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Summary. Background: Activated factor XIII (FXIIIa), a

transglutaminase, introduces fibrin–fibrin and fibrin–inhibitor

cross-links, resulting in more mechanically stable clots. The

impact of cross-linking on resistance to fibrinolysis has proved

challenging to evaluate quantitatively. Methods: We used a

whole bloodmodel thrombus system to characterize the role of

cross-linking in resistance to fibrinolytic degradation. Model

thrombi, which mimic arterial thrombi formed in vivo, were

prepared with incorporated fluorescently labeled fibrinogen, in

order to allow quantification of fibrinolysis as released

fluorescence units per minute. Results: A site-specific inhibitor

of transglutaminases, added to blood from normal donors,

yielded model thrombi that lysed more easily, either spontane-

ously or by plasminogen activators. This was observed both in

the cell/platelet-rich head and fibrin-rich tail. Model thrombi

fromanFXIII-deficient patient lysedmore quickly thannormal

thrombi; replacement therapy with FXIII concentrate normal-

ized lysis. In vitro addition of purified FXIII to the patient�s
preprophylaxis blood, but not to normal control blood, resulted

in more stable thrombi, indicating no further efficacy of

supraphysiologic FXIII. However, addition of tissue transglu-

taminase, which is synthesized by endothelial cells, generated

thrombi that were more resistant to fibrinolysis; this may

stabilize mural thrombi in vivo. Conclusions: Model thrombi

formed under flow, even those prepared as plasma �thrombi�,
reveal the effect of FXIII on fibrinolysis. Although very low

levels of FXIII are known to produce mechanical clot stability,

and to achieve c-dimerization, they appear to be suboptimal in

conferring full resistance to fibrinolysis.
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Introduction

Activation by thrombin of the transglutaminase (TG) factor

XIII (FXIII) introduces cross-links into the fibrin matrix,

dramatically altering its rheologic properties. The role of FXIII

in vivo is clear, deficiency resulting in bleeding, usually after a

delay, impaired wound healing and spontaneous abortion [1], a

phenotype echoed in FXIIIA-deficient mice [2]. The human

recessive autosomal condition usually arises from mutations in

the A-subunit of FXIII [3], and is characterized in the

laboratory by soft plasma clots that are soluble in urea and

less mechanically stable [4]. Fibrin is a cofactor in FXIII

activation, forming a ternary complex with thrombin [5] and

facilitating release of the activation peptide and dissociation of

the carrier B-subunit [4] to form the active enzyme, FXIIIa. In

fibrin, the initial reaction catalyzed by FXIIIa is between

Gln389/399 on one c-chain and Lys406 on another, generating

a c–c-dimer [6,7]. This is followed by generation of high

molecular mass polymers of the a-chain [7], with multimeric

cross-linked products of the c-chain occurring over extended

periods [8]. Another enzyme in the family, tissue TG (TG2)

occurs in erythrocytes and endothelial cells [9]. TG2 exhibits a

broader specificity than FXIIIa, catalyzing cross-linking

between c-chains and a-chains, and forming a-multimers in

both fibrinogen and fibrin [10].

FXIIIa contributes to clot stability by cross-linking

inhibitors of fibrinolysis, primarily a2-antiplasmin (a2AP),
to fibrin, decreasing the susceptibility of clots to lysis [11].

Plasminogen activator inhibitor (PAI)-2 [12] and thrombin-

activatable fibrinolysis inhibitor (TAFI) [13] are substrates

for TGs, and can thus be incorporated into fibrin. Despite

this body of evidence on cross-linked inhibitors, especially

a2AP [14], there has been variability in visualizing the effect

of FXIII in fibrinolytic assays, with several studies showing

little, if any, effect [15–18], and others showing less efficient

lysis of cross-linked clots [8,19–22]. Different explanations

have been given for these discrepancies [8,15], but there is a
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need for a quantitative method that reveals the effect of

cross-linking on fibrinolysis. Whole blood model thrombi

formed under flow show a similar structure and protein

distribution to thrombi formed in vivo [23], and have revealed

the complementary nature of a2AP, PAI-1 and TAFI [24].

Here, we used model thrombi, and show that fibrinolysis is

dramatically increased in FXIII deficiency, an effect that

could be recapitulated by incorporating a non-reversible

inhibitor of TGs.

Materials and methods

Blood collection and preparation of plasma

Peripheral blood was collected from consenting normal healthy

donors into a 0.1 volume of 0.13 M trisodium citrate; for some

experiments, platelet-free plasma was prepared [25] as a pool

from 15 normal individuals (pooled normal plasma). Blood

was also donated by a congenital homozygous FXIII-deficient

patient (patient 1 in Anwar et al. [26]), characterized as having

truncated FXIIIA, the result of mutations within the splice-

donor sites. The patient was receiving routine prophylaxis with

approximately 10 U kg)1 Fibrogammin� P (Aventis, Paris,

France) at 4-weekly intervals, and blood samples were taken

before this treatment unless otherwise stated.

Thrombus formation and lysis

Thrombi were formed essentially as previously described

[27,28]. Briefly, fluorescein isothiocyanate (FITC)-labeled

fibrinogen (75 lg mL)1 final concentration; FITC/ fibrinogen

approximately 6 : 1) was added to citrated whole blood

(0.9 mL), and the system was recalcified by addition of

10.9 mM CaCl2 in a total volume of 1.15 mL. A non-reversible

TG inhibitor, 1,3-dimethyl-2-[(2-oxopropyl) thio]imidazolium

chloride (1 mM) [29], FXIII (1 or 2.5 U mL)1; Fibro-

gammin P) or guinea pig TG2 (1, 2 or 4 U mL)1; Sigma-

Aldrich, Poole, UK) was added to blood prior to thrombus

formation. The same method was used to prepare �thrombi�
from platelet-free plasma. After rotation at a constant speed of

30 r.p.m. for 90 min at room temperature, thrombi were

removed from the serum and washed in 0.9% (w/v) NaCl.

Thrombi were then bathed in 10 mM Tris (pH 7.5) and 0.01%

Tween-20 containing tissue-type plasminogen activator (t-PA)

at 1 lg mL)1 unless otherwise stated. In some experiments,

thrombi were incubated in buffer alone, to examine spontane-

ous lysis, or with 1 lg mL)1 urokinase-type plasminogen

activator (u-PA). Thrombi were incubated at 37 �C, samples of

the supernatant (5 lL) were removed at 0 min and at 30-min

intervals and diluted 1 : 50 in 10 mM phosphate and 150 mM

NaCl (pH 7.4), and the fluorescence was then measured

(excitation 485 nm; emission 530 nm). In some experiments,

thrombi were bisected into cell-rich head and fibrin-rich tail,

and lysed separately. Incorporation of FITC–fibrinogen was

analyzed by lysing heads and tails to completion (18 h at 37 �C
in 1 lg mL)1 t-PA and 100 lg mL)1 plasminogen).

FXIII activity assay

TG activity in plasma was quantified by using an adaptation of

two methods [30,31]. Human fibronectin (5 lg per well) was

used to coat 96-well plates (CoStar; Corning, Lowell, MA,

USA). The FXIII standard was pooled normal plasma,

standardized against the international standard [32], preactivat-

ed with 1 U mL)1 bovine thrombin at 37 �C for 5 min.

Residual thrombin was neutralized by hirudin (2 lg mL)1),

and samples were diluted in 0.1 M Tris (pH 7.4) and 1 mM

dithiothreitol (DTT), to construct a standard curve. Guinea pig

tissue TG (Sigma) activity was measured in the same way but

without prior thrombin treatment. The TG reaction, in 0.1 M

Tris (pH 7.4), 1 mM DTT, 5 mM CaCl2 and 0.5 mM 5-

(biotinamido)pentylamine (Pierce Thermo Fisher Scientific,

Rockford, IL,USA),was stoppedafter 2 hat37 �Cbyaddition

of 2 mMEDTA in 0.1 M Tris (pH 7.4). Plates were washed and

blocked with 0.5% (w/v) milk powder for 30 min at 37 �C, and
incorporated biotinylated amine was detected [30]. The assay

was linear for plasmaFXIIIa between 2.5%and 100%normal,

prepared by mixing FXIII-deficient plasma (Affinity Biologi-

cals, Ancaster, Canada) and pooled normal plasma. The

coefficient of variation was 7%, based on nine independent

assays of 50% normal plasma.

Sodium dodecylsulfate polyacrylamide gel electrophoresis

(SDS-PAGE)

Cross-linked fibrin was analyzed by clotting 10% (v/v) plasma

samples with final concentrations of 15 mM cysteine, 8 mM

CaCl2 and 0.2 U mL)1 thrombin in glass tubes [33]. Clots were

harvested after 30 min at 37 �Cbywinding onto thin glass rods

(1.5 mm diameter), washed with 10 mM EDTA in 0.9% (w/v)

NaCl, dried in air, and dissolved in reducing buffer (10 min at

72 �C, before separation on 4–12% polyacrylamide Bis–Tris

NuPAGE gels; Invitrogen, Karlsruhe, Germany). Degradation

products from plasma �model thrombi�, after 4 h of lysis, were

analyzed under non-reducing conditions on the same gels. Gels

were stained with Coomassie Blue Brilliant R or immunoblot-

ted with antibody to the fibrinogen c-chain (Santa Cruz

Biotechnology, Santa Cruz, CA, USA).

Data analysis

Quantitative data are expressed as themean and standard error

of themean (n = at least 3). Datawere analyzed inGRAPHPAD

PRISM 5 (GraphPad Software, La Jolla, CA, USA) and shown

as fluorescence units (FU) released; rates of lysis (FU min)1)

were determined by linear regression, and used to calculate fold

differences. Statistical analysis was performed by t-test, and P-

values < 0.05 were considered to be significant.

Results

TGs stabilize model thrombi

Model thrombi were formed in the presence and absence of a

non-reversible TG inhibitor [29]. The inhibitor was used at
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1 mM, which is more than a 100-fold higher than its inhibition

constant, based both on the original work [29] and on our

analysis of its efficiency in inhibiting plasma FXIIIa activity,

where the IC50 was found to be 7 lM (data not shown).

Incorporation of TG inhibitor into the forming model

thrombus doubled the rates of lysis, relative to no inhibitor.

This was evident for lysis induced by t-PA (Fig. 1; 2.0-fold

increase in rate of lysis; P < 0.005) or u-PA (Fig. 1; 2.2-fold

increase; P < 0.001), present at 1 lg mL)1 in the bathing fluid

surrounding the washed thrombus. Model thrombi have

previously been shown to lyse spontaneously in the absence

of added plasminogen activators [34]. Inhibition of cross-

linking had less impact on spontaneous lysis (Fig. 1), but TG

inhibitor still increased the lysis rate significantly (1.2-fold

increase; P < 0.005).

Model thrombi have a defined structure, with a cell-rich and

platelet-rich head, and a fibrin-rich tail [23].We separately lysed

the heads and tails of model thrombi with t-PA (Fig. 2) or u-

PA (data not shown). These data are presented as percentage

lysis, because incorporation of FITC–fibrinogen was found to

be consistently higher (about 1.5-fold) in heads than in tails, as

assessed by lysis to completion with t-PA and added plasmin-

ogen. TG inhibitor increased lysis of both heads (1.5-fold

increase) and tails (2.1-fold increase), both increases being

significant (P < 0.005). Thus, the effect of cross-linking was

clear throughout the thrombus.

Stability of FXIII-deficient thrombi

Blood samples were collected from a congenitally homozygous

FXIII-deficient patient before and after routine FXIII admin-

istration. His preadministration plasma TG activity, after

activation with thrombin, was 8.8% ± 2.8% [mean ± stan-

dard deviation (SD)] of normal. Clots prepared from the

patient plasma and analyzed by SDS-PAGE were close to

normal in terms of c–c-dimer detection (Fig. 3A). Fully

deficient commercial plasma or mixtures with < 3% normal

FXIII showed detectable c-monomer, as did normal plasma

treated with TG inhibitor.

Model thrombi prepared from the patient�s blood were lysed

more quickly by t-PA (4.4 ± 0.5 FU min)1; n = 4) than

those from normal controls (2.7 ± 0.1 FU min)1; n = 19;

P < 0.005). The effect of TG inhibitor on patient thrombi was

small, but still significant (Fig. 3B; 1.1-fold increase;

P < 0.005). Thirty minutes after routine 4-weekly prophylaxis

with Fibrogammin (10 U kg)1), plasma activity rose to

54.9% ± 7.9% of normal. The thrombi from post-FXIII

administration blood had normal rates of lysis

(2.9 ± 0.1 FU min)1 vs. 2.7 ± 0.1 FU min)1, respectively;

P = 0.08), and the greater effect of TG inhibition was restored

(Fig. 3; 1.8-fold increase; P < 0.005). Similar results were

achieved when different concentrations of t-PA and u-PA

(0.25–1 lg mL)1) were used for lysis or for spontaneous lysis in

the absence of plasminogen activator (not shown). We then

formed �thrombi� from platelet-free plasma. Their lysis revealed

a 5.1-fold increase in lysis rate (Fig. 4A; P < 0.005) and a

significant contrast between normal and FXIII-deficient

plasma (5.6-fold increase; P < 0.005). Bathing fluid harvested

after the final time point (4 h) was analyzed by SDS-PAGE

and western blot. A change in the pattern of fibrin degradation

products was observed, especially in terms of accumulation of

the D-monomer (90 kDa) band, which was present when the

2500

2000

1500

F
lu

or
es

ce
nc

e 
re

le
as

e

1000

500

0

2500

2000

1500

F
lu

or
es

ce
nc

e 
re

le
as

e

1000

500

0

2500

Spontaneous

u-PA

t-PA

2000

1500

F
lu

or
es

ce
nc

e 
re

le
as

e

1000

500

0

0 50 100 150
Time

200 250

0 50 100 150
Time

200 250

0 50 100 150
Time

200 250

Fig. 1. Inhibition of cross-linking in thrombi. Thrombi were prepared in

the absence (s) or presence (d) of transglutaminase (TG) inhibitor and

bathed in fluid containing tissue-type plasminogen activator (t-PA;

1 lg mL)1, n = 5), urokinase-type plasminogen activator (u-PA;

1 lg mL)1, n = 4) or buffer alone (spontaneous, n = 8). Lysis was

monitored as release of fluorescence and expressed as mean ± standard

error of the mean. Differences in lysis rate with addition of TG inhibitor

were significant (P < 0.01) in all cases.
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TG inhibitor was added to normal plasma. This band was also

apparent, but at a lesser intensity, in bathing fluid from the

patient plasma �model thrombi� (Fig. 4B).

Further stabilization of thrombi by addition of FXIII or tissue

TG

Addition of Fibrogammin to normal blood had no effect on

the stability of model thrombi (Fig. 5; P = 0.15), but addition

to FXIII-deficient blood consistently made the thrombi more

resistant to lysis (Fig. 5; P < 0.001; 1.8-fold decrease). For

clarity, only the addition of 1 U mL)1 Fibrogammin to normal

blood is shown, but similar results were obtained with

2.5 U mL)1. The data show that supraphysiologic levels of

FXIII produce no more resistance to lysis than normal levels.

Fibrin can also be cross-linked by TG2 with a pattern that is

distinct from that with FXIII [10,35]. To determine whether

TG2 could confer an additional degree of resistance to

fibrinolysis, we added TG2 to normal blood (Fig. 5) at

concentrations equivalent to that of Fibrogammin, on the

basis of activity assay values. Such additions of TG2 caused

clear dose-dependent decreases in lysis, with reductions of 1.7-

fold, 2.1-fold and 2.6-fold for 1, 2 and 4 U mL)1, respectively.

These differences were significant (P < 0.005) relative to no

addition and for each concentration relative to the others.

These data show that TG2 stabilization of thrombi against

fibrinolytic degradation supplements that caused by FXIIIa.

Discussion

A causal relationship between FXIII-dependent cross-linking

and decreased fibrinolysis is predicted and often assumed, but

its quantitative demonstration in the laboratory has been

controversial [8,15–22]. This study reports the use of a flow

model [23,24,28] to examine model thrombus lysis. Thrombi

were prepared with blood from an FXIII-deficient patient,

which lysed much faster than thrombi from normal blood.

Similarly enhanced lysis was achieved by inhibiting cross-

linking in normal blood. We used a TG inhibitor that alkylates

the active site cysteine of the TGs without influencing other

thiol-sensitive enzymes [29], and is thus a more selective tool

than those that react with all cysteine groups, such as cystamine

or iodoacetamide, or chelate calcium ions [36]. Inclusion of TG

inhibitor during whole blood thrombus formation under flow,

with shear rates equivalent to those found in larger arteries

(400–600 s)1) [28], reproducibly doubled the rate of fibrinolysis.

The effect of TG inhibition was apparent in both heads and

tails of model thrombi, suggesting the importance of cross-

linking throughout the entire thrombus.

The data presented here demonstrate an effect of inhibiting

cross-linking on fibrinolysis, whether t-PA or u-PAwas used to

activate plasminogen, and also on the spontaneous lysis of

model thrombi, owing primarily to u-PA activity from

polymorphonuclear cells [34]. These cells have been shown to

degrade FXIII [37], but, clearly, sufficient native FXIII remains

in model thrombi to achieve cross-linking. The concentration

of t-PA or u-PA (1 lg mL)1) was chosen to reflect pharma-

cologic conditions and to avoid very high concentrations,

which result in inefficient lysis [28], but the effects of neutral-

izing TG activity were also apparent at 250 ng mL)1 t-PA and

when no activator was added (not shown). Our data expand

and quantify the observation made in 1966, in a similar flow

system, with lysis assessed simply by inspection [19]. Formation

of thrombi under flow has emerged from our studies as an

essential feature in revealing sensitivity to cross-linking. Parallel

studies using static clots, prepared with incorporated FITC–

fibrinogen, have failed to show reproducible effects of cross-

linking; the same was true of turbidity assays [12,14,27] (not

shown). The observation that even plasma �model thrombi�,
formed under flow, demonstrate sensitivity to cross-linking

greatly increases the utility and convenience of the model

system, allowing the use of stored plasma.
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The patient used in this study (patient 1 in [26]) is well

controlled by routine monthly prophylaxis with FXIII con-

centrate. He has had no spontaneous bleeds during the last

9 years. At the typical nadir of 8–9% normal plasma FXIII, c–
c-dimers were apparent in fibrin prepared from his plasma.

Plasma clots from the same patient, some 25 years ago, when

he was treated less regularly and with fresh frozen plasma

rather than FXIII concentrate, had barely detectable c–c-
dimers [33]. Our model thrombus system shows clearly that 8–

9% normal plasma FXIII is not sufficient to achieve normal

thrombus resistance to lysis, whereas the literature suggests that

trace levels of FXIII are adequate for normal hemostasis

[1,3,4]. Even at 8-9% FXIII activity, when stability of thrombi

was severely compromised, it was possible to detect the effect of

inhibiting TG, highlighting the exquisite sensitivity of our

system to cross-linking. Definitions of normality are inevitably

dependent on the methods used. The established view, that as

little as 5%FXIII is sufficient, comes primarily from studies on

clotting [38]. Normality in terms of fibrinolysis is not routinely

assessed, but Figure 1C shows clearly that spontaneous lysis is

sensitive to cross-linking. The challenge of exposing model

thrombi to pharmacologic concentrations of t-PA reveals a

requirement for higher levels of FXIII in this setting. The data

on the patient after administration of FXIII show that plasma

samples containing about 50% normal FXIII are indistin-

guishable from normal plasma in terms of model thrombus

stability. More detailed studies will be necessary to define

absolute requirements for FXIII in relation to different
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physiological and therapeutic circumstances, and such addi-

tional information will be useful in the context of FXIII being

used during surgery in patients with propensity for bleeding

[39,40].

The role of FXIII in enhancing the clot strength and

elasticity of fibrin has been described extensively in static

clots [41–43]. A similar inhibitor to that used here has been
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shown to have a profound effect on clot rigidity [43]. Clot

strength is attributed largely to cross-linking of fibrin

a-chains, the role of c-chain dimers being more controversial

[22,43,44]. Effects on lysis are even more variable, some

studies showing no or minor effects of cross-linking [15–18],

and others showing a relationship between cross-linking and

poorer lysis [8,19–22]. Assays of fibrinolysis are well known

to show variable sensitivity to different components, depend-

ing on several factors, particularly the balance between

plasminogen activators and inhibitors [45], but also reflecting

fibrinogen concentration [46], concentration and access of

plasminogen [47], and ionic strength [8]. It is not surprising,

therefore, that there is disagreement in the literature on the

effects of cross-linking on fibrinolysis in vitro, but the impact

of TGs on fibrinolytic resistance has been visualized in vivo

with the use of an experimental model of pulmonary

embolism [48]. Lysis of purified fibrin was not affected by

c–c-dimers [21], whereas it was slowed by multimeric cross-

linking of a-chains [8] and the formation of c-multimers over

extended periods [49]. The products of lysis in this study

showed a clear band of D-monomer from patient samples or

when cross-linking in normal plasma was inhibited, but our

analysis was limited to samples taken after 4 h of lysis. This

study was not designed to distinguish between stabilization

resulting from fibrin–fibrin cross-links and those resulting

from fibrin–inhibitor cross-links. Fibrin to which a2AP is

cross-linked lysed more slowly both in vitro [11,50], and

in vivo [48]. PAI-1, a2AP and TAFI all contribute to the

stability of cross-linked clots and thrombi [24]. The sensitivity

of model thrombi to different regulators of fibrinolysis shows

its potential for defining the contributions of fibrin–fibrin and

fibrin–inhibitor cross-links to resistance to fibrinolysis. Such

model thrombi may be useful in the study of a2AP
deficiency, as this inhibitor is markedly affected by cross-

linking status [11,50] and, indeed, occurs cross-linked to

fibrinogen in plasma [51].

TG2 is known to catalyze cross-linking of fibrin, with some

distinctions in the exact pattern as compared with FXIIIa

[9,10,35]. For this reason, we added TG2 to normal blood to

determine whether the flow system was sensitive to the effects

of TGs other than FXIIIa. We found that supplementing

normal blood with TG2 produced thrombi that were more

resistant to lysis, demonstrating an additional degree of

fibrinolytic resistance over that observed with endogenous

FXIII. Erythrocytes trapped within the fibrin network have

been proposed as a source of TG2 [4], but our data imply

limited release during thrombus formation. In vivo, it is likely

that TG2 is present in mural thrombi, as it is an abundant

protein in the vessel wall [52] and can be upregulated by

thrombin [30]. It is noteworthy that active FXIIIa has a half-

life of 20 min in vivo and has been reported to be a feature of

new thrombi [53] but constitutively active TG2 may stabilize

mature thrombi.

In conclusion, model thrombi prepared under flow are

sensitive to the impact of cross-linking on fibrinolytic resis-

tance. The system provides a convenient model in which to

address many remaining questions, such as role of cellular

FXIII, the influence of fibrin vs. inhibitor cross-linking, and the

ability of different TGs to regulate these processes.
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