈R(C)∩ j

1 j i n

( )R X
≤ ≠ ≤
I ) = Prob(r∈R(C)) 

holds. Therefore Prob(r∈R(C)) ＝
[ i]=

( ( ))
p X C

Prob r R p∈∑  

holds. � 

Theorem 2 plays an important role in maintaining the 
probability values when inserting and updating resources.  It 
will be used in section 3.3 and section 5.2. 

3.3 Membership Probability on Points 
To specify the membership probabilities that a resource 
belongs to points is another important issue. 

For point p in resource space RS(X1, … , Xn), R(p) can be 
represented as R(p[X1]) ∩  … ∩ R(p[Xn]). So the probability 
that resource r belongs to p is the probability of the complex 
event that r belongs to R(p[X1]), R(p[X2]), …, and R(p[Xn]) 
simultaneously. The interval of the membership probability 
that r belongs to p can be calculated as follows. 

For 1NF probabilistic resource space, the probability that 
r belongs to p falls into the following interval: 

[max{0, ... max{0, max{0, Prob(r∈R(p[X1])) + 
Prob(r∈R(p[X2]))  − 1} + Prob(r∈R(p[X3]))  − 1} … + 
Prob(r∈R(p[Xn]))  − 1}, min{Prob(r∈R(p[X1])), …, 
Prob(r∈R(p[Xn]))}]. 

For 2NF probabilistic resource space RS(X1, … , Xn), 
according to lemma 2 and theorem 2, the interval for the 
membership probability that r belongs to p can be obtained 
by resolving the following linear programming problem: 

Object function: Prob(r∈R(p)); 

Subject to: 

1. 
i

( ( ))
C X

Prob r R C
∈

∈∑ ≤ 1, 1≤i≤ n; 

2. 
[ i]=

( ( ))
p X C

Prob r R p∈∑ ≤ Prob(r∈R(C)), for any 

coordinate C at axis Xi , 1≤i≤ n; 
3. 

'
( ( ' ))

p RS
Prob r R p

∈

∈∑ ≥ max {0, ... max{0, max{0, 

Prob(r∈R(X1)) + Prob(r∈R(X2))  − 1} + Prob(r∈R(X3)) 
 − 1} … + Prob(r∈R(Xn))  − 1}; and, 

4. Li ≤ Prob(r∈R(pi)) ≤ Ui, for any point pi in RS, where 
Li and Ui are respectively the lower bound and the 
upper bound of the membership probability that r 
belongs to pi set by users. If they do not set explicitly, 
the default value of Li is 0, and the default value of Ui 
is 1. 

If RS satisfies 3NF, then the linear programming problem 
is as follows: 

Object function: Prob(r∈R(p)); 

Subject to: 

1. 
i

( ( ))
C X

Prob r R C
∈

∈∑ ≤ 1, 1≤i≤ n; 
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2. 
[ i]=

( ( ))
p X C

Prob r R p∈∑ = Prob(r∈R(C)), for any 

coordinate C at axis Xi (1≤i≤ n); 
3. 

i

( ( ))
C X

Prob r R C
∈

∈∑ =
' j

( ( '))
C X

Prob r R C
∈

∈∑ , for 1≤i ≠ 

j≤n 
4. Li ≤ Prob(r∈R(pi)) ≤ Ui, for any point pi in RS. 

As RS satisfies 3NF, item 3 of above constraint will be 
satisfied if both item 1 and item 2 are satisfied. 

Theorem 3. For a probabilistic resource space RS that 
satisfies 1NF, 2NF or 3NF, the membership probability 
interval that resource r belongs to point p can be obtained in 
polynomial time of the number of points in RS. 

Proof. For resource space RS(X1, … , Xn), if RS satisfies 
1NF, then the membership probability interval that resource 
r belongs to point p is [max{0, ... max{0, max{0, 
Prob(r∈R(p[X1])) + Prob(r∈R(p[X2]))  − 1} + 
Prob(r∈R(p[X3]))  − 1} … + Prob(r∈R(p[Xn]))  − 1}, 
min{Prob(r∈R(p[X1])), …, Prob(r∈R(p[Xn]))}]. It is 
obvious that both the lower bound and the upper bound can 
be computed by n−1 steps. 

If RS satisfies 2NF, identifying the membership 
probability intervals that resource r belongs to points can be 
converted to the following linear program problem LP: 

Object function:  
Prob(r∈R(pj)), for any point pj in RS ; 

Subject to: 

1. 
i

( ( ))
C X

Prob r R C
∈

∈∑ ≤ 1, 1≤i≤ n; 

2. 
[ i]=

( ( ))
p X C

Prob r R p∈∑ ≤ Prob(r∈R(C)), for any 

coordinate C at axis Xi, 1≤i≤ n; 
3. 

'

( ( ' ))
p RS

Prob r R p
∈

∈∑ ≥max{0, ... max{0, max{0, 

Prob(r∈R(X1)) + Prob(r∈R(X2))  − 1} + Prob(r∈R(X3)) 
 − 1} … + Prob(r∈R(Xn))  − 1}; and,  

4. Li ≤ Prob(r∈R(pi)) ≤ Ui, for any point pi in RS. 

In LP, both Prob(r∈R(C)) and Prob(r∈R(Xi)) (1≤i≤n) are 
constants and Prob(r∈R(pj)) are variables. It is obvious that 
both the number of variables and the number of inequalities 
in LP are in polynomial with the number of points in RS. 
Since a linear programming problem is tractable in 
polynomial time, the membership probability interval that 
any resource r belongs to point p can be obtained in 
polynomial time of the number of points in RS. 

Similarly, we can prove that when RS is in 3NF, the 
membership probability interval that any resource r belongs 
to point p can also be calculated in polynomial time of the 
number of points in RS. � 

4 OPERATIONS OF PROBABILISTIC RESOURCE 
SPACE MODEL 
4.1. Point Query 
The first query approach of the P-RSM is point query. The 
result of a point query is a set of points, each of which 
contains a set of resources with membership probability. 

For a resource space RS, the point query operation is for 
selecting the desirable points according to the given 
restrictions. This type of query can be denoted as σp(RS)={p 
| p∈RS ∧ Fp(p)}, where Fp is a logical expression. The basic 
form of Fp is: pm[Xi] θ Y, where Y may be pn[Xj] or just a 
noun and noun phrase defined in domain ontology, pm and pn 
are points and θ represents =, ≠, <, ≤, ≥ or >. Fp is usually a 
logical combination of the basic forms by using ∧, ∨ and ¬. 

The P-RSM uses the following statement to support point 
queries. The conditional expression in this statement is the 
logical combination of restrictions on the projections of 
points on axes. 

SELECT POINT p FROM RS(X1, …, Xn) 
[WHERE <conditional expression>] 

The point query supports query of multiple points. Take 
Fig. 6 for example, to query all resources in points p1(a2, b1, 
c1) and p2(a2, b2, c1), user should use the following logical 
expression σp(RS)={p | p∈RS ∧ p[A]=a2 ∧ p[C]=c1 ∧ 
(p[B]=b1 ∨ p[B]=b2)} and the following point query 
statement: 

SELECT POINT p FROM RS(A, B, C) 
WHERE p[A]=a2 AND p[C]=c1 AND (p[B]=b1 OR 

p[B]=b2) 

As the consequence of the query, resources with 
membership probabilities belonging to points p1(a2, b1, c1) 
and p2(a2, b2, c1) will be returned. 

 

 
Fig. 6. An example of point query. 

4.2 Resource Modification 
In the original RSM, before a resource r can be inserted into 
a resource space RS, we have to identify the coordinates that 
r belongs to each axis in RS. 

Take Fig. 7 for example, the resource space RS(Classes, 
Courses, Gender) is used to manage student information 
according to their classes, courses and gender. Resource r 
can be inserted into point (Database, C2, Male) if it belongs 
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to Database at axis Courses, C2 at axis Classes and Male at 
axis Gender. 

From the perspective of probability, r(Courses=Database, 
Classes=C2, Gender=Male) implies that the membership 
probability functions of resource r at axes Courses, Classes 
and Gender are βr-Courses, βr-Classes and βr-Gender respectively 
such that: 

1. βr-Courses(Math)=0, βr-Courses(Operating System)=0, and   
βr-Courses(Database)=1. 

2. βr-Classes(C1)=0, βr-Classes(C2)=1, and βr-Classes(C3)=0.  
3. βr-Gender(Male)=1 and βr-Gender(Female)=0. 

The process of inserting a resource into a probabilistic 
resource space is the same as the original resource space 
except that the membership probability functions in the P-
RSM can take value within [0, 1]. 

 

 
Fig. 7. Insert a resource into a resource space. 

The following is the general insertion statement for 
inserting a resource r into a resource space RS. βk is the 
membership probability function of r belonging to 
coordinate Ck at axis Xk (k=1, 2, …, n). 

INSERT r ((X1=<C1, β1>, …, Xn=<Cn, βn>)  
INTO RS(X1, …, Xn) 

P-RSM also supports the following delete operation and 
update operation, which is seldom used in the cyber-physical 
society: 

DELETE r FROM RS 
[WHERE <conditional expression>] 

UPDATE r(<βi, …, βj>) INTO RS(Xi, …, Xj) 
[WHERE <conditional expression>]. 

4.3 Operations on Probabilistic Resource Spaces 
Join, Disjoin, Merge and Split are four major operations of 
the original RSM. P-RSM has the following corresponding 
operations. 

1. Join. If two resource spaces RS1(X1, …, Xm, Y1, …, Yn) 
and RS2(Y1, …, Yn, Z1, …, Zk) specify the same type of 
resources and have n common axes, then they can be put 
together as one resource space RS(X1, …, Xm, Y1, …, Yn, 
Z1, …, Zk) such that RS1 and RS2 share these n common axes 
and |RS|=|RS1| + |RS2| − n. For any resource r in RS, the 
membership probability functions of r at axes Xi (1≤i≤m), Yj 
(1≤j≤n) and Zh (1≤h≤k) are the same as those functions in 
RS1 and RS2. 

Let p(x1, …, xm, y1, …, yn, z1, …, zk), p1(x1, …, xm, y1, …, 
yn), and p2(y1, …, yn, z1, …, zk) be the points in RS, RS1 and 
RS2 respectively. The event that resource r belongs to point 
p corresponds to the following two events occur 
simultaneously: r belongs to p1, and r belongs to p2. If the 
membership probability interval that r belongs to p1 is [L1, 
U1] and the membership probability interval that r belongs 
to p2 is [L2, U2], then we can obtain the following restriction: 
max{0, L1+L2−1}≤Prob(r∈R(p))≤min{U1, U2}. The 
membership probability interval that r belongs to p can be 
calculated as introduced in section 3. 

2. Disjoin. A resource space RS(X1, …, Xm, Y1, …, Yn, Z1, …, 
Zk) can be separated into two resource spaces RS1(X1, …, Xm, 
Y1, …, Yn) and RS2(Y1, …, Yn, Z1, …, Zk) that store the same 
type of resources as that of RS such that they have n 
common axes and k + m different axes, and |RS|=|RS1| + |RS2| 
− n. For any resource r in RS1, the membership probability 
functions of r at axes Xi (1≤i≤m) and Yj (1≤j≤n) are the same 
as those functions in RS. 

For point p(x1, …, xm, y1, …, yn) in RS1, let pi (1≤i≤k) be 
the point in RS such that pi has the same projection at axes 
X1, …, Xm, Y1, …, Yn as point p. Suppose that the 
membership probability interval that resource r belongs to pi 
is [Li, Ui], where 1≤i≤k.  Then, we can obtain the following 
restrictions: 

1. If RS only satisfies 1NF, then max{L1, …, Lk} ≤ 
Prob(r∈R(p)) ≤ min{1, U1+ … +Uk} holds; 

2. If RS only satisfies 2NF, then L1+ … + Lk ≤ 
Prob(r∈R(p))≤ 1 holds; and, 

3. If RS satisfies 3NF, then L1+ … +Lk ≤ Prob(r∈R(p)) 
≤ U1+ … +Uk holds. 

3. Merge. If two resource spaces RS1(X1, …, Xn-1, X') and 
RS2(X1, …, Xn-1, X”) store the same type of resources and 
satisfy: a) |RS1|=|RS2|=n; and, b) they have n−1 common 
axes, and there exist two different axes X' and X” satisfying 
the merge condition, then they can be merged into one RS by 
retaining the n−1 common axes and adding a new axis 
X*=X'∪X”. RS is called the merge of RS1 and RS2, denoted as 
RS1∪RS2⇒RS, and |RS|= n. For any resource r in RS, the 
membership probability functions of r at axes Xi (1≤i≤n−1) 
are the same as those for RS1. Let β’ and β” be the 
membership probability functions of r at axes X’ and X” 
respectively. Then, the membership probability function β of 
r at axis X* is defined as follows: for any coordinate C at 
axis X*, β(C)=β’(C) if C is at axis X’, otherwise β(C)=β”(C). 

4. Split. A resource space RS(X1, …, Xn-1, X) can be split into 
two resource spaces RS1 and RS2 that store the resources in 
RS and have |RS|−1 common axes by splitting axis X into 
two: X’ and X’’, such that X=X’ ∪X’’. For any resource r in 
RS1, the membership probability functions of r at axes Xi 
(1≤i≤n−1) are the same as those in RS. Let β be the 
membership probability function of r at axis X. Then, the 
membership probability function β’ of r at axis X’ is defined 
as follows: for any coordinate C at axis X’, β’(C)=β(C) 
holds. 
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5 PROBABILISTIC INTEGRITY CONSTRAINTS 
Just as the integrity constraint in the relational data model 
[1], the integrity constraint in RSM is to ensure the 
consistency during operations. It concerns entity integrity, 
membership integrity, referential integrity, and user-defined 
integrity [35]. In P-RSM, the meaning of some constraint 
rules changes and some new rules should be obeyed. 
 
5.1 The Key 
As a coordinate system, the RSM supports accurate resource 
positioning by giving coordinates. However, it is sometimes 
unnecessary and even arduous to give the coordinates at all 
axes to identify a point, especially for high-dimensional 
resource spaces. The key is for efficiently locating resources 
according to some axes. In RSM, a point that does not 
represent any resource is called a null point. Otherwise, it is 
called a non-null point.  The following is the notion of the 
key in RSM. 

Let CK be a subset of axis set {X1, …, Xn}, p1 and p2 be 
any two non-null points of resource space RS(X1, …, Xn). 
CK is called a candidate key of resource space RS if we can 
derive p1[Xi]=p2[Xi], Xi∈{X1,…, Xn} from p1[Xj]=p2[Xj], 
Xj∈CK. 

In P-RSM, point p is a null point if and only if for any 
resource r, Prob(r∈R(p))=0 holds.  

The key in the probabilistic resource space is defined as 
follows. 

Definition 6. Let CK be a subset of the axis set {X1, …, Xn},  
p1 and p2 be any two points in resource space RS(X1,…, Xn) 
such that p1[Xi]=p2[Xi], Xi∈CK. CK is called a candidate key 
of resource space RS if Prob(r1∈R(p1) ∧ r2∈R(p2))=0 holds 
for any two resources r1 and r2, and there exists an axis Xj 
such that Xj∈{X1, …, Xn}−CK and p1[Xj]≠p2[Xj]. 

Above definition implies a kind of resource dependency: 
If the event that r1 belongs to p1 occurs, the probability that 
r2 belongs to p2 is 0, i.e. Prob(r2∈R(p2) | r1∈R(p1)) = 0, vice 
versa. 

Most previous probabilistic relational data models 
manage entities one by one and seldom concern the 
relationship between entities. They usually assume that the 
uncertainty of one entity is independent of another entity. P-
RSM considers some dependency between resources.  
Semantic links can be established between points to reflect 
this kind of dependence [38]. 

The following theorem applies to the situation where the 
probabilistic events about two resources should not be 
supposed to be independent of each other. 

Theorem 4. Let CK be a candidate key of 3NF resource 
space RS(X1,…, Xn) and CK’ be a subset of {X1,…, Xn} such 
that CK⊂CK’.  Let p1 and p2 be two points in RS such that 
p1[Xi]=p2[Xi] (Xi∈CK) and p1[Xj]≠p2[Xj] (Xj∈CK’−CK). For 
any two resources r1 and r2, the events r1∈

1' [ ]

( )
X CK p X C

R C
∈ ∧ =

I  

and r2∈
2' [ ]

( )
X CK p X C

R C
∈ ∧ =

I  are not independent of each other, 

and Prob(r1∈
1' [ ]

( )
X CK p X C

R C
∈ ∧ =

I   ∧  r2∈
2' [ ]

( )
X CK p X C

R C
∈ ∧ =

I ) = 

0. 

Proof. Suppose that both Prob(r1∈
1' [ ]

( )
X CK p X C

R C
∈ ∧ =

I ) ≠ 0  

and Prob(r2∈
2' [ ]

( )
X CK p X C

R C
∈ ∧ =

I ) ≠ 0 hold. Since RS satisfies 

3NF, both 
1' [ ]

( )
X CK p X C

R C
∈ ∧ =

I = 
1' [ ] [ ]

( )
X CK p X p X

R p
∈ ∧ =

U  and 

2' [ ]

( )
X CK p X C

R C
∈ ∧ =

I =
2' [ ] '[ ]

( ')
X CK p X p X

R p
∈ ∧ =

U hold. If 

Prob(r1∈
1' [ ]

( )
X CK p X C

R C
∈ ∧ =

I  ∧ r2∈
2' [ ]

( )
X CK p X C

R C
∈ ∧ =

I ) ≠ 0, 

then there must exist at least two points p3 and p4 such that 
p1[Xi]=p3[Xi], p2[Xi]=p4[Xi] (Xi∈CK’) and Prob(r1∈R(p3) ∧ 
r2∈R(p4)) ≠ 0 hold. This contradicts to the fact that CK is a 
candidate key of RS. So Prob(r1∈

1' [ ]

( )
X CK p X C

R C
∈ ∧ =

I  ∧ 

r2∈
2' [ ]

( )
X CK p X C

R C
∈ ∧ =

I ) = 0 holds. � 

5.2 Integrity Constraints in Probabilistic Resource 
Space Model 
 
Modification of resources may result in inconsistency in 
resource spaces. P-RSM needs some special integrity 
constraint rules to deal with the inconsistency. 

Since βri(C) represents the probability that resource r 
belongs to coordinate C, it is reasonable to require 
0≤βri(C)≤1. For axis Xi, R(Xi) =

'

( ')
iC X

R C
∈
U  holds. If any two 

coordinates at Xi are independent of each other, 
Prob(r∈R(Xi)) = ri

' i

( ' )
C X

Cβ
∈
∑ . So ri

' i
( ')

C X
Cβ

∈
∑ ≤ 1 holds.  

Rule 1. For resource space RS(X1, …, Xn), let βri be the 
membership probabilistic function of resource r at axis Xi, 
1≤i≤n. For any coordinate C at Xi, 0≤ βri(C) ≤1 must hold. If 
any two coordinates at Xi are independent of each other, 
then ri

' i

( ' )
C X

Cβ
∈
∑ ≤ 1 holds. 

The insertion, modification of resources and merge 
operations between resource spaces may violate Rule 1. 

Rule 2. For resource space RS(X1, …, Xn) and resource r, let 
βri and βrj be the membership probabilistic functions of r at 
Xi and Xj (1≤i, j≤n) respectively. If Xj can form fine-
classification on Xi and any two coordinates at Xi are 
independent of each other, then ri

i
( )

C X
Cβ

∈
∑  ≤ rj

' j
( ' )

C X
Cβ

∈
∑  

holds. If Xi is orthogonal with Xj, i.e., Xi⊥Xj holds, 
then ri

i

( )
C X

Cβ
∈
∑  = rj

' j
( ' )

C X
Cβ

∈
∑  holds. 

The following is the reason of Rule2. If Xi/Xj holds, we 
can reach that R(Xi)⊆R(Xj) holds. So Prob(r∈R(Xi)) ≤ 
Prob(r∈R(Xj)) holds. Since R(Xi) =

' i

( ')
C X

R C
∈
U  and R(Xj) 
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=
' j

( ')
C X

R C
∈
U , both Prob(r∈R(Xi))= ri

i

( )
C X

Cβ
∈
∑  and 

Prob(r∈R(Xj)) = rj

' j

( ' )
C X

Cβ
∈
∑  hold. Thus, 

ri

i

( )
C X

Cβ
∈
∑ ≤ rj

' j

( ' )
C X

Cβ
∈
∑  holds. 

If Xi is in orthogonal with Xj, both Xi/Xj and Xj/Xi hold, 
then both ri

i

( )
C X

Cβ
∈
∑  ≤ rj

' j

( ' )
C X

Cβ
∈
∑  and ri

i

( )
C X

Cβ
∈
∑  

≥ rj

' j

( ' )
C X

Cβ
∈
∑  hold. So ri

i

( )
C X

Cβ
∈
∑  = rj

' j

( ' )
C X

Cβ
∈
∑  holds. 

Rule 3. For any 3NF resource space RS(X1, …, Xn) and 
resource r, let βri be the membership probabilistic function 
of r at Xi (1≤i≤n). For any coordinate C at Xi and point p in 
RS, 

[ i]=
( ( ))

p X C
Prob r R p∈∑ = βri(C) holds. 

According to theorem 2, in any 3NF resource space, the 
probability that r belongs to coordinate C can be classified 
into the points having projection of C on axis Xi, i.e., 
Prob(r∈R(C)) =

[ i]=
( ( ))

p X C
Prob r R p∈∑  holds. Rule 3 should be 

checked to make sure the satisfaction of theorem 2 when 
inserting or updating resources. 

So far we have presented the basis of the P-RSM. 
 
6 ANALYSIS 
P-RSM shows distinguished characteristics compared with 
RSM in managing resources. 

6.1 Experimental Data and Schemas of resource 
space 
Without loosing generality, our experimental data are the 
papers collected from the World Wide Web conference from 
2001 to 2007. These papers fall into 13 topics such as 
Browser & Interfaces, Data Mining, e-Applications, Search, 
and Semantic Web. To manage these papers, the following 
two resource space schemas can be designed according to 
the RSM. 

1. 1NF resource space RS1(Topics, Years, Locations), 
where Topics={Browser&Interfaces, DataMining, e-
Applications, Practice&Experience, 
Performance&Scalability, Ubiquitous, Search, 
Sercurity&Reliability, SemanticWeb, WebEngineering, 
XML&WebData, WebServices, Ontologies, E-Learning, 
WebMining, Multimedia}, Years={2001, 2002, 2003, 
2004, 2005, 2006, 2007} and Locations={Hong Kong, 
Hawaii, Budapest, New York, Chiba, Edinburgh, 
Banff}. Since the Topics axis has several coordinates 
that are not independent of each other, such as 
Semantic Web and Ontologies, the resource space 
schema RS1 does not satisfies 2NF. Two resource space 
instances ORS1 and PRS1 having the same schema as 
RS1 are created for the original RSM and the P-RSM 
respectively.  

2. 2NF resource space RS2(Topics, Years, Locations), 
where Topics={Browser & Interfaces, DataMining, e-
Applications, Practice & Experience, Performance & 
Scalability, Ubiquitous, Search, Sercurity & Reliability, 

SemanticWeb, WebEngineering, XML & WebData, 
WebServices, Multimedia}, Years={2001, 2002, 2003, 
2004, 2005, 2006, 2007} and Locations={Hong Kong, 
Hawaii, Budapest, New York, Chiba, Edinburgh, 
Banff }. Since all coordinates at each axis in the 
resource space schema RS2 are independent of each 
other, RS2 satisfies 2NF. Two resource space instances 
ORS2 and PRS2 having the same schema as RS2 are 
created for RSM and P-RSM respectively. 

The membership probability of each paper belongs to 
each topic is calculated by using the Naïve Bayes model. A 
keyword vector x based on Boolean model is used to 
represent paper. For k topics T1, …, and Tk, the probability 
p(Ti|x) is used to represent the possibility that a given paper 
belongs to topic Ti.  p(Ti|x) is evaluated by p(x|Ti)×P(Ti)/p(x), 
where P(Ti) is the prior probability. The required training 
samples are the papers published in WWW2002 and 
WWW2005. 

6.2 Effect of Query 
Using RSM to manage uncertain resources, users need to 
judge which coordinates a given resource belongs to with 
the membership probabilities. Misjudgment will lead to 
misplacing the resource in the resource space. 

To manage uncertain resources in resource space, the 
following strategies are adopted: 

1. For resource r and any axis X of a 2NF RS, select the 
coordinate C at X such that the membership probability 
that r belongs to C is the maximum among all the 
coordinates at X. Then, insert resource r into coordinate 
C. 

2. If RS satisfies only 1NF, select the coordinate C at X 
such that the membership probability that r belongs to 
C is the maximum among all the coordinates at X, and 
then insert r into coordinate C and the coordinate C’ as 
long as C’ is not independent of C and the membership 
probability that r belongs to C’ is greater than 0. 

Unlike RSM, P-RSM will maintain all the membership 
probabilities of each paper on each topic. A probabilistic 
query can be associated with a confidence threshold. For 
example, “get all papers of which the topic is search, and the 
membership probability is greater than or equal to 0.2”.   

The following experiments evaluate the recall and 
precision for querying the resource spaces of the two models. 
The recall is the ratio of the number of the returned relevant 
papers to the total number of the relevant papers and the 
precision is the ratio of the number of the returned relevant 
papers to the total number of the returned papers. 

We refer to the maximum among the membership 
probabilities of a given paper on each topic as its probability 
upper bound. According to the probability upper bound, the 
papers are classified into eight categories: the papers of 
which probability upper bound is less than or equal to 0.3, 
0.4, …, or 1.  

The following is the general form of a point query used in 
the experiment, where α, β and γ are the membership 
probabilities or the upper bounds that C, C’ and C’’ belongs 
to axes Topics, Years and Locations respectively. 
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SELECT POINT p FROM RSi(Topics, Years, Locations) 
WHERE p[Topics]=(C, α) & p[Years]=(C’, β) & 

p[Locations]=(C’’, γ) WITH CONFIDENCE μ. 

The first experiment compares the recall and the precision 
of the two models. Fig. 8 and Fig. 9 plot the average recall 
and precision of the resource spaces ORS1, ORS2 and PRS1. 
When querying the probabilistic resource space PRS1 and 
setting the confidence threshold as 0.2. The following results 
can be drawn from the experiment: 

1. The probability upper bound can indicate whether the 
membership probability that a paper belongs to several 
topics is approximately equal or not. Both the recall 
and the precision are quite low when the membership 
probability distribution that a paper belongs to the 
topics is even. This is due to the fact that it is easier to 
misjudge when the probabilities that a paper belongs to 
several topics are almost equal. Both the recall and the 
precision are gradually improved with the increase of 
the probability upper bound. 

2. Using RSM to manage uncertain information, both the 
recall and precision of 1NF resource space is better 
than 2NF resource space. It is mainly because a paper 
can belong to several topics in the 1NF resource space 
whereas a paper can belong to only one topic in the 
2NF resource space. 

3. The probabilistic resource space PRS1 has better recall 
and precision than the original resource spaces ORS1 
and ORS2. It is mainly because the probabilistic 
resource space can store all the probabilistic 
information that a paper belongs to several topics 
regardless of their independence. 

The second experiment is to evaluate the impact of 
confidence threshold on the recall and the precision when 
querying the probabilistic resource spaces. Fig. 10 indicates 
the trend in the recall and the precision of the probabilistic 
resource space PRS1 with the increase of confidence 
threshold. 
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The following results can be drawn from the experiment: 

1. The recall of the probabilistic resource space goes 
down and the precision of probabilistic resource space 
goes up with the increase of the confidence threshold. 
When querying the probabilistic resource space, only 
the papers for which the membership probability is 
equal to or larger than the confidence threshold can be 
returned. Thus, the number of returned relevant papers 
goes down and the total number of the returned papers 
goes down more. 

2. Theoretically, the recall of the probabilistic resource 
space will be 100% when the confidence threshold is 0. 
This is because if the confidence threshold is 0, all the 
papers probably belonging to a topic will be returned. 
On the other hand, the 100% recall is due to the trad-
off of the low precision. 

6.3 Resource Distribution 
This experiment is to know how resources are distributed in 
RSM and P-RSM. The formula 2

i
1

(| | / )
i n

p m n
≤ ≤

−∑  is used to 

evaluate the distribution of resources, where m is the total 
number of resources to be managed, n is the total number of 
points in a resource space and |pi| is the number of resources 
in point pi. 

Fig. 11 comparies the paper distributions in the resource 
spaces ORS1, ORS2, PRS1 and PRS2. The following results 
can be drawn from this experiment:  

1. Resources are distributed more evenly in the 
probabilistic resource space than in the resource space.  

2. Normal forms have more impact on resource 
distribution in the resource spaces than the distribution 
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in the probabilistic resource spaces. This is because a 
resource in the probabilistic resource space can be 
inserted into a point if its membership probability 
belonging to this point is larger than 0. But in the RSM, 
a resource cannot be simultaneously inserted into two 
points that are independent of each other. 
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 Fig. 11. Resource distribution comparison. 

7. EXTENSIONS 
7.1 Satisfactory Constraints 
A resource space that does not satisfy 2NF is useful in 
applications since sometimes dependent coordinates cannot 
be avoided in applications due to the understanding gap 
between the resource space creater, the users who input 
resources, the users who retrieve resources, and the authors 
of the resources. To ensure effective resource operations, 
constraints can be set according to applications. 

Constraint 1. For any resource r in the resource space, there 
exists an axis X=(C1, …, Cn) such that 

k

r-X k
C X

(C ) 1η β
∈

≤ ≤∑ , where 0<η ≤1 is the minimum 

satisfactory degree in an application. 

The minimum satisfactory degree reflects users’ 
confidence in determining the category of resources when 
inputting resources and the users’ demand on the accuracy 
of retrieving resources. η can be adapted by users according 
to the change of requirements.  Coordinate Ck is selected by 
users or applications. Constraint 1 ensures that a resource in 
a probabilistic resource space can be retrieved at certain 
satisfactory degree from at least one axis. 

Constraint 2. For any resource r in the resource space, 
constraint 1 holds for every axis. 
 

Constraint 2 ensures that a resource in a probabilistic 
resource space can be retrieved from every axis at the 
minimum satisfactory degree. 

P-RSM allows one resource to have multiple indexes. As 
the consequence, operations on the resource space need to 
search all coordinates.  This is a trade-off between flexibility 
and complexity. 

7.2 Transforming 1NF into 2NF 
A 1NF resource space can be transformed into a 2NF or a 
3NF resource space by merging the inter-dependent 

coordinates at one axis into a complex coordinate.  The new 
coordinate should represent the original coordinates.   

Let C1 and C2 be coordinates at the same axis, and C be 
the new coordinate representing C1 and C2, the coordinate 
merge operation concerns the following three cases:  

1. R(C)⊇R(C1)∪R(C2), i.e., C expands the semantic range 
covered by C1 and C2 to represent more resources.  In 
this case, Prob(r∈R(C)) ≥ Prob(r∈R(C1)) + 
Prob(r∈R(C2)) for resource r. 

2. R(C)⊆R(C1)∪R(C2), i.e., C shrinks the semantic range 
covered by C1 and C2 to represent less resources. In 
this case, Prob(r∈R(C)) ≤ Prob(r∈R(C1)) + 
Prob(r∈R(C2)).  

3. R(C)=R(C1)∪R(C2), i.e., C preserves the semantic 
range covered by C1 and C2.  This case happens if the 
merge operation neither deletes nor increases any 
subclass.  In this case, Prob(r∈ R(C))=Prob(r∈ R(C1)) 
+ Prob(r∈ R(C2)). 

A 1NF resource space can become a 2NF resource space 
after merging all interdependent coordinates at every axis.  
Two independent coordinates can also be merged into one 
complex coordinate for such requirements as reducing null 
points and keeping balance between the capacities of 
coordinates in representing resources. 

Lemma 4. A resource space will keep its normal form after 
merging two coordinates C1 and C2 at one axis into one 
complex coordinate C such that R(C)=R(C1)∪R(C2). 

The above lemma is true for 1NF, 1.5NF, and 2NF 
probabilistic resource spaces.  For 3NF probabilistic 
resource space, the merge operation preserves classification 
and it does not change the orthogonality of the resource 
space. On the other hand, the total resources represented by 
the axis keeps unchanging after carrying out the 
classification-preserve coordinate merge, so the merge 
operation keeps the 3NF according to the criterion (lemma 1) 
introduced in [36]. 

The merge solution is feasible when the scale of resources 
represented by the new coordinate is appropriate for 
effective resource retrieval. A basic criterion is that the 
resources in a resource space are evenly distributed in 
general. When the solution is not applicable, 1.5NF can be 
adopted to regulate the resource space. 

7.3 Incorporating Semantic Link into RSM 
Humans wave various semantic link networks during 
lifetime. The above discussion has mentioned two types of 
semantic links: co-access link between coordinates, and 
probability dependence link between points.  More types of 
semantic links like citation link between papers can be 
established between resources [40].  Generally, a semantic 
link A⎯γ→B represents the relation γ between semantic 
nodes A and B.  Relevant semantic links construct a 
semantic link network denoted as <N, L, Rules>, where N, L 
and Rules are sets of semantic nodes, semantic links, and 
rules for reasoning on semantic links. 

Different from static graph, a semantic link network is 
dynamic in nature due to its reasoning ability. Semantic 
communities will emerge and changed during the evolution 
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of the network [38].   
A semantic node can be anything: a class or an instance.  

A semantic link can link resources, coordinates, and points 
in resource spaces.  A resource space organizes resources by 
multi-dimensional classification according to the contents of 
resources, and it supports generalization and specialization 
on classifications.  

The complex semantic space model integrating the 
resource space model and the semantic link network model 
can be represented as follows: 

<RSS, L, Rules, Ontology, Operations>, where  

1. RSS is a set of resource spaces.  In every resource space, 
each coordinate has a weight⎯the function of the number 
of resources it specifies and the times of being accessed. 

2. L is a set of semantic links between resource spaces, 
between points, between axes, between coordinates, or 
between resources. 

3. Rules consists of three parts: reasoning rules for 
deriving semantic links; influence rules for reflecting 
the influence of operating semantic link network on the 
resource spaces and the influence of operating resource 
space on the semantic link network; and,  operation 
rules for regulating operations. 

4. Ontology is a class hierarchy that explains the 
coordinate hierarchies in the resource spaces and the 
semantic link network. 

5. Operations includes the operations on the resource 
space and the operations on the semantic links. 

In addition to the faceted browsing or navigation, the 
integrated model provides an SQL-like query language for 
functioning services.  The following are three examples of 
the query: 

SELECT POINT p’ FROM RS 
WHERE p’ links p [WITH RELATION r]. 

SELECT POINT * FROM RS 
WHERE * links p [WITH RELATION r]. 

SELECT POINT * FROM RS 
WHERE * links p [WITH RELATION r] 
[AFTER/BEFORE REASONING]. 

The complex semantic space model can reflect not only 
the classification on resources but also the linkage, 
reasoning, and influence between resources [41]. 

The complex semantic space model can also be the 
mental model for recognition, understanding and interaction 
[39].  Fig.12 depicts the scenario of incorporating semantic 
link into resource space. The dotted arrows represent the 
inter-coordinate semantic links and the inter-point semantic 
links. Users can select either the link style or the 
classification style as the main operation interface of the 
integrated model. 

Semantic node can be extended to represent physical 
object, human, event, energy and thought in the cyber-
physical society [40][42]. Probabilistic semantic links A⎯(γ, 
pr)→B can be established to reflect uncertain relation or 
influence γ between points, between coordinates, and 
between semantic nodes at probability pr.   

Various uncertain interactions and the probabilistic 
semantic link network’s self-reasoning mechanisms evolve 
the network semantics. The effect of semantic networking 
and the abstraction ability of resource space cooperate with 
and influence each other to evolve the structure of the cyber-
physical society. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12. The complex semantic space model integrating the 
resource space model and the semantic link network model. 
 

7.4 Automatically Detecting and Uploading 
Resources into Resource Space 

Just like appending data to database, the original RSM 
requires users to upload resources into the resource space 
through interface. It is significant to explore the approach to 
automatically detecting and uploading resources into the 
resource space.  It is feasible if the patterns of resources can 
be found. A pattern reflects the classification of resources 
from a certain facet. 

Discovering patterns in resources is to find an 
appropriate classification method.  Different types of 
resources may need different classification methods.  
Existing frequent pattern discovery, schema matching, text 
clustering, and community discovery approaches can be 
helpful references [16, 23, 26, 34, 38].  A fundamental issue 
is to define appropriate distances on various resources, e.g., 
the Euclidean distance between physical objects, the 
distance between concepts in ontology, and the distance 
between vectors of texts. 

Fig. 13 depicts the approach to automatically uploading 
resources into a probabilistic resource space. According to 
the current classification in the mental space, the user needs 
to outline the Classification Tree (denoted as CT) for each 
axis in the cyber resource space, where the higher layer 
consists of more general classifications, and the lower layer 
consists of more specific classifications.  A classification 
tree generally takes the following form: CT= C| (CT, …, CT), 
where C represents a class. 

The resource space can automatically detect and upload 
resources by matching the pattern in resources and the 
classification trees of the resource space. The following is 
the general approach. 

1. Search the resources in the cyber space according to 
the classification trees of the resource space.  Form the 
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candidate resource set by merging the search result 
with the temporal set (initial state is empty). 

2. Discover the resource pattern in the candidate resource 
set according to the classification trees of the resource 
space and the given matching degree. Put the resources 
without clear pattern into the temporal set. 

3. For each cluster in the pattern, calculate its 
membership distribution on each axis. 

4. The membership distribution of the cluster on the 
points of the resource space can be obtained by 
unifying the membership distributions of the clusters 
on the CTs of every axis according to section 3.3. 

5. Upload the resources in each cluster into the 
corresponding point in the resource space, and remove 
these resources from the candidate resource set. 

6. Repeat from step 1 until the candidate resource set does 
not change. 

 

 
Fig. 13. Automatically detecting and uploading resources 
into a probabilistic resource space. 

During long-term use of the resource space, the original 
classifications of the resource space may not be able to 
reflect the up-to-date classifications due to the following 
causes [7]:  

1. Classifications in human mind evolve with continuous 
co-experience in multiple spaces.  New classes will be 
generated, and the existing classes will be merged or 
separated from time to time. 

2. Patterns in resources may change with continuous 
addition of new resources. Therefore, the classification 
trees need to be adjusted to reflect the changes. 

Adaptation needs to consider the subjective aspect 
(user’s opinion and social opinion), the objective aspect (the 
patterns in resources), and the principles of resource space.  
The basic micro adaptation includes the following 

operations:  

1. Remove a coordinate. This will lead to the removal of 
all its sub-coordinates if it has, and the removal of all 
the corresponding points and all the resources in the 
point. 

2. Add a coordinate.  This will lead to the addition of the 
corresponding points in the space. 

The other operations such as coordinate split and merge 
operation can be realized by using the above two operations. 
To implement a smart resource space that can adapt itself, 
the resource space needs to trace the active points in the 
user’s mental space and previous queries so that adaption is 
in line with the evolution of user’s mental space. 

8. APPLICATION EXAMPLES 
8.1 Faceted Search in Cyber-Physical Society 
Resources have multi-facet characteristics.  Faceted search 
(browsing or navigation) is to refine search result from 
multiple facets during search [17][33].  For example, a set of 
papers can be refined from the facets of topic, region, 
publisher, or published time.  A faceted search consists of a 
series selection on these facets.  The target is gradully 
approached from different facets with the progress of search. 
So far, faceted search lacks theory support although some 
systems have been developed. 

P-RSM can be the theory that supports faceted search not 
only on the web but also in the cyber-physical society. If the 
resource spaces in the cyber space share some dimensions 
(axes) with the user mental space, users are easy to find the 
required resources. The more dimensions the two spaces 
share, the easier the users find the targets as they are more 
familiar with the classification of the resources. 

Fig. 14 depicts the idea of the faceted search in the 
cyber-physical society.  Users are individuals of the socio 
space.  They can interact with and influence each other in 
lifetime through socio networks in the socio space while 
operating the cyber space. 

P-RSM supports faceted search with the following 
advantages:  

1. It supports generalization and specialization on 
classifications by co-naviation in the cyber space and 
the mental space. 

2. It enables the mental space and the socio space to 
interact with the physical space through the cyber 
spaces, in addition to direct interaction. 

3. It enables users to access relevant class hierarchies of 
resource space at different probabilities when their 
mental spaces lack accurate classification about the 
target. 

4. It enables users to explore a large-scale resource set 
with flexible classification in mind and to obtain 
multiple interested classes.   The process of 
navigation is also a process of learning from the 
patterns in resources and from the community 
opinion on classification. 

5. The key in P-RSM enables users to operate a resource 
space according to a part of its axes. 
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6. An adaptive resource space can adapt itself according 
to the change in the cyber, physical, mental, and 
social spaces as well as the interaction between these 
spaces. 

 

 
Fig. 14. P-RSM based faceted search in the cyber-physical 

society. 

Faceted search or navigation has the following effects in 
the mental space: 

1. Search motivation is initialized as the effect of the 
emerging active points in user’s mental space. During 
the search process, classifications in the mental 
resource space are enriched, completed, refined, or 
adjusted. 

2. The facet selections during faceted search reflect users’ 
opinion on classifications in the mental space.  For 
example, selecting gender facet after degree facet 
reflects the following commonsense: the gender 
dimension is orthogonal with the degree dimension in 
classifying students. 

3. The target class of resources reflects the active point in 
the user’s mental space. 

4. The times of repeatedly searching a point in the 
resource space reflect the active extent of the 
corresponding point in the mental space. 

5. Enriching the mental space by adding coordinates to 
existing axes. 

6. Specializing or generalizing the mental space by 
adding axis to or removing axis from the space.  

7. Tracing all the faceted search processes during long-
term use of the resource space reflects the structure of 
the user’s mental space and the active regions.  This is 
very important in exploring minds and in realizing on-
demand information services, e.g., recommending the 
appropriate resources to the user when he/she is 
thinking about it. 

P-RSM based faceted searching plays an important role 
in service, learning, and science. 

8.2 Managing Cyber-Physical-Socio Services 

The cyber-physical society links the cyber services (e.g., 
information services), physical services (e.g., natural 
resource services), and socio services (e.g., human services) 
to form the cyber-physical-socio services. P-RSM can be 
used to organize, reflect, and locate the services from multi-
dimensions. Fig.15 describes an example of organizing the 
cyber-physical-socio services.   

Hotel services can be reflected by the following 3-
dimensional resource space in users’ mental spaces 
according to experience: RS(Quality, Location, Facility).  
The quality dimension consists of the following coordinates: 
1-star, 2-star, 3-star, 4-star, and 5-star.  The location 
dimension consists of multiple levels: the first-level 
coordinates are countries, the second-level coordinates are 
provinces or cities, the third-level coordinates could be 
districts. The number of levels depends on experience.  The 
facility dimension consists of the following coordinates: 
entertainment, room, food, and meeting.  The entertainment 
coordinate consists of such sub-coordinates as swimming, 
fitness, spa, and sauna.  The room coordinate consists of 
such sub-coordinates as standard, moderate, superior, 
deluxe, and suite.  The food coordinate consists of such sub-
coordinates as Chinese, Indian, and Western. If the user 
concerns price, a 4-dimensional resource space: RS’(Quality, 
Location, Facility, Price) can be used.   

A resource space with the same structure can be created 
in the cyber space according to the mental resource space.  
Information about the physical space such as the features of 
hotels and the regions can be collected and organized in the 
space through various sensors.  Services of all hotels can be 
viewed.  The cyber resource space enables users to query 
from the following dimensions: quality, location, and 
facility according to the active points in the mental space.   
User’s query incites the emerged hotels with relevant quality, 
facility and location through semantic links. 

In the cyber-physical society, users are not isolated. 
Users can influence each other through socio networks in the 
socio space [42]. Various resource spaces will emerge in 
minds and evolve with socio interactions.  This is different 
from previous information systems that need rigid design, 
and that designers and users are separated to play different 
roles. 

Users can query a set of points according to the 
emerging active points in the mental space by giving one 
coordinate or several coordinates at every axis as follows: 

SELECT POINT p  
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FROM RS(Quality, Location, Facility, Price)  
WHERE  

p[Quality]=((4-star, 0.7), (5-star, 0.3)) &  
p[Location]= (China.Beijing, 0.7)  & 

 p[Facility.room]=(standard, 0.5) & 
 p[Price]=(200USD, 0.6)). 

An item in a point includes: service content and 
evaluation. The service content may contain a set of photos 
of the hotel, descriptive texts, videos, and even the real-time 
situations (e.g., available room and real-time traffic) sensed 
through various sensors deployed in the cyber-physical 
society.  The evaluation will lead to unsatisfied, satisfied, or 
excellent results summarized from the comments of previous 
guests. 

A multi-dimensional resource space can organize and 
manage cyber-physical-socio services and enables users to 
retrieve the services from different facets and abstraction 
levels.  The future cyber-physical space can link the hotel 
services to relevant services such as shopping and 
sightseeing to provide comprehensive services, and will 
enable users to virtually present to feel the services. 

 
Fig.15. Managing cyber-physical-socio services. Changing 
the pattern in one space may influence the pattern in the 
other spaces. 

9. CONCLUSION 
The Resource Space Model RSM is a general model for 
organizing and managing various resources with multi-
dimensional classifications. By mapping the RSM into the 
probabilistic space, this paper establishes the Probabilistic 
Resource Space Model P-RSM, which can organize and 
manage various resources with uncertainty by multi-

dimensional classifications.  The normal forms, operations, 
and integrity constraints are extended under probabilistic 
condition.  The P-RSM can manage uncertain classifications, 
support flexible queries, and acquire satisfied query 
performance. It also enables different resource spaces to be 
merged or separated with certain normal form and integrity 
constraint guarantees. 
      The formation and evolution of natural species can also 
be viewed from the angle of continuous multi-dimensional 
classification. Classification is also the most basic method 
for humans to understand, organize and manage various 
resources in the cyber space, physical space, socio space, 
and mental space. P-RSM can be the basic model for 
organizing various resources in the cyber-physical society. 

Humans consciously and subconsciously wave semantic 
link networks in the cyber, physical, socio and mental spaces, 
and carry out reasoning while co-experiencing in these 
spaces in lifetime. A complex semantic space model 
integrating RSM and SLN reflects the nature of the cyber-
physical society.  It is suitable for organizing and managing 
various resources in the cyber-physical society.   Since the 
complex semantic space model reflects the fundamental 
intelligent mechanisms ⎯ classification, link and reasoning, 
it also supports cyber-physical-socio intelligence [42]. 
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