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Abstract: 

Modelling of lignocellulosic biomass pyrolysis processes can be used to determine 

their key operating and design parameters. This requires significant amount of 

information about pyrolysis kinetic parameters, in particular the activation energy. 

Thermogravimetric analysis (TGA) is the most commonly used tool to obtain 

experimental kinetic data, and isoconversional kinetic analysis is the most effective way 

for processing TGA data to calculate effective activation energies for lignocellulosic 

biomass pyrolysis. This paper reviews the overall procedure of processing TGA data 

for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis by using the 

Friedman isoconversional method. This includes the removal of “error” data points and 

dehydration stage from original TGA data, transformation of TGA data to conversion 

data, differentiation of conversion data and smoothing of derivative conversion data, 
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interpolation of conversion and derivative conversion data, isoconversional calculations, 

and reconstruction of kinetic process. The detailed isoconversional kinetic analysis of 

TGA data obtained from the pyrolysis of corn stalk at five heating rates were presented. 

The results have shown that the effective activation energies of corn stalk pyrolysis vary 

from 148 to 473 kJ mol-1 when the conversion ranges from 0.05 to 0.85. 

Key words: Thermogravimetric analysis (TGA); Kinetic analysis; Biomass Pyrolysis; 

Isoconversional kinetic method; Effective activation energy 

 

Graphical Abstract: 

 

 

1 Introduction 

Lignocellulosic biomass can be used to produce renewable electricity, thermal 

energy, or biofuels, and chemicals via various conversion technologies, such as 

combustion, gasification, pyrolysis, bio-digestion, fermentation, etc. [1, 2]. The 

advantages that make biomass energy a perfect alternative to fossil fuels include: (1) it 

is a renewable form of energy; (2) it is carbon neutral; and (3) it is widely available. 

Lignocellulosic biomass pyrolysis, a thermochemical conversion process of heating 

lignocellulosic biomass in the absence of oxygen usually at 300-600 °C, has the 

potential to offer high efficiencies for the production of liquid fuels which can be readily 

stored or transported [3, 4]. The yields of those products are dependent upon the 

feedstock, thermal environment, heating rate and final pyrolysis reaction temperature 

[5-8]. Specifically, at a moderate pyrolysis reaction temperature (about 500 °C) and 
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under high heating rates, the main product is bio-oil [9, 10]. Biomass pyrolysis can be 

performed through different types of pyrolysis reactors [11], such as fluidized bed [12], 

auger [13], rotary kiln [14], down-tube [15], and free fall reactors [16]. 

A comprehensive understanding of pyrolysis kinetics of a biomass feedstock is 

important to the process design, feasibility assessment and scaling in industrial 

applications [17-19]. Figure 1 shows a schematic flowchart for the overall process 

design of biomass pyrolysis. In general, the design of biomass pyrolysis processes 

requires hydrodynamics and transport simulation which involves information about 

mass and heat transfer as well as kinetics [20]. The optimal parameters for a pyrolysis 

process should meet the requirements of mass and heat transfer efficiency and pyrolysis 

kinetics [21, 22]. 

 

 

Figure 1. Flow chart of design of biomass pyrolysis processes. 

 

Thermogravimetric analysis (TGA) is usually used for the kinetic analysis of 

lignocellulosic biomass pyrolysis. According to the search results based on two 

keywords “thermogravimetric analysis” and “biomass pyrolysis” from the Web of 
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Science Database (http://isiknowledge.com), there are over 1,350 papers about biomass 

pyrolysis kinetic analysis by using TGA published in scientific journals indexed by SCI 

from 2000. Figure 2 shows the annual number of publications from 2000 to August, 

2017, which indicates that TGA has been used to investigate the kinetic mechanism of 

lignocellulosic biomass pyrolysis by more and more researchers. Recently, Bach and 

Chen [23] provided a review on recent activities in pyrolysis characteristics and kinetics 

of various microalgae via TGA and pointed out that the kinetics via TGA was 

conductive to pyrolysis reactor design, operation optimization, and biofuel production. 

White et al. [24] concluded that many factors could affect the kinetic parameters based 

on the processing of TGA data, including process conditions, heat and mass transfer 

limitations, physical and chemical heterogeneity of the sample, and systematic errors. 

Saddawi et al. [25] focused on the data analysis method for extracting reliable kinetic 

data from TGA experiments. 

 

 

Figure 2. Number of annual publications from 2000 to present on 

“thermogravimetric analysis” and “biomass pyrolysis” (based on search results from 

Web of Knowledge Database). 

 

There are two kinds of kinetic methods used for the analysis of biomass pyrolysis 

kinetics: model-fitting methods and isoconversional methods [26-28]. According to 
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Sánchez-Jiménez et al. [29], the use of model-fitting methods may reach analogous 

conclusions: almost any conversion function can satisfactorily fit experimental data at 

the cost of estimating drastically different kinetic parameter values. The uncertainty in 

estimating kinetic parameters caused by the use of model-fitting methods can be 

avoided in the use of isoconversional methods. 

There are many isoconversional kinetic methods including the Friedman 

differential isoconversional method [30], the Ozawa-Flynn-Wall linear integral 

isoconversional method [31, 32], the Kissinger-Akahira-Sunose linear integral 

isoconversional method [33], the Vyazovkin nonlinear integral isoconversional method 

[34], the advanced Vyazovkin nonlinear integral isoconversional method [35], and the 

Cai-Chen iterative linear integral isoconversional method [36]. The corresponding 

equations for obtaining the effective activation energies, advantages and disadvantages 

of various isoconversional methods are shown in Table 1. Of those isoconversional 

kinetic methods, the Friedman isoconversional method is the most widely used 

isoconversional method because its simplicity and high accuracy. Although the 

Friedman method is sensitive to data noise, the effect of noise on the isoconversional 

calculation can be reduced by considering not only data for a specific degree of 

conversion but also information in its neighborhood [37] or by applying some advanced 

smoothing methods [38]. 

When studying the kinetics of lignocellulosic biomass pyrolysis, the variation of 

activation energy with conversion obtained from isoconversional methods was 

frequently observed [39-44]. This variable activation energy was also called as the 

effective activation energy [45]. Processing TGA data is very important to obtain the 

effective activation energies for lignocellulosic biomass pyrolysis. Researchers have 

demonstrated some mathematical approaches about it. Caballero and Conesa [46] 

presented an overview of some relevant mathematical aspects involved in the thermal 

decomposition processes. Carrier et al. [47] summarized the data preparation and 

kinetic modeling of biomass pyrolysis by using the Friedman isoconversional method. 

Although they have discussed some aspects of processing TGA data for isoconversional 
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kinetic analysis, a comprehensive study about the isoconversional kinetic analysis from 

TGA data of lignocellulosic biomass pyrolysis is still missing in the literature. Thus, 

the aim of this paper is to present the entire process of processing TGA data for 

isoconversional kinetic analysis of lignocellulosic biomass pyrolysis taking corn stalk 

pyrolysis as an example. 
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Table 1. Advantages and disadvantages of various isoconversional methods 

Method Equation Obtaining Eα Advantages and Disadvantages 

Friedman 

(FR) 
 

, ,

dln ln
di

i i

EA f
T RT




 


 
  

      
  

 

For a given α, the plot 

ln[βi(dα/dT)α,i] vs. –

(RTα,i)-1 should be a 

straight line whose slope 

can be used to estimate 

Eα. 

1. The FR method is linear. 

2. The results obtained from the FR method are accurate. 

3. The FR method is not limited to the use of the linear variation 

of the heating rate. 

4. The use of the FR method requires the derivative conversion 

data, which would lead to be numerically unstable and noise 

sensitive. 

Ozawa-

Flynn-Wall 

(OFW)   ,

ln ln 5.331 1.052i
i

A E E
Rg RT

  






 
   

 
 

For a given conversion 

degree, the plot lnβi vs. -

1.052(RTα,i)-1 should be 

a straight line whose 

slope can be used to 

evaluate Eα. 

1. The OFW method is linear. 

2. In the derivation of the OFW method, an oversimplified 

temperature integral approximation is used. 

3. The OFW method was derived with the assumption of a 

constant activation energy from the beginning of the reaction to 

the conversion degree of interest. 

4. The use of the OFW method may lead to significant errors of 

Eα. 

Kissinger-

Akahira-

Sunose  

(KAS) 

2
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l
( )
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For a given conversion 

degree, the plot of ln(βi 

/Tα,i
2) vs. –(RTα,i)-1 

should be a straight line 

and its slope can be used 

to evaluate Eα. 

1. The KAS method is linear. 

2. In the derivation of the KAS method, a oversimplified 

temperature integral approximation is used. 

3. The KAS method was derived with the assumption of a 

constant activation energy from the beginning of the reaction to 

the conversion degree of interest. 

4. The use of the KAS method may lead to important errors of 

Eα. 
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Vyazovkin 

nonlinear 

method 

(NL) 

,
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Eα is obtained by 

minimizing of the O.F. 

1. The NL method is free of temperature integral approximations 

and is not limited to the use of the linear variation of the heating 

rate. 

2. The NL method was derived with the assumption of a constant 

activation energy from the beginning of the reaction to the 

conversion degree of interest. 

3. The NL method is nonlinear. 

4. The use of the NL method may lead to some errors of Eα. 

Advanced 

Vyazovkin 
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Minimize the O.F. to 

obtain Eα. 

1. The ANL method is free of temperature integral 

approximations and is not limited to the use of the linear 

variation of the heating rate. 

2. The results obtained from the ANL method are very close to 

the true values. 

3. The ANL method is nonlinear. 

Iterative 
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Obtain Eα-Δα/2 from the 

slope of the plot of the 

left hand side of the 

equation vs. –(RTα,i)-1. 

The left hand side of the 

equation is calculated 

from the last iterative 

calculation value of Eα-

Δα/2. 

1. The Cai-Chen method is free of temperature integral 

approximations. 

2. The Cai-Chen method is linear. 

3. The results obtained from the Cai-Chen method are very close 

to the true values. 
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2 TGA 

2.1 Brief introduction of TGA 

TGA is a thermal analytical technique in which the changes in the mass of a sample 

is measured as a function of time or temperature as it is subjected to a controlled 

temperature program in a controlled atmosphere [48]. TGA can provide information 

about some chemical reactions or about some physical transitions [49]. According to 

our previous review [50], TGA can be used as an effective tool to perform the proximate 

analysis of solid fuels. A thermogravimetric analyzer usually consists of a sample pan 

that is supported by a precision balance [51]. The sample pan is placed in a furnace 

where the heating temperature and environment are controlled. The mass of the sample 

is continuously measured and recorded during the experiment. 

By coupling a TGA instrument with evolved gas analysis (EGA) equipment, it is 

possible to detect and identify the evolved gas in a specific time in correlation with 

TGA signals. The main techniques currently include infrared (IR) analysis and mass 

spectroscopy (MS) [52, 53]. A more comprehensive TGA-GC/MS (gas 

chromatography/mass spectroscopy) technique involves separation of the evolving 

volatile species by GC and identification by MS [54]. In those techniques, the evolved 

gas from the TGA furnace is sampled either directly into spectrometer or is separated 

prior to further detection [55]. Through the application of those coupled techniques, the 

chemical compositions of released volatiles from biomass can be correlated to its 

lignocellulosic components [54]. 

Biomass pyrolysis is the thermal decomposition of biomass in the absence of 

oxygen. Therefore, in order to carry out the kinetic analysis of biomass pyrolysis using 

TGA, an inert purge gas (for example nitrogen, argon or helium) is chosen to control 

the atmosphere [19, 56]. There are several heating programs can be used to perform the 

kinetic analysis of biomass pyrolysis using TGA: isothermal heating program [57], 

linear heating program [58] or stepwise linear heating program [59], as shown in Figure 

3. 
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Figure 3. Heating program types for TGA. 

 

The linear heating program is commonly used for biomass pyrolysis kinetics: 

 iT T t    (1) 

where T is the temperature, Ti is the starting temperature, t is the time, and β is the 

heating rate. 

In general, the heating rate used for biomass pyrolysis can range from 0.1 to 100 

K min-1 [60], because mass transfer has an unwanted influence on TGA measurements 

when the heating rate is too high [61]. 

 

2.2 TGA of corn stalk pyrolysis 

In this paper, a case study with corn stalk pyrolysis is performed to demonstrate 

the entire kinetic analysis process. The pyrolysis kinetics of corn stalk is carried out by 

a thermogravimetric analyzer (Pyris 1 TGA, PerkinElmer, USA) using an inert 

atmosphere of N2. The experiments are performed at five heating rates of 2.5, 5, 10, 20 

and 40 K min-1. The results of proximate and ultimate analyses of the corn stalk sample 
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are shown in Figure 4. 

 

 
Figure 4. Proximate analysis result (dry basis) and ultimate analysis result (dry ash 

free basis) of corn stalk sample. 

 

3 From TGA data to conversion data 

3.1 Removal of “error” data points of original TGA data 

Upon heating a biomass sample under inert atmosphere, its mass may decrease 

due to the water evaporation and the release of volatile matters during biomass pyrolysis. 

It is supposed that the mass versus time curve should show a decrease trend and each 

data point in the curve would be lower than the previous one. However, there are some 

data points against the decrease trend because of systematic errors [62]. In order to 

reduce possible effects caused by those “error” data points in further analysis, it is 

necessary to remove those “error” data points. 

Carrier et al. [47] suggested the removal of zero and negative derivative 

conversion data points after smoothing and derivation of conversion data, which 

indicated that those “error” data points contained in the experimental TGA data would 

affect the later smoothing and derivation operation and the resulting derivative 

conversion data would contain many fluctuations. And the removal of some resulting 

derivative conversion data points would distort the data trend. 

In this paper, a program is coded to perform the removal of “error” data points. 

Figure 5 shows the flowchart of the program. 
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START

Input
Old_t
Old_T
Old_m

New_t(1) = Old_t(1)
New_T(1) = Old_T(1)
New_m(1) = Old_m(1)

j = 1
i = 1

i = i+1

If  i > length(Old_t)

Output
New_t
New_T
New_m 

If  New_m(j) > Old_m(i)

j = j+1
New_t(j) = Old_t(i)

New_T(j) = Old_T(i)
New_m(j) = Old_m(i)STOP

Yes

No

Yes

No

 

Figure 5. Flowchart of program for removal of “error” data points. 

 

3.2 Removal of dehydration stage from TGA data 

There are several stages in a lignocellulosic biomass pyrolysis process. The first 

stage is the dehydration stage [63, 64]. The other stages correspond to the 
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decomposition of biopolymer components (e.g. hemicellulose, cellulose, and lignin) of 

lignocellulosic biomass. The dehydration stage should be removed because the 

mechanisms of water evaporation in the dehydration stage and the decomposition of 

biopolymer components are different. In the study on the grape marc combustion 

kinetics [65], the dehydration stage was not removed, which led to large deviations of 

the model prediction from the experimental data. 

In the removal of the dehydration stage, there is a problem of the determination of 

the range of the dehydration stage. The simplest way is to take a constant temperature 

as the end temperature (T0) of the dehydration stage. For example, Chen et al. [66] 

directly took 150 °C as the end temperature of the dehydration stage for the pyrolysis 

of corn stalk and wheat straw. In fact, the ASTM standard E1131 [67] provides a more 

accurate method. As shown in Figure 6, the center of the first mass loss plateau of the 

TGA curve (m – t curve) is considered as the end temperature of the dehydration stage. 

According to the standard [67], the mass loss plateau refers to a region of m – t curve 

with a relatively constant mass. 

 

 

Figure 6. Schematic diagram of determination of T0 m0, and mf. 
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3.3 Determination of conversion 

The kinetic analysis of a chemical reaction is usually performed based on the 

degree of conversion [68]. Therefore, the obtained TGA data should be transferred to 

the form of the degree of conversion. The degree of conversion can be obtained based 

on the processed TGA curve: 

  
 0

0 f

m m T
T

m m






  (2) 

where α is the degree of conversion, T is the temperature, m0 is the mass at the 

temperature T0, m(T) is the mass at the temperature T, and mf is the final temperature. 

Figure 6 also presents the determination of m0 and mf. 

When T increases from T0 to Tf, m decreases from m0 to mf, while α increases from 

0 to 1, as shown in Figure 7. 

 

 
Figure 7. Schematic diagram of TGA and conversion curves. 
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4 Determination of smoothed derivative conversion data 

4.1 Determination of derivative conversion 

The derivative conversion curve can give the information about the conversion 

rate, which may be more sensitive to revealing reaction details. In the kinetic analysis 

of biomass pyrolysis, the conversion rate information can be used to determine the 

overlapping pyrolysis reactions of biomass biopolymer components (e.g., cellulose, 

hemicellulose and lignin) [69, 70]. And the derivative conversion data are required in 

the use of the Friedman differential isoconversional method. 

The derivative conversion data are usually obtained from the numerical 

differentiation of the conversion data, which can be implemented by using the finite 

difference method. There are three forms of finite differences: forward, backward and 

central differences [71]. For the intermediate data points, the derivative conversion data 

are usually calculated by means of the central difference. The forward and backward 

differences are used for the estimation of the derivative conversion data of the start and 

end data points, respectively. The corresponding calculation formulae are listed below: 

 

1

1

1 1

1 1

1

1

for start point

d 1 1 for intermediate points
d 2 2

for end point

i i

i i

i i i i

i i i i i

i i

i i

T T

T T T T T

T T

 

   

 





 

 





 



   

  
   

 




  (3) 

where αi and d
d iT
 

 
 

 are the conversion and derivative conversion of the ith point, 

respectively. 

Figure 8 presents the flowchart of the numerical differentiation of conversion 

based on Equation (3). 
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Figure 8. Flowchart of differentiating conversion data. 

 

Figure 9 shows the α – T and dα/dT – T curves obtained according to the numerical 

method presented in Equation (3) of corn stalk pyrolysis at the heating rate of 2.5 K 

min-1. 



17 

 

 
Figure 9. Conversion and derivative conversion curves (corn stalk pyrolysis at 2.5 K 

min-1). 

 

4.2 Smoothing of derivative conversion 

From Figure 9, it can be seen that the derivative conversion curve has many 

fluctuations. It should be smoothed when the Friedman differential isoconversional 

method is used for further analysis [72]. 

There are many methods to smooth the noisy data, which can be divided in two 

types: parametric fitting methods and nonparametric fitting methods [73]. 

As for parametric fitting methods, some mathematical functions are used to fit the 

noisy data so that the resulting fitted curve then can be used for further analysis [74]. 

The common functions mentioned in published papers include the logistic function [75], 

Weibull distribution function [76, 77], and Fraser-Suzuki function [78-80]. According 

to Vyazovkin et al. [74], those mathematical functions could distort the kinetic 

parameters by inexact kinetic curve matching and by smoothing out real reaction 
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features. The extreme right data points can affect the fitted values at the extreme left 

data points when the parametric fitting methods are used [81]. 

In the nonparametric fitting methods, a predetermined function form is not needed, 

and a smoothed data point is obtained based on the observation at that point and some 

specified neighboring points [82]. The common nonparametric fitting methods include 

the moving average, Savitzky-Golay, and locally weighted scatterplot smoothing 

(LOWESS) methods [83]. Chen et al. [84] used the moving average smoothing method 

to process the derivative thermogravimetric curves of pyrolysis of some woody biomass 

samples. Caballero and Conesa [85] suggested the Savitzky-Golay smoothing method 

to smooth noisy derivative thermogravimetric curves. Wu et al. [86] used the Savitzky-

Golay smoothing method to smooth the derivative conversion curves of pyrolysis and 

combustion of tobacco waste. In the treatment of the moving average and Savitzky-

Golay smoothing methods, the data points are all given equal weight. In fact, it is more 

reasonable giving more weight to points near the considering point and less weight to 

points further away. The LOWESS method can avoid the above problems. Yu et al. [38] 

used it to successfully smooth the derivative conversion data of pine sawdust biochar 

combustion. In the LOWESS procedure, at each data point a second polynomial is fitted 

to a subset of the noisy data using the weighted least squares regression. For the 

smoothing of the ith data point, the flowchart of the LOWESS procedure is shown in 

Figure 10, where x is a neighbor point within the fitting window associated to the 

current center point xi, and di is the half-width of the fitting window enclosing the 

observations for the local regression. 
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Set the fitting window for the ith data point

Calculate the weights of the data points in the 
fitting window

Perform the weighted least square regression 
(second degree polynomial)

Obtain the smoothed value of the ith data point 
according to the resulting fitted curve

 

Figure 10. Flowchart of LOWESS procedure for smoothing. 

 

The smoothing results with the LOWESS procedure depend on the size of the 

fitting window. In the literature, a smoothing parameter, sp, is introduced to represent 

the size of the fitting window. Usually, the fraction of the data points used for smoothing 

at each data point is considered as sp. Figure 11 shows the smoothing results of 

derivative conversion curve of corn stalk pyrolysis at the heating rate of 2.5 K min-1 

with sp=0.01 and 0.1. It can be observed that a smaller value for the smoothing 

parameter leads to less smoothing, while a larger value for the smoothing parameter 

results in more smoothing, perhaps even over smoothing. Therefore, there exists an 

optimal value for the smoothing parameter. 
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Figure 11. Smoothing of derivative conversion curve of corn stalk pyrolysis at 2.5 K 

min-1 by LOWESS procedure with different smoothing parameter values. 

 

There are some automatic methods to determine the optimal smoothing parameter 

[87]. The corrected Akaike information criteria (AICc) is one of the most effective 

methods [88]: 

  1 2
2

1 2

/RSSAICc = log
/ 2

n
n

  

 

 
 

 
  (4) 

where n is the number of data points, RSS is the residual sum of squares between the 

noisy data and the smoothed data, δ1 = Trace((I-L)T(I-L)), δ2 = Trace((I-L)T(I-L))2, ν = 

Trace(LTL). The matrix I is the identity matrix and the smoothing matrix L satisfies y1 

= Ly, where y is the vector of noisy data and y1 is the corresponding vector of smoothed 

data. The optimal smoothing parameter yields the smallest AICc value. 

The AICc values with a range of smoothing parameter values from 0.01 to 0.1 with 

an interval of 0.01 for smoothing of the derivative conversion curve of corn stalk 
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pyrolysis at the heating rate of 2.5 K min-1 are shown in Figure 12. It can be obtained 

that the optimal smoothing parameter is 0.04. The comparison between the original 

derivative conversion curve and the derivative conversion curve smoothed with the 

optimal smoothing parameter is also shown in Figure 11. It can be seen that smoothing 

with the optimal smoothing parameter is neither too little nor too much. 

 

 

Figure 12. AICc values with various smoothing parameter values for smoothing of 

derivative conversion data of corn stalk pyrolysis at 2.5 K min-1 using LOWESS 

method. 

 

5 Isoconversional kinetic analysis 

5.1 Estimation of temperature and derivative conversion at given conversions 

To apply the Friedman differential isoconversional method, the values of Tα and 

(dα/dT)α need to be estimated. Usually, these values are estimated from the α – T and 

smoothed dα/dT – T curves via an interpolation method. Interpolation methods can 

construct new data points within the range of a discrete set of known data points [89]. 

Common interpolation methods include near-neighbor interpolation, linear 

interpolation, and cubic spline interpolation methods [90]. The nearest neighbor 
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interpolation selects the value of the nearest point, while the linear interpolation uses a 

linear polynomial to construct new data points [91]. The cubic spline interpolation takes 

a four-point moving window and fits a cubic polynomial between the four-point data 

set to construct new data points. It can offer true continuity between the data points. 

Therefore, it is usually used to determine Tα and (dα/dT)α. Figure 13 shows the Tα and 

(dα/dT)α (α = 0.05:0.05:0.85) values obtained by the cubic spline interpolation of α-T 

and smoothed dα/dT – T curves of corn stalk pyrolysis at the heating rate of 2.5 K min-

1. 

 

 
Figure 13. Tα and (dα/dT)α values at various α (0.05:0.05:0.85) obtained from cubic 

spline interpolation of α-T and smoothed dα/dT – T curves of corn stalk pyrolysis at 

2.5 K min-1. 

 

5.2 Isoconversional kinetic calculation 

The isoconversional kinetic methods are based on the following basic assumptions 
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[92]: (1) the reaction rate at a certain conversion is only a function of temperature; (2) 

the conversion function and the kinetic parameters at a certain conversion are 

independent on the heating rate. 

The rate of a thermally activated solid-state reaction under a linear heating 

program can be described by the following ordinary differential equation [93]: 

  /d
d

E RTAe f
T


 
   (5) 

where A is the frequency factor, E is the activation energy, R is the universal gas 

constant and f(α) is differential form of the conversion function. 

After taking a logarithm of both sides of Equation (5), one can obtain: 
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For a given conversion and a series of experiments at different heating rates, the 

above equation becomes: 
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   (7) 

where the subscript i denotes the ordinal number of a nonisothermal experiment 

conducted at the heating rate βi, and the subscript a is the quantities evaluated at a 

specific degree of conversion α. For a given a, Ea and ln[Aαf(α)] can be obtained from 

the slope and intercept of the plot of ln[βi(dα/dT)α,i] versus (-1/RTα,i), respectively. 

Figure 14 shows the flowchart of the implementation of the Friedman 

isoconversional method. 
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START

Input
β1, Tα,1, α, (dα/dT)α,1

β2, Tα,2, α, (dα/dT)α,2

……
βn, Tα,n, α, (dα/dT)α,n

α=α0

α≥αf

Estimate Eα and ln[Aαf(α) by 
liner regression

   Plot ln[βi(dα/dT)α,i] 
versus (-1/RTα,i)

STOP

No

Yes

α=α+Δα

Output
α, Eα and ln[Aαf(α)]

 

Figure 14. Flowchart of Friedman isoconversional method. 

 

Figure 15 represents the smoothed β(dα/dT) versus T curves for corn stalk 

pyrolysis at various heating rates of 2.5, 5, 10, 20 and 40 K min-1. It can be observed 

that (1) there is a peak and peak shoulder in the left side of the peak for each curve, (2) 

the peak value increases with the increasing of the heating rate, (3) the temperature at 

the peak increases with the increasing of the heating rate. Table 2 lists the information 
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about the derivative conversion curve peaks at various heating rates for corn stalk 

pyrolysis. 

 

 

Figure 15. Smoothed derivative conversion curves at various heating rates for corn 

stalk pyrolysis 

 

Table 2. Characterization of peak of derivative conversion curves at various heating 

rates for corn stalk pyrolysis 

β / K min-1 Tp / K 
pT

d
dT


  / s-1  

2.5 592.0 4.717×10-4 

5 605.1 9.545×10-4 
10 617.4 1.940×10-3 
20 631.2 3.710×10-3 
40 645.8 7.693×10-3 
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Based on the conversion and smoothed derivative conversion curves, the 

corresponding values of Tα and (dα/dT)α values at various conversion values can be 

obtained by means of the cubic spline interpolation method mentioned above. Then, a 

tool called the Friedman isoconversional plots [94] can be used, where the 

ln[βi(dα/dT)α,i] versus -1/RTα,i data at all heating rates and their corresponding linear 

regression lines for various conversions are presented. The coefficients of 

determination (R2) of linear regressions for various conversions can be given, which is 

a measure of the goodness-of-fit [95]. 

Figure 16 shows the Friedman isoconversional plots for corn stalk pyrolysis. 

Table 3 lists the correlation coefficients of the linear regressions presented in Figure 

16. In Figure 16, -1000/RTα,i (not -1/RTα,i) is used, because the resulting Ea can be 

directly expressed in kJ mol-1 (kJ mol-1 is the common unit for activation energy). From 

the results included in Figure 16 and Table 3, the perfect linear relationship for most 

conversions was obtained, except for the conversion of 0.85. The R2 value at the 

conversion of 0.85 is less than 0.9. Usually, the differences among the experimental 

data at different heating rates at high conversions (e.g. a ≥ 0.85) are very small, the 

results obtained by the Friedman isoconversional method contain large errors [72]. 
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Figure 16. Friedman isoconversional plots at selected conversion values for corn stalk 

pyrolysis. 

 

Table 3. Correlation coefficients of linear regressions presented in Figure 16 

α R2 α R2 α R2 
0.05 0.9996 0.35 0.9999 0.65 0.9954 
0.1 1.0000 0.4 0.9999 0.7 0.9933 
0.15 1.0000 0.45 0.9997 0.75 0.9912 
0.2 0.9995 0.5 0.9992 0.8 0.9875 
0.25 0.9992 0.55 0.9984 0.85 0.8998 
0.3 0.9997 0.6 0.9971   

 

 

By means of the Friedman isoconversional calculations, the values of Eα and 

ln[Aαf(α)] for corn stalk pyrolysis can be obtained, as shown in Figure 17. 
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Figure 17. Eα and ln[Aαf(α)] as a function of conversion for corn stalk pyrolysis. Error 

bars represent confidence intervals. 

 

From Figure 17, it can be observed that Eα depends on α: (1) Eα gradually increases 

from 148 to 186 kJ mol-1 when α increases from 0.05 to 0.65; (2) Eα sharply increase 

from 186 to 473 kJ mol-1 in the α range between 0.65 and 0.85. The similar trend of the 

variation of Eα with α can be found in the pyrolysis of the acid hydrolysis residue of 

miscanthus [96]. The activation energies ranged from 200 to 376 kJ mol-1 increasing 

with increasing conversion (0.15~0.85). Other similar results were produced in the 

pyrolysis of tobacco waste [86], eucalyptus wood [47], polyether ether ketone and its 

carbon fiber composites [97], rice husk [98], rape straw [99], and microalgae [100]. 

Corn stalk is a typical lignocellulosic biomass, which contains cellulose, 

hemicellulose, and lignin. The pyrolysis of corn stalk involves multistep processes of 

those components. In the literature [101, 102], the researchers usually gave a mean 

value of the resultant activation energies obtained from isoconversional methods. In 

fact, the mean activation energy value is meaningless. According to Vyazovkin [103], 
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the effective activation energy of lignocellulosic biomass has a meaning of a collective 

parameter linked to the activation energies of individual decomposition processes of 

those biopolymer components. And for the pyrolysis of cellulose, hemicellulose or 

lignin involves a distribution of activation energies [70]. Therefore, the effective 

activation energies could significantly vary with conversion. Wu et al. [86] put the 

curves of Eα vs. α, α vs. T and dα/dT vs. T together and linked them with some lines, 

which provided an easy way to better understand the relationship between the 

decomposition reactions of lignocellulosic components and the resultant effective 

activation energies of lignocellulosic biomass pyrolysis. Marion et al. [47] discussed 

the relationship between the Eα dependency and the decomposition reactions of 

lignocellulosic components. 

 

6 Verification 

The use of most isoconversional methods (e.g. FWO, KAS and Vyazovkin 

methods) can lead to the estimation of only activation energies. So most published 

papers related on isoconversional kinetic analysis of solid state reactions only focused 

on the determination of the activation energies. It is impossible to reproduce the kinetic 

data with only activation energies. Therefore, the comparison between the experimental 

data and the predicted results from isoconversional kinetic analysis can’t be performed. 

Whether the resulting activation energies fitted the experimental data well or not is 

unknown. 

The use of the Friedman isoconversional method can give the values of Eα and 

ln[Aαf(α)], which makes it possible to reconstruct the kinetic process. 

According to Equation (5), the following equation can be obtained: 

  / ln[ ]d
d

E RT A fT e   





   (8) 

Based on the Eα and ln[Aαf(α)] values at various α obtained from the Friedman 

isoconversional method, the above ordinary differential equation (8) can be 

numerically solved by means of the classical fourth-order Runge-Kutta method and 

then the temperature values at a certain β and various α values. 
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Figure 18 shows the comparison between the experimental data and the kinetic 

simulation based on the Eα and ln[Aαf(α)] values for corn stalk pyrolysis. It can be 

observed that the kinetic simulation fitted the experimental data very well, which 

indicated that the obtained kinetic parameters were effective. 

 
Figure 18. Comparison between experimental data and kinetic simulation based on Eα 

and ln[Aαf(α)] for corn stalk pyrolysis at 2.5, 5, 10, 20 and 40 K min-1 (in the figure, 

Exp represents the experimental data, Sim represents the kinetic simulation based on 

the isoconversional kinetic analysis results). 

 

7 Conclusions 

Kinetic information (in particular effective activation energy) is essential 

necessary for the design and optimization of lignocellulosic biomass pyrolysis 

processes. TGA can provide an effective way to obtain experimental kinetic data. From 

experimental TGA data to the effective activation energies of lignocellulosic biomass 

pyrolysis, there are some processes involved in the Friedman isoconversional kinetic 
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analysis: the removal of “error” data points, the removal of dehydration stage, the 

transformation of TGA data to α – T data, the differentiation of α – T data to get dα/dT 

– T data, the smoothing of noisy dα/dT – T data, the interpolation of α – T and smoothed 

dα/dT – T data to get Tα and (dα/dT)α data at various α, the Friedman isoconversional 

calculations for the determination of Eα and ln[Aαf(α)] at various α, the reconstruction 

of kinetic process according to the resulting Eα and ln[Aαf(α)] and the comparison 

between the experimental data and the calculated data based on the kinetic parameters 

from isoconversional kinetic analysis. 

A case study of corn stalk pyrolysis has been also presented in this paper. The 

results have shown that Eα gradually increases from 148 to 186 kJ mol-1 when α 

increases from 0.05 to 0.65 and Eα sharply increases from 186 to 473 kJ mol-1 in the α 

range between 0.65 and 0.85. The variation of Eα with α is attributed to collective link 

of the different pyrolysis kinetic behaviors of lignocellulosic components (e.g., 

cellulose, hemicellulose and lignin) contained in corn stalk. Similar results can be found 

in the pyrolysis of other lignocellulosic biomass feedstocks. 

It is worth noting that the general procedure presented in this paper can be also 

used for processing TGA data of the thermochemical conversion (pyrolysis, 

combustion or gasification) of other types of lignocellulosic biomass materials or solid 

fuels such as coal, polymer, oil shale, and waste plastic. 
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