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Summary

The traditional waterfall software life cycle model has several weaknesses. One
problem is that a working version of a system is unavailable until a late stage in the
development; any omissions and mistakes in the specification undetected until that
stage can be costly to maintain. The operational approach which emphasises the
construction of executable specifications can help to remedy this problem. An
operational specification may be exercised to generate the behaviours of the specified
system, thereby serving as a prototype to facilitate early validation of the system’s
functional requirements. Recent ideas have centred on using an existing operational
method such as JSD in the specification phase of object-oriented development. An
explicit transformation phase following specification is necessary in this approach
because differences in abstractions between the two domains need to be bridged.

This research explores an alternative approach of developing an operational
specification method specifically for object-oriented development. By incorporating
object-oriented concepts in operational specifications, the specifications have the
advantage of directly facilitating implementation in an object-oriented language without
requiring further significant transformations. In addition, object-oriented concepts can
help the developer manage the complexity of the problem domain during specification,
whilst providing the user with a specification that closely reflects the real world and so
the specification and its execution can be readily understood and validated.

A graphical notation has been developed for the specification method which
can capture the dynamic properties of an object-oriented system. A tool has also been
implemented comprising an editor to facilitate the input of specifications, and an
interpreter which can execute the specifications and graphically animate the behaviours
of the specified systems.

Keywords: executable specification, graphical specification animation, software life

cycle, functional validation, rapid prototyping.
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Chapter 1 Introduction

1.1 Background to Research

The discipline of software engineering has emerged in response to a set of
circumstances known as the ‘software crisis’. In the early days of computing,
limitations in hardware restricted the application of software to small and well-
defined tasks. Most software was developed and maintained by one person or
organisation, the process was unmanaged and documentation was often non-existent.
Then “the economics of computing began to change drastically as hardware costs
plummeted and computer capabilities rose”, making it possible and economical to
automate more and more applications of increasing complexity (Booch, 1991). The
complexity of software is measured in terms of the scale of the problem to be solved
as well as the intellectual difficulty involved. Initial experience in building large
systems showed that existing ad hoc techniques used for building small system could
not be scaled up and were inadequate in helping developers manage the increase in
complexity. As a result, software development projects frequently overran their
schedules, cost much more than their budgets, were unreliable, unmaintainable and
performed poorly (Sommerville, 1992). As the demand for software increased
unabated, the cost of hardware continued to fall whilst the cost of software escalated
rapidly. Software became the major liability in the high cost and poor quality of
computer-based system development. Software development reached a crisis
situation. The software crisis was not limited to software that functioned incorrectly,
but encompassed problems associated with how to develop software, how to
maintain the growing volume of software, and how to keep pace with the growing

demand for more software (Pressman, 1992).




Discipline and techniques were needed which allowed the compiexity
inherent in large software systems to be controlled. Different techniques have
evolved which deal with software as an engineered product that requires planning,
analysis, design, implementation, testing and maintenance. Pressman (1992) states
that “by combining comprehensive methods for all phases in software development;
better tools for automating these methods; more powerful building blocks for
software implementation; better techniques for software quality assurance; and an
overriding philosophy for coordination, control, and management, we can achieve a
discipline for software development — a discipline called software engineering”.
The term ‘software engineering’ was first used as far back as the late sixties when at
an early conference Bauer (1969) offered this definition: “... the establishment and
use of sound engineering principles in order to obtain economically software that is

reliable, and works efficiently on real machines™.

Methods and techniques can be placed in different categories or paradigms,
based on the conceptual frameworks which define the abstractions and philosophies
which they use. Examples include the procedural paradigm in which computation is
achieved by invoking operations which affect a set of state values, while the
functional paradigm is based on ‘side-effect-free” mathematical equations which map
inputs into outputs. The following sections outline two other paradigms which

underpin this research.
The Operational Paradigm

The classic life cycle paradigm, often called the waterfall model (Boehm, 1988),
prescribes a sequential approach to software development. This model is widely
used but suffers from several weaknesses: iterations of activities are permitted only
between immediately adjacent phases in the model and uncertainty in requirements

in the early stages of development are not accommodated; a working version of a




system is not available until a late stage in the development, and any early miétakes
undetected until the working program can be costly. The operational paradigm
(Zave, 1984; Agresti, 1986) has been proposed as an alternative to the waterfall
mode] to remedy some of the weaknesses in the latter. The distinguishing feature of
the operational paradigm is its emphasis on constructing executable specifications.
An executable specification may be exercised to generate the behaviour of the
specified system. An operational specification can therefore serve as a prototype of a
system which can facilitate the validation of the system’s functional requirements,

thereby potentially reducing the cost of development.

When a satisfactory operational specification is obtained, a series of
behaviour-preserving transformations may be performed on the specification to
facilitate its implementation in a programming language. The transformation process
can potentially be automated, allowing the mapping between a specification and its
implementation to be carried out mechanically. This transformation approach
contrasts directly with the usual ‘manual’ approach, which relies on the ingenuity of
programmers to ‘hand generate’ code and which can therefore be more prone to error

(Agresti, 1986).

Current development techniques which fall into the operational category
include JSD (Jackson, 1983), Paisley (Zave, 1984), Gist (Balzer, Goldman & Wile,
1982), and Me-Too (Henderson, 1986). The operational paradigm is described in

more detail in a subsequent chapter.

The Object-oriented Paradigm

Many design methods have been proposed to help manage the complexity involved
in the design phase of software development. The most influential of the early

methods was top-down structured design, which was directly influenced by
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traditional procedural languages such as FORTRAN and COBOL, in which therbasic
unit of decomposition is the subprogram. A program written in one of these
languages consists of a hierarchy of subprograms, each calling other subprograms to
perform its task. The approach taken by top-down structured design is therefore one
of algorithmic decomposition, wherein each module denotes a major step in some
overall process. However, Stein (1988) observes that the technique does not scale up
well for very complex systems. It is also largely inappropriate for object-oriented

programming languages (Booch, 1991).

Object-oriented languages depart from procedural languages in that state
and behaviour are not treated as independent elements, but are encapsulated in a
single entity called an ‘object’ which represents a unit of data abstraction.
Computation in object-oriented programming is achieved by sending messages to
objects to carry out their tasks. The concepts of ‘class’ and ‘inheritance’ are
employed to facilitate code reuse and classification. Object-oriented design views
the world as a set of objects, each modelling some real-world entity and exhibiting
its own behaviour. A system is decomposed according to the key abstractions in the
problem domain. With object-oriented design, designers are no longer constrained
by having to map the problem domain into predefined data and control structures
present in an implementation language, but can create a “virtually unlimited range of
abstract data types and functional abstractions” (Wiener & Sincovec, 1984).
Software design becomes decoupled from the representational detail of data in a
system and therefore the system is more resilient to changes to the representational
detail (Wiener & Sincovec, 1984). Booch (1991) states that object-oriented
decomposition yields smaller systems through reuse and “directly addresses the
inherent complexity of software by helping us make intelligent decisions regarding
the separation of concerns in a large state space”. A more detail description of the
object-oriented paradigm and an overview of some current object-oriented methods

such as HOOD and work by Booch are provided in subsequent chapters.
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1.2 Aims of Research

The prototyping capability offered by the operational approach can potentially
benefit the software development process in general, including object-oriented
development. Recent ideas have centred on using an existing operational method to
create specifications which then provide a basis for object-oriented design (Booch,
1991; Masiero & Germano, 1988). Lewis (1991) has looked at the feasibility of this
using JSD and describes transformation strategies which may be used to map JSD
specifications into Smalltalk-80 implementations. Transformations are always
necessary in this approach because differences in concepts and abstractions between

the two domains need to be bridged.

An alternative approach would be to consider merging the operational
approach with the object-oriented paradigm; real-world entities in the problem
domain would be modelled in an operational specification of an object-oriented
system in terms of objects and their behaviour. Functions of a system are then
defined in terms of interactions amongst the objects. This approach would obviate
the need for transformation. Execution of the operational specification would
provide a means for validating the functional requirements of the object-oriented
system expressed in the specification. If the execution could be animated, behaviour
of individual objects and their interactions would be ‘brought to life’. Such an
animation facility would be a useful tool for an analyst in understanding real-world
entities during specification. A more accurate model of the problem domain can be
created in the specification with greater understanding of the domain entities. The
implementation of a system and its functions built upon an accurate model of the
problem domain in the specification is likely to be more robust to future changes in
the system’s functionality. With animation, the execution of a specification based on
entities in the user’s environment would be conceptually easier for the user to

understand; the user is, therefore, in a better position to help the analyst in validating
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the behaviour of objects in the specification and the functional requirements

expressed.

The aim of this research is to explore the feasibility of developing an
operational specification technique which is also object-oriented, by incorporating
object-oriented concepts in operational specifications. An important requirement is
that the operational specifications should lend themselves to animation of their
execution. Analysis of some current object-oriented methods suggests that a new
graphical specification notation needs to be developed which can represent
executable semantics present in object-oriented systems to enable execution of
specifications, and at the same time can represent adequately dynamic behaviour of
objects so that execution can be animated. Different aspects of dynamic behaviour to
be represented have to be determined, and guidelines for using the notation will have

to be provided.

Another objective of the research is to implement a tool which can support
the graphical specification process. An important facility of the tool will be the
capability to execute a specification and animate the behaviour of objects in the
specification during execution. However, the tool will not embody any rules which
would automatically generate code for an implementation. This is a separate goal

not lying within the bounds of the current research.

1.3 Thesis Structure

This thesis consists of seven chapters. Chapter 2 provides an introduction to the
object-oriented paradigm, starting with a historical overview of the development of
object-orientation. Characteristics of the key elements in the paradigm — objects

and classes — are described, including object communication via message passing
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and class inheritance. Important concepts that underlie the paradigm like abstraction,

encapsulation and polymorphism are also discussed.

Chapter 3 examines the traditional software life cycle model (the waterfall
model) used for developing software systems and highlights the inherent problems
associated with the model, including its inadequacy in representing object-oriented
development. Alternative life cycle models have been proposed specifically to
reflect object-oriented development, and these are described next. Characteristics of
the new models emphasise the iterative and incremental nature of object-oriented
development. The end of the chapter overviews some current object-oriented

analysis techniques and design methods described by several authors.

Chapter 4 describes the operational approach to software development
which has been proposed to remedy the problems of the conventional life cycle
model described in Chapter 3. An overview of JSD and a brief description of three
other existing operational methods are provided. The possibility of using an existing
operational method to specify object-oriented systems is discussed, and then an
analysis of the object-oriented methods described in Chapter 3 is provided to assess
the suitability of using the notation in these methods to create operational

specifications of object-oriented systems.

Chapter 5 discusses some issues involved in the representation of dynamic
behaviour and executable semantics in operational specifications of object-oriented
systems. An object-oriented operational specification method is then introduced; the
method uses a new graphical notation which can represent the dynamic behaviour
and executable semantics identified in Chapter 4. The activities and issues involved
in each of the four development steps of the method are discussed. The different

diagrams in the notation are also described in each step. The diagrams created using
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the notation in the development steps collectively form an executable specification of

a system. Finally a small example is given to illustrate the specification technique.

In Chapter 6, the implementation of a tool to support the operational object-
oriented development method described in Chapter 5 is presented. The tool
comprises an editor which can facilitate the input of graphical specifications and an
interpreter which can animate the behaviour of systems when the specifications are
executed. The user interface of the editor and the internal representation of
specifications employed by the editor are described, together with the behaviour of

the interpreter and its animation facility.
In conclusion, Chapter 7 reviews and evaluates the work that has been

accomplished and discusses some of its implications. Suggestions of some possible

directions for the future development of this research are also provided.
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Chapter 2 The Object-oriented Paradigm

2.1 A Brief History of Object-orientation

Rentsch (1982) predicts that object-oriented programming will be to the 90s what
structured programming was to the 70s. Object-orientation is not a new concept. Its
roots can be traced back as early as the 1960s in Norway, when Kristen Nygaard and
Ole-Johan Dahl created the discrete simulation language Simula (Dahl & Nygaard,

1966). Simula first introduced the concept of class.

In the 1970s the programming language Smalltalk (Goldberg & Robson,
1985) “carried the object oriented paradigm to a smoother model” (Rentsch, 1982),
and also popularised the now fashionable term ‘object-oriented’. It was first
developed as the software component of the Dynabook project at Xerox Palo Alto
Research Centre (PARC). Dynabook (Kay, 1969) was an extension of the Flex
(FLexible, EXtendible) machine, and was Alan Kay's vision of a truly personal
computer that would be usable by diverse users for all kinds of information
management need. A flavour of the functional abstraction of LISP (Winston & Horn,
1981) can also be felt in Smalltalk, although Smalltalk and LISP are quite different as

languages.

The 80s saw a growth in interest in graphical user interfaces (GUls) —
notably the WIMP (Windows, Icons, Menus and Pointers) interface pioneered by
Xerox and later Apple. This has influenced the development of object-oriented
languages such as Smalltalk, whose library of classes includes many specifically
designed for building such interfaces. The enthusiasm for GUIs has also contributed

to the success of object-oriented programming, chiefly because the inherent reusability




of object-oriented code helps to overcome the sheer complexity and the concomi“tant
high cost of building these interfaces. User interfaces can be assembled quickly
utilising existing library classes (e.g., windows, scroll bars, dialogue boxes and
menus, etc.). The Apple Macintosh exemplifies the amount of work involved in
building user interfaces; estimated as representing over 200 man-years of development,

much of this effort has been expended on interface construction (Graham, 1990).

Exchange of ideas between the object-oriented programming and the artificial
intelligence communities started from the mid 70s. This has, on the one hand, led to
object-oriented extensions of Al programming languages, such as Flavors (Moon,
1986), Actors (Agha, 1986) and CLOS (Bowbrow, DeMichiel, Gabriel, Keene,
Kiczales & Moon, 1988) (all of which are derived from LISP), with Al programming
environments such as KEE (Fikes & Kehler, 1985) and ART also having been
influenced by object-oriented ideas. Converscly, Al research into knowledge
representation using semantic networks (Quillian, 1968) and frames (Minsky, 1975),
which first evolved the concept of inheritance, has benefitted object-orientation in the

use of the inheritance mechanism.

Although suitable for interface development, early object-oriented
programming languages exhibited rather severe performance problems when used in
other application areas. The search to increase efficiency has prompted the
development of new languages such as Eiffel (Meyer, 1988), and the extension of
existing ones — hence the emergence of hybrids like C++ (Stroustrup, 1986) and
Object Pascal (Tesler, 1985). It also became apparent that object-oriented
programming languages have significant inadequacies in handling typical data
management problems such as persistent objects and concurrent access to data; the

move to object-oriented database systems is one response to this handicap (Graham,

1990).
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As object-oriented programming matured towards the 90s, the focug of
interest shifted to the design of object-oriented systems and, more recently, to
requirements analysis associated with object-oriented development; a proliferation of
object-oriented design methods, followed by object-oriented analysis techniques,
started to appear. This progression mirrors the development of the functional
decomposition technology which started with structured programming (Dahl, Dijkstra
& Hoare, 1972), followed by structured design (Yourdon & Constantine, 1979) and

then finally structured analysis (DeMarco 1978).

Software that is being built is getting increasingly larger and more complex;
object-oriented methodologies seem to promise a way to help control and manage this
complexity. One trend is towards the incorporation of object-oriented features into
existing structured techniques together with the CASE tools that support them. The
majority of the current object-oriented design methods are only partial life-cycle
methods, concentrating on the design and perhaps the implementation of a system. As
such, there is a need to couple them with appropriate requirements and system analysis
techniques. Use of an object-oriented analysis method preceding object-oriented

development would seem to offer the most coherent and consistent approach.

The complexity of today’s systems is increasing in more than one dimension;
besides more complicated and demanding user functional requirements, increasingly
varied data types will have to be handled. Winblad et al (1990) envisage a future in
which a system can process image, voice and video in addition to text and numbers.
Object-orientation facilitates multimedia computing, given its characteristics of

encapsulation and polymorphism.

Increasing emphasis on distributed and open systems poses the challenge of
finding means of communication for systems across heterogeneous network

environments. An object-oriented approach to this problem appears reasonable given
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its emphasis on encapsulation, and its message passing mechanism, where applications
can be forged dynamically as objects across networks communicate via message

sending.

2.2 The Object/Message Model

In the procedural paradigm, computation is accomplished by applying operators on
operands, or similarly by invoking procedures with data as parameters. Data and
procedures are treated as if they were independent elements. This 1s not an accurate
picture because all procedures “make assumptions about the form of the data they
manipulate” (Robson, 1981). A procedure can only accept parameters belonging to
types it has been defined for, and therefore a procedure and the data it manipulates are
closely related. Procedures are viewed as active; they carry out some predetermined
computation on the supplied data, which is regarded as passive. Cox (1984) describes
this as the “operator/operand model”. The object/message model is the basis of the
object-oriented paradigm. An object-oriented system is populated solely by objects —
all computational entities (in the most general sense) are objects. In this model, there is

no clear demarcation between data and procedures as in the procedural paradigm.

The Collins English Dictionary (1986) defines an object as “a tangible and
visible thing ... a focus or target for feelings, thought, etc. ... anything regarded as
external to the mind ...”. To this general and informal definition, Booch (1990)
includes the idea that, in the object-oriented paradigm, an object models some part of
reality, and therefore exists in time and space. Of course, beside real-world objects,
there are other objects that are the results of the software design process. Smith &
Tockey state that “an object represents an individual, identifiable item, unit or entity,

either real or abstract, with a well-defined role in the problem domain” (as quoted in
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Booch, 1990). An object can be described as an entity that owns a state, that exhibits

behaviour, and possesses an identiry.

An object’s state encompasses its attributes and the values of these attributes.
An attribute is a characteristic or quality that contributes to the description of an object.
For example, a bank customer object would have attributes such as name, account
number and bank balance, etc. Attributes have values, and these values denote other
distinct objects. Seidewitz & Stark (1986) describe the relationship between an object
and its attribute objects as forming a “parent-child hierarchy”, dealing with “... the
decomposition of larger objects into smaller component objects”. Figure 2.1 shows
the parent-child hierarchy of a bank customer object described above. Other authors
(Booch, 1990; Pun & Winder, 1989) also use the term “containing relationship” to

refer to a parent object containing other objects.

bank customer

name bank balance
account
number

Figure 2.1 Parent-child hierarchy.

All objects are uniform and equal in their status as regard the way they
communicate and the means by which they can be referenced; there are no “second
class citizens” (Robson, 1981). This means that objects defined ahd created by
programmers have equal status to predefined system objects — first-class objects —

and can potentially be used by the programmer 1o implement and manipulate the
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structuring and processing mechanisms of the programming environment; this

represents the potential for a reflective system (Maes, 1987).
Object Behaviour

Computation in the object/message model occurs via message passing between objects,
as opposed to procedure calls and parameter passing. Each object can respond to a set
of messages relevant to it; these messages collectively form the object’s protocol. A
message represents a request stating what processing an object (the receiver) is
requested to carry out, but not how the processing is to be performed. Rentsch (1982)
calls this concept “call by desire”. This differs from a procedure call which specifies
exactly how data is to be operated upon by which piece of code (Ledbetter & Cox,
1985). Some authors (Booch, 1990; Pun &Winder, 1989) state that a “using
relationship” exists between two objects when they send each other messages.
Seidewitz & Stark (1986) regard the message sending communications of objects as
forming a “seniority hierarchy”, where objects in a higher layer can use the protocols
of objects in all lower layers, but not vice versa; such a hierarchy “deals with the
organization of a set of objects into “layers” . Three possible roles can be played by
an object in a using situation (Booch, 1991): actor (one which initiates message
sending, but is never acted upon by others), server (an object that is always a receiver

of a message), and agent (which can both send and receive messages).

On receiving a message (in its protocol), an object reacts by executing a
corresponding method of the message; each message is implemented by an associated
method. The state of an object can be manipulated only by the object’s methods.
Thus, access to its private state is restricted to sending the object a valid message. The
behaviour of an object is invariably influenced by its state: an object might react
differently depending on the values of its attributes. For example, if the bank customer

object above receives a debit account message, the request may be rejected if the
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object’s bank balance indicated that the customer had insufficient funds in his account

to honour the request. A method might call for the sending of messages to other

objects to achieve its task. An object is therefore active and not merely passive data.
An object’s behaviour is characterised by its protocol and is defined by its methods in
terms of 1ts state changes and message communications with other objects. Several
types of method can be differentiated (Liskov & Zilles, 1977; Booch, 1990): modifier,
selector, iterator, constructor and destructor. Modifier methods, as the name suggests,
modify the state of an object, while selector methods return values of an object’s state
without interfering with it; an iterator method allows every part of an object’s sate to be
accessed. Objects are created using constructor methods, and destroyed with

destructor methods.

Object Identity

Two objects are similar if they share the same structure and protocol. They are also
equal if they contain the same values in their states. The objects are the same, i.e.,
identical, only if they posses the same identity. Every object has a unique identity.
Khoshafian & Copeland (1986) explain that identity is “a specific property of an object
which distinguishes it from all other objects”. The identity of an object must not be
based on the values of its states (Tsichritzis & Nierstrasz, 1988). This is an important
consideration because the state of an object can change over the object's lifetime, but
its identity remains an integral part of the object (Shilling & Sweeney, 1989) and must
remain unique (Kersten & Schippers, 1986). However, the use of data values as

object identities occurs frequently in database systems where identifier keys are used to

identify objects (Khoshafian & Copeland, 1986).
In programming languages, objects can be denoted by variable names.

However, there is a danger of confusing addressability with identifiability when names

are used to differentiate between objects, and this can often be a source of errors in
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programming. Problems occur when more than one variable name designates the sélme
object (i.e., the object has one or more aliases); this is know as structural sharing.
Structural sharing results when the identity of an object is duplicated by assigning one
alias of the object to another. The object can then be manipulated via any of its aliases,
and this has the side effect, not always intended, of changing the state of the object in
relation to all its aliases. For example, consider the Smalltalk code fragment in Figure
2.2(a), where variables rect1 and rect2 are assigned two similar and equal

Rectangle objects, each with a different identity:

rectl <- Rectangle origin: 1 @ 1 ; rectl <- rect2.
corner: 10 @ 10.

rect2 <- Rectangle origin: 1 @ 1
corner: 10 (@ 10.

rectl rect?2 : rectl rect?2

origin origain . origin origin
- [(haa Lo

corner corner . corner

corner

Figure 2.2 Example of object identity.

However, after the execution of the assignment statement (Figure 2.2(b)), structural
sharing occurs between rect1 and rect2, and they now refer to the same object with
one identity. The object originally designated by rect1 cannot now be referenced, but
still consumes storage space. Some languages like Smalltalk and CLOS automatically
destroy objects when they have lost all their references, using the mechanism known
as garbage collection. Other languages like ADA and C++ put the onus on the

programmer to ensure that all redundant objects are destroyed in order to free up

storage space.
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2.3 Classes

The concept of class is tightly associated with the definition of an object. An important
characteristic of an object is that each is a unique instance of a class. Whereas an
object is a concrete entity that exists in time and space, a class is an abstraction — a
template from which similar objects may be instantiated. A class describes the
atributes of 1its instances and characterises their behaviour. The attributes of instances
are declared as a set of instance variables in their class. Each instance of the class has
its own individual copy of these variables; instances can therefore own different values
that make up their respective states. The interface of a class consists of the messages

in the protocol of its instances. /nstance methods in the class are the implementation of

these messages. All instances of a class share the same collection of instance methods;
each instance does not keep its own particular versions of the instance methods.

Figure 2.3 shows the relationship between a class and its instances.

Class A
state : protocol
(instance variables) ! (instance methods)
varl § methodl
var? g method?2
var3 : method3
vard

instantiation

\

instances
of class A

Figure 2.3 A class and its instances.
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In some object-oriented languages (e.g., Smalltalk and CLOS), classes,are
themselves treated as objects, each being regarded as the only instance of its meraclass.
A class exhibits the same characteristics of an ordinary object: it has class variables,
class messages and class methods. However, only a single copy of the class variables
is stored for all the instances of a class, so class variables are used for information that
1s common to all instances of the class, unlike instance variables. Another difference
between a class and an instance is that class messages can only be sent to a class itself,
not to its instances. The main purpose of a metaclass is to provide the appropriate
class method(s) for instantiating instances of the class, and for initialising the class
variables. As each class might require a different initialisation for its instances from
other classes, a separate metaclass is needed for every class to facilitate this capability.
The inheritance phenomenon (to be discussed later) also occurs for metaclasses in
terms of variables and methods. Metaclasses are organised into an inheritance

structure that parallels that of their classes.

A recent trend has been towards building specialised libraries of classes,
called frameworks (Deutsch, 1989), to support specific application areas. For
example, a user interface framework might incorporate classes such as Window,
Scrollbar, Button, etc., which are useful for constructing graphical user interfaces.
The first widely used user interface framework was the Model-View-Controller classes
of Smalltalk-80 (Krasner & Pope, 1988); MacApp (Schmucker, 1986) is a user
interface framework used specifically for implementing Macintosh applications. Most
publicised frameworks focus on user interfaces mainly because these frameworks are
relatively domain-independent and generally useful to most system developers; other

subsystems, apart from user interfaces, tend to be application-specific, hence their

frameworks will also need to be specialised.

Wirfs-Brock & Johnson (1990) explain that “a framework is a collection of

abstract and concrete classes and the interfaces between them, and is the design for a
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subsystem”. Abstract classes are general classes which specify their protocols witl;out
fully implementing them (Goldberg & Robson, 1985). Concrete classes are created
from abstract classes via the inheritance mechanism, and then adding any required
extra atmbutes, and supplying and/or refining the necessary implementation. “Abstract
classes provide a way to express the design of a class” (Wirfs-Brock, 1990). Concrete
classes can be instantiated, while abstract classes do not have any actual instances.
Winblad er al (1990) state that, with the use of appropriate frameworks, the process of
building applications can be accelerated and made easier than starting with generic class
libraries. Subsystems can be “plugged together” either by using existing concrete
classes, or by refining abstract classes. Nevertheless, a framework will not be as

generally useful outside its intended application domain.

2.4 Abstraction and Encapsulation
“... the essence of abstraction is to extract essential properties while omitting
inessential details” (Ross, Goodenough & Irvine, 1975). Shaw (1980) defines a
“good” abstraction to be one which emphasises details significant to the user, while
suppressing those that are, in the meantime, immaterial. Together with information
hiding (Parnas, 1972), abstraction provides the greatest leverage for managing

complexity in software development (Booch, 1990; Ratcliff, 1987).

Different types of abstraction can be found in different high-level languages.
Procedural languages support operational abstractions such as procedures, functions,
and operators, and provide computational abstractions to perform iteration and

selection. However, Shankar (1984) states: “The nature of abstractions that may be

achieved through the use of procedures is well suited to the description of abstract

operations, but is not particularly well suited to the description of abstract objects.
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This is a serious drawback, for in many applications, the complexity of the data obj{ects

to be manipulated contributes substantially to the overall complexity of the problem”.

Data types in strongly-typed languages such C and Modula-2 group data
values into types based on their representational structures. Variables declared with
certain types can only be assigned values of their respective types. This helps facilitate
more secure programming (Harland, 1988) through type checking during compilation.

Data types alone, however, are inadequate for modeling real world objects because

(13

objects ... are apprehended not only through their properties but through their
behaviour” (Graham, 1991). Data abstraction characterises data objects not by their
structures (types), but by the way they may be manipulated, and therefore provides an
instrument for representing external objects; objects in object-oriented languages
belong to this type of abstraction. Details of implementation are not essential to the
specification of the abstract behaviours of data objects; Cook (1986) states that this
represents a clear separation of concerns. For example, consider a set implemented by
an array. The abstract point of view is not concerned with how the set is represented,
it is interested only in knowing what set operations are available such as union,
intersection, membership test etc., and that these operations work. From the
implementation point of view, the programmer is concerned with the positions of array
elements, and performance issues such as frequencies and patterns of access, and
limits on size. Abstract data types (Guttag, 1977; Liskov & Zilles, 1975) are
specifications of data abstractions which are independent of implementation details.

Classes in object-oriented languages which characterise the behaviours of abstract

objects are closely related to abstract data types.

As knowledge of implementation is not required in understanding and using a

data abstraction, there is no need to include this detail in the specification of the data

abstraction. Furthermore, it is advantageous to enforce the concealment of

' i ails a ahstractions: this mechanism is know as encapsulation.
implementation details of data abstractions; this
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Abstraction and encapsulation are complementary concepts; abstraction focuses on the

outside view of a data abstraction (i.e., the behaviour), while encapsulation prevents

clients of the abstraction from seeing its inside view, where the behaviour is

implemented. ... encapsulation provides explicit barriers among different

abstractions” (Booch, 1990).

Ingalls (1978) states that “no part of a complex system should depend on the
internal details of any other part”. Encapsulation, also known as information hiding, is
an important mechanism for reducing interdependencies between objects (Snyder,
1986). Liskov suggests that “for abstraction to work, implementations must be
encapsulated”. Modification of internal implementation details is localised and has
minimum fallout effects (Pascoe, 1986). Clients rely only on the external interface of
classes, and therefore changes to classes can be carried out safely as long as they
support the same (or upward compatible) external interface. Encapsulation “allows
program changes to be reliably made with limited effort” (Gannon, Hamlet & Mills,
1987). Encapsulation has also made feasible the concept of building reusable software
components which can be stored and subsequently retrieved and used when building
applications (Meyer, 1987; Cook, 1986, 1987). Ledbetter & Cox (1985) and Cox &

Hunt (1986) describe reusable software components as “software-ICs” as an analogy

to their hardware counterparts.

2.5 Inheritance

Inheritance is one of the essential elements of object-orientation. Wegner (1987) states

that an object-oriented language has to support inheritance. An object-based language

uses the object as its unit of modularisation; class-based languages also implement

objects as instances of classes. However, both object-based and class-based
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languages do not qualify as being object-oriented because they do not support the:use

of inheritance (Figure 2.4).

+ classes

CObject-based

e.qg., Ada,'Actors

CClass-based + class inheritance

eq., Clu

(Object-oriented )

eq., Sim[ﬂa, Smalltalk

Figure 2.4 Wegner's classification of languages, from object-based to object-oriented.

Inheritance is a mechanism that enables the definition of a new class, or
subclass, based on an existing class, or superclass. In this scheme, classes are
organised into an inheritance hierarchy in which classes higher up the structure
represent more general abstractions, and classes lower down describe specialisations
of the former. Booch (1990) refers to inheritance between classes as a “kind-of”

relationship, while some other authors describe it as an “is-a” relationship. To

illustrate, consider the example inheritance hierarchy in Figure 2.5:

1veroltyMember

port ]{Poctgraduat) @dergraduata

Figure 2.5 An inheritance hierarchy.

Classes Staff and Student are more specific examples of class UniversityMember.

o el Zff C ¥ ised Int0 Teaching an
They are also classified further: class staff can be categorised into Teaching and




includes the classes Postgraduate and

Support, and class Student

Undergraduate.

A subclass inherits all the properties of its superclass, including the instance
variables and methods, and this process propagates upwards until the root of the
hierarchy. A subclass specialises by either defining extra instance variables and new
methods, or by overriding the behaviours of its superclasses by redefining the
implementations of inherited protocols. An object’s state therefore consists of the
instance variables defined in its own class, plus those in all its superclasses; it can
respond to messages in its own class, as well as those of its superclasses. In the
example above, class Postgraduate inherits from both class Student and class
UniversityMember. Sometimes a few classes might share a subset of their attributes
and methods, and yet are not proper subclasses of each other; in this case, a common
abstract superclass can be created to subsume their similarities, but the abstract
superclass has no meaningful concrete instances of its own. The classes

UniversityMember, Staff, and Student would all be abstract classes.

“Inheritance is a mechanism for elision. The power of inheritance is in the
economy of expression that results when a class shares description with its superclass”
(Stefik & Bobrow, 1986). Inheritance enhances code “factoring” (Pascoe, 1986),
leading to a reduction in code bulk. It also eases maintenance (Cox, 1984) because
code shared by several classes in an inheritance chain is found in one place only; any
change needs only be carried out once, and this change is automatically inherited by all
subclasses using the same code. It also facilitates reuse of software and thereby
increases productivity since new classes can be derived by inheriting and extending

existing classes in an inheritance hierarchy (Pinson & Wiener, 1988).

Used as a classification mechanism, inheritance promotes a better

understanding of the relationship between classes in a system. Procedural languages
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use overloading of operators, but they have difficulty showing the relationsiﬁps
between types. Korson & McGregor (1990) believe that inheritance is the most

promising concept available to facilitate constructing software from reusable parts.

Non-strict and strict inheritance (Pun & Winder, 1989a) are two strategies

which can be adopted in organising a class inheritance hierarchy.
Non-strict and Strict Inheritance

The aim of non-strict inheritance is to maximise code reuse. A class is chosen as the
superclass if it offers the most opportunity for reusing the definition of instance
variables and methods. This may have the undesirable effect of introducing some
redundant and meaningless variables and methods into the subclass. The subclass may
redefine the implementation or block the use of meaningless methods, but nothing can
be done about extraneous instance variables. Non-strict inheritance captures only the
notion of “similarity” rather than “behavioural” compatibility (Wegner, 1987). For
example, a Stack and a Gueue may both include the instance methods add: item and
remove for adding to, and removing an item from, their instances. However, a stack
object, by definition, uses a ‘last in first out’ policy while a queue object applies a ‘first
in first out’ policy; so, although it may be convenient to make one of the classes a
subclass of the other, Stack and Gueue are not behaviourally compatible. An
inheritance structure constructed using the non-strict inheritance policy can be
conceptually confusing and difficult to understand, where semantically unrelated
classes can inherit from each other. Wegner (1987) refers to non-strict inheritance
between classes as a “like” relationship, and Sakkinen (1989) considers it “incidental”

inheritance. Snyder (1986) however, thinks that this form of inheritance has its value,

not least because reversing an inheritance decision is facilitated.
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Strict inheritance on the other hand, requires descendants to be behavioufally
compatible with their ancestors; a subclass must inherit not only the code but the
specification of its superclass (Pun & Winder, 1989a), where the specification of a
class refers to the signature and the semantics of the methods of the class. The
relationship between a superclass and its subclass therefore fulfils the “is-a” relation
referred to by Wegner (1987). Sakkinen (1989) states that inheritance of specification
is “essential”. However, the amount of code reused using strict inheritance could be
minimal compared to using non-strict inheritance. This is because new classes may
not resemble existing classes close enough (as required by this use of inheritance), to
warrant their being made subclasses of the latter; the new classes will need to be added
as subclasses of the root class in the inheritance structure, and much of their definition

will have to be defined from scratch.

Between the two extremes, Pun & Winder (1989a) suggest a compromise:
that an “i1s-a” relationship should exist between a superclass and its subclass (i.e., they
should be behaviourally compatible, and as such classes like Stack and Queue will not
be accepted as subclasses of each other), but the latter is allowed to redefine methods
of the inherited protocol where appropriate. This approach is synonymous with
conformance in an environment supporting abstract data types. Conformance is
closely related to the concept of subtyping; “if any values of type T can be used,
without requiring a change to their representation, as if they were of type 7', then T 1s
said to conform to T’ and T is also said to be a subtype of T* 7 (Blair et al, 1989). An

abstract type P conforms to anther abstract type Q if and only if (Blair et al, 1989):

i. P provides at least the operations of Q (P may have more operations)
ii. for each operation in Q, the corresponding operation in P has the same

number of arguments and results

iii. the abstract types of the results of P’s operations conforms to the abstract

types of the results of Q’s operations
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1v. the abstract types of the arguments of Q’s operations must conform to the

abstract types of the arguments of P’s operations (i.e., arguments must

conform in the opposite direction).

Black er al (1987) observe that “conformity is a relationship between
interfaces”; an abstract subtype can, therefore, have different implementations for its

operations from its abstract supertypes.
Multiple Inheritance

In the above description, each subclass has exactly one immediate superclass. This
form of inheritance is single inheritance. Multiple inheritance removes this restriction:
each class can be a subclass of more than one immediate superclass. For example,
research students in a university may also be part-time teaching staff, therefore in the
previous example in Figure 2.5, a new class Rescarch inherits from both
Postgraduate and Teaching (Figure 2.6). The inheritance structure is thus arranged

like a lattice (Stefik & Bobrow, 1986) rather than a straight-forward hierarchy.

Q;niversityﬁembeg)

( Teaching ’( Supporti) G;;tgraduaté)(Edergraduatg)

Research

Figure 2.6 Example of multiple inheritance.

Single inheritance forces the choice of one superclass, when possibly several

existing classes are equally suitable; each of the potential candidates is able to
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contribute some functionality to a new class.

In this situation, single inheritance

necessitates re-implementing in the new class the functionality of the excluded classes,
thereby defeating the purpose of facilitating reuse through inheritance (Vlissides &
Linton, 1988). Sakkinen (1989) observes that single inheritance can lead to
unnaturally asymmetric constructions. Booch (1990) notes that the need for multiple
nheritance 1s still a subject of great debate, but adds that his own experience indicates

that although it is not always needed, multiple inheritance is useful.
Problems with Inheritance

Snyder (1986) and Micallef (1988) have discussed the potential conflict that arises
between inheritance and encapsulation, stemming from the fact that a subclass has
direct access to the internal structure of a superclass. This complicates the modification
of a class implementation without adversely affecting descendant classes. The ‘Law of
Demeter’ (Lieberherr & Riel, 1988) states that methods of a class should not depend
on the structure of other classes, and these methods should also limit sending
messages to objects of other classes. This guideline encourages the building of loosely
coupled classes, and hence could help alleviate the problem of compromising
encapsulation. Taenzer et al (Taenzer, Gant & Podar, 1989) notice that when an
object sends itself a message using super or sc1f (in Smalltalk semantics), it could
cause a search for the corresponding method up and down the inheritance hierarchy
respectively. They liken the method matching process up and down an inheritance
hierarchy to the motion of a yoyo (calling it the ‘yoyo’ problem), and believe that it
increases implementation dependency between classes. Creating a new subclass or
modifying an intermediate class in an inheritance chain, requires a study of the
implementation of other classes to discover what messages an object sends itself and

which need redefinition. Again encapsulation can be weakened by this dependency

between classes.
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Two problems prominent in multiple inheritance are name collision and
repeated inheritance. Name collision occurs when more than one superclass of a class

uses the same identifier for an instance variable or method (Figure 2.7(a)). Three

approaches are taken by different object-oriented languages to resolve this conflict.
Both Smalltalk and Eiffel regard a name clash as illegal, and compilation of the new
class would therefore fail. Eiffel also allows renaming of the offending elements
(instance variables or methods) to remove confusion. It is also possible for the
language semantics to assume that the same name used in different superclasses refers
to the same element; this approach is taken by CLOS. C++ on the other hand, permits
a name clash, but requires that all references to the name must be fully qualified in

relation to its source of declaration.

b A

a

(a) (b)
Figure 2.7 Problems in multiple inheritance with (a) name collision and (b) repeated

inheritance.

Repeated inheritance is the scenario when “a class is an ancestor of another in

more than one way” (Meyer, 1988) (Figure 2.7(b)). Different solutions to this

problem are used in different languages. In Smalltalk and Eiffel, repeated inheritance

is regarded as illegal. Eiffel, again, also allows renaming to remedy this. One

technique in C++ is to use fully qualified names to distinguish which specific copy of

an element is being referred to. C++ also uses the policy that multiple references to the

same superclass in fact denote the same class. This approach is taken when the

39




repeated superclass is defined as a

virtual base class. (In' C++, a virtual base class is

designed solely to be shared by other classes, and cannot be instantiated; it is similar to
an abstract class in Smalltalk.) CLOS uses a mechanism known as a class precedence
list. The list is calculated each time a new class is added, which includes the new class
and all its superclasses without duplication. This list is constructed based on two
rules: first, the new class precedes its superclasses; second, each class sets the
precedence order of its direct superclasses. This list flattens the inheritance graph, and
inheritance is handled using single inheritance. A new class is only allowed if its

complete precedence ordering can be worked out.

Inheritance and Genericity

Genericity is the ability to parameterise a software element with one or more types.
For example, consider a generic swap procedure, which can be parameterised with the
type of values it handles; this procedure can be defined in Ada (Watt, Wichmann &

Findlay, 1987) as in Figure 2.8:

generic
type Item is private;

procedure Swap (X, Y : in out Item) is
0ld_X: Item := X,

begin
¥ :=Y; Y = 0ld_¥X,;

end Swvap;

Figure 2.8 A generic definition in Ada.

Tter IS a generic type. Swap is a procedure template which must be instantiated by

. 5 o S
supplying an actual type parameter for Ttem when the procedure 1s to be used. Swap

can be instantiated by the types Integer and Character, say, as follows:

Tnt is new Swap{Intcger);

procedure Swap_ ( ‘ ,
is new Swap(Character);

procedure Swap_Char
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Swap_Int and Swap_Char can now be used to swap pairs of integer and characters

respectively.

Meyer (1986) refers to this form of genericity as unconstrained, since there is
no restriction on the actual type that may be used for instantiation. He differentiates
this with constrained genericity, where a generic definition will be meaningful only if
the actual type parameter satisfies some conditions. Consider writing a generic
function which returns the minimum of two values (Figure 2.9):

generic

type Item is private;

function Minimum (X, Y : Item) return Item is

begin

if ¥ <= Y then return X, else return Y end if;
end Minimum;

Figure 2.9 Generic function in Ada.

Such a function 1s only meaningful if it 1s instantiated with types for which the
comparison operator “<="is defined. So the generic part of the Ada definition must be
modified as follows (Figure 2.10):

generic

type Item is private;
with function “<=" (A, B : Item) return BOOLEAN is «<>;

function Minimum (X, Y : Item) return Item,

R

Figure 2.10 Constrained genericity.

The witn clause is used to introduce generic formal parameters which are

subprograms.

Both forms of genericity can be simulated using inheritance (Meyer, 1986).

The idea is to associate a class with each formal generic type parameter; for constrained
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genericity, the constraining operations of the formal generic type parameter becéme
instance methods of the class. This class is then used as an abstract superclass of the
classes for the actual types, each subclass implementing its own methods for the
constraining operations. A simple way to simulate inheritance in languages like Ada
and Algol 68 is overloading, where the same subprogram name may be used for
operations for different types. “However, this solution falls short of providing true
polymorphic entities as in languages with inheritance, where ... an operation will be
carried out differently depending on the particular form of an entity at run-time ...”
(Meyer, 1986). A better alternative to overloading in languages like Ada and Modula-
2 (Koffman, 1988) is to use a variant record type to include all the relevant types.
Each operation would then use a case statement to discriminate between the types and
carry out the appropriate task in each case; an example is shown in Figure 2.12. “Such
a solution, however, is unacceptable from a software engineering point of view: it runs
contrary to the criteria of extensibility, reusability and compatibility” (Meyer, 1986).
Each time a new type is added, modification is required on the variant record type
declaration, and the case statement in every operation will also need to be changed to
take this new type into consideration. Both Meyer (1988) and Blair er al (1989) agree

that inheritance is the more powerful mechanism.

Inheritance and Delegation

Wegner (1987) defines delegation as a mechanism that allows objects to delegate
responsibility for performing an operation or finding a value to one or more designated
“ancestors” or prototypes (they have also been referred to as exemplars) (Lieberman,

1986). For example, an object 4 wishes to print its representation on a text stream s.

It may not know how to manipulate the stream directly, so it delegates the task to an

object printing which interfaces with the stream (Figure 2.11).
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Figure 2.11 Delegation: object 4 delegating to object printing.

The object print ing needs information about the state of its client or customer (object
A) to complete its job, so it sends the appropriate messages back to object 4 to obtain
this. When a client first delegates to a prototype, a reference to itself (the client) is
implicitly passed to the prototype, so it is possible for the prototype to send messages

back to the client.

In delegation, dynamic sharing is realised in an instance hierarchy rather than
in a class hierarchy; delegation and class are therefore orthogonal concepts because the
definition of delegation is independent of the class notion. The pattern of delegation
varies dynamically as each object has the decision when and where to delegate during
execution; this contrasts with inheritance where the pattern is fixed once classes are
added to the inheritance structure (Wolczko, 1992). Lieberman (1986) considers that

this makes delegation more flexible, and therefore delegation is a more powerful way

of organising objects. He states that delegation can be used to model class-based

inheritance whereas the converse is not possible, principally because it is impossible to

make an instance depend on another in inheritance. Wolczko (1992), on the other
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hand, sees a direct analog

y between delegation and inheritance: each superclass 1s

viewed as defining a component object to an instance of a subclass, rather like an
extended part of the instance. A message sent to an instance itself using super
delegates the task to a component object of the instance, and self in a superclass
method represents a reference to the customer object, just like a prototype sending a

message back to its client in delegation.

Stein (1987) disagrees that delegation is necessarily more powerful than
inheritance. He suggests that delegation can be simulated with inheritance by mapping
prototypes into classes. This is facilitated because classes can be treated as objects. A
class inherits class variables from its superclasses, as well as their values for these
variables; this is similar to delegation where a client shares the attribute values of its
prototypes. However, for languages in which class are not treated as objects (such as

C++ and Eiffel), Stein’s (1987) suggestion is achievable.

2.6 Polymorphism and Dynamic Binding

Cardelli & Wegner (1985) state that “conventional typed languages, such as Pascal, are
based on the idea that functions and procedures, and hence operands, have a unique
type. Such languages are said to be monomorphic, in the sense that any value and
variables can be interpreted to be of one and only one type. Monomorphic
programming languages may be contrasted with polymorphic languages in which some
values and variables may have more than one type”. They identify two main types of
polymorphism: ad-hoc polymorphism and universal polymorphism. Ad-hoc
polymorphism includes operator overloading, a mechanism used in procedural

languages where semantically unrelated operations happen to share the same name,

which map to different implementations depending on the number and types of

arguments used in different contexts. An example of operator overloading in Modula-
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2 1s the use of the *“+” symbol for both integer addition and set union. Coercion is also

a form of ad-hoc polymorphism, where “operations can handle input of mixed types”
(Graham, 1991). An example of coercion in C (Kernighan & Ritchie, 1978) takes
place in the expression “aFloat -« anlnteger”, where the operator “+” takes in an

integer and a floating-point number; the Integer is automatically converted to a floating-

point number before the expression is evaluated.

Universal polymorphism comprises paramerric polymorphism and inclusion
polymorphism. Parametric polymorphism involves modules which can be called with
actual parameters from a range of types. Genericity is an example of parametric
polymorphism. Inclusion polymorphism is enabled by the inheritance mechanism
present in object-oriented languages. This form of polymorphism is concerned with
the ability to send the same messages to objects of different classes, where the classes
are related by inheritance; instances of different subclasses can respond to the same
messages found in their common superclass. Blair er al (1989) also mention
operational polymorphism in association with object-oriented systems, where methods
with the same message name can coexist in classes completely unrelated to each other
by inheritance. Operational polymorphism, where message names are overloaded, 1s

facilitated by strong encapsulation.

Several authors believe that dynamic binding is a necessary element of object-
oriented programming (Pascoe, 1986; Cook, 1986; Cox, 1984; Booch, 1990). Booch
also states that dynamic binding and polymorphism go hand in hand. With static
binding, environment code is explicitly dependent on the classes known when the code
was developed and compiled; any change when a new class is introduced potentially
ripples through the entire environment, requiring modifications and recompilation.
Consider the following Modula-2 code fragment (Figure 2.12) in which a procedure

DrawPicture is defined which imports an array of shapes (Square, Triangle Or

Circle) and draws each in turn:
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MODULE Picture;
TYPE ShapeType = {Square, Triangle, Circle)
Shape = RECORD
CASE Kind: ShapeType OF
Square : Origin : Point; Length : INTEGER |
Triangle : Pointl, Point2, Point3 INTEGER|
Circle : Centre : Point; Radius : INTEGER
END (* CASE ~)
END; (* RECORD *)
APicture = ARRAY [1..10] OF Shape;
PROCEDURE DrawPicture {ThisPicture: APicture);
VAR Index : [1..10];
BEGIN
FOR Index := 1 TO 10 DO
WITH ThisPicture[Index] DO
CASE Kind OF

’

Square DrawSquare(ThisPicture [Index] )]
Triangle DrawTriangle(ThisPicture[Index])|
Circle : DrawCircle(ThisPicture[Index]

END (* CASE *)
END (* WITH »)
END (* FOR *)
END DrawPicture;

Figure 2.12 Example of static binding in Modula-2.

The types of shape known at compile time are listed in the enumerated type ShapeType
and are fixed. DrawPicture can only differentiate between these known types at run
time, using the Case statement. Whenever a new type of shape (e.g., Hexagon) IS to
be add to the module, the enumerated type ShapeType and the variant record Shape
will have to be modified; and so will the Case statement in every procedure dependent

on the variant record type Shape, such as DrawPicture. This can be both time

consuming and error-prone.

Re-implementing the same example in Smalltalk-80, which supports

polymorphism and dynamic binding, DrawPicture can be expressed as:

drawPicture: thisPicture
1 to: thisPicture size do: '
[‘index | (thisPicture at: 1index) draw]

where draw is an instance method in Shape and overridden in each of its subclasses to

provide the appropriate drawing sequence. drawPicture. thisPicture 1§ itself an
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instance method in a class, which takes in an array of shapes. When a new claés of
shape is to be added to the application, no change to drawPicture: thisPicture is
necessary, since every class of shape knows how to draw itself at run time.
Polymorphism ensures that draw can be sent to all objects in thispicture regardless
of the classes they belong to, and dynamic binding puts no limit on the class of each

object In thisPicture at compile time.

With dynamic binding, environment code which depends on the classes of
objects (e.g., drawPicture) can be reused without change. This is made possible by
polymorphism (inclusion and operational); the classes of objects are irrelevant to the
environment code as the same messages can elicit the appropriate responses from
different objects depending on their classes, but this fact is invisible to the environment
code that makes use of these objects. Polymorphism “is desirable because it enables
us to write extremely general-purpose programs in a transparent manner — the bare

algorithm and no frills” (Harland, 1984).

2.7 Summary

Winblad er al (1990) state that the basic mechanisms of the object-oriented paradigm
comprise objects and classes, messages and methods, and inheritance, and the key
concepts of object orientation include abstraction, encapsulation, polymorphism, and
persistence. Objects are instances of classes, which define the states and 1implement

the protocols of similar objects. Objects represent encapsulations of data abstractions,

each object owning a unigue identity. Communications between objects occur via

message sending; when an object rece1ves a message it executes the method of the

message. Inheritance between classes in an inheritance structure facilitates code reuse,

and eases maintenance through code factoring. Polymorphism with dynamic binding

enable the writing of robust and flexible code which is resilient to changes.
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Several current research topics such as persistence (Morrison, Brown,
Carrick, Connor, Dearle & Atkinson, 1987; Thatte, 1986) and concurrency in object-
oriented programming (Yonezawa & Tokoro, 1987) have not been discussed as they
are not central to this research. Persistence in the object-oriented paradigm refers to the
permanence of an object, i.e., the amount of time for which it is allocated space and
remains accessible in the computer’s memory. Objects in a persistent system can
outlive the programs in which they have been created, as long as they can be
referenced (Lewis, 1991). The virtual image of Smalltalk, in which objects exist,
offers a limited form of persistence; saving the virtual image between sessions
preserves the states of objects. Object-oriented database management systems such as
Gemstone (Maier, Stein, Otis & Purdy, 1986) provide the ability to store and share

objects in a multi-user environment.

Lim & Johnson (1989) state that “... OOP can alleviate the concurrency
problem for the majority of programmers by hiding the concurrency inside reusable
abstractions”. The usual approach in concurrent object-oriented systems is to provide
objects with independent threads of control; each object’s thread of control
conceptually executes concurrently with the object’s methods, and the threads of other
objects (Atkinson, Goldsack, Di Maio & Bayan, 1991). Objects possessing such
threads are termed active, while those that do not are termed passive. Concurrent
object-oriented programming languages such as ABCL/1 (Yonezawa, Briot &
Shibayama, 1986) provide mechanisms for active objects and synchronisation.
Smalltalk and Ada also support multitasking by providing process and rask

respectively, while C++ uses the Unix system call fork to implement concurrent

objects.
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Chapter 3 The Software Life Cycle and Object-oriented

Development

3.1 The Software Development Life Cycle

In software engineering, the software life cycle is an overall organizational framework
describing the activities of the development, use and maintenance of a software
system. Three main phases can be identified in the software life cycle: analysis,
design, and implementation. The number of subdivisions in each of these phases
varies between different authors. The order of the stages involved in the life cycle and
the transition criteria from one stage to the next depend on the underlying model on

which the life cycle is based (Boehm, 1988).

3.1.1 The Waterfall Model

The traditional model for the software life cycle is the waterfall model (Figure 3.1)
(Sommerville, 1992) which “attempts to discretize the identifiable actiyities within the
software development process as a linear series of actions, each of which must be
completed before the next is commenced” (Henderson-Sellers & Edwards, 1990).
Subsequent improvements to the waterfall model recognised the importance of
feedback loops between stages. However, the feedback loops in this model are
“to successive stages to minimize expensive rework involved in

confined only

feedback across many stages” (Boehm, 1988); the intent of the model is still “to

proceed forward from each phase to the next” (Wasserman & Pircher, 1991).
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Problems with the Waterfall Model

The main criticism of the waterfall model is that it does not recognise the role of
iteration in the software development process (Sommerville, 1992), due to its
emphasis on a purely sequential flow between the stages and activities of the software
life cycle. Booch (1991) observes that the waterfall model “is sometimes treated as a
sacred, immutable process in which work blindly flows down from one phase to
another ... that products from an early phase are written in granite, which then serve as
the costly-to change input of a later phase”. However, as Ratcliff (1987) notes:
“software development is highly iterative and parallel in nature and does not proceed in

a single, clear-cut sequence”.

Requirements

analysis and
definition \'

System and
software
design ~‘«\\\
Implementation
and unit
testing ~\‘\\‘

System
testing

Figure 3.1 The waterfall model (Sommerville, 1992).

The waterfall model is hence unrepresentative of the activities which actually
go on during the software process (McCracken & Jackson, 1982; Gladden, 1982);
Hatley & Pirbhai (1988) suggest that “this view obscures the true nature of systems
development: it has always been an iterative process in which any given step can feed
back and modify decisions made in a preceding one”. In particular, Booch (1991)

states that the inherent incremental and iterative nature of object-oriented design,



describing it as round trip gestalt de

sign, makes it orthogonal to the traditional

waterfall life cycle approach to software development.

Another source of problem with the waterfall model is “its emphasis on fully
elaborated documents as completion criteria for early requirements and design phases
... However, it does not work well for many classes of software” (Boehm, 1988).
This expectation is only realistic in some classes of software such as compilers and
secure operating systems (Boehm, 1988) where a finite and fixed set of requirement
and functions can be determined; however, it has difficulty accommodating the natural

uncertainty that exists at the beginning of many projects.

More importantly, the classical waterfall model is not efficacious when used
for object-oriented software development, as Korson & McGregor (1990) note:
“Problems with traditional development using the classical life cycle include no
iteration, no emphasis on reuse, and no unifying model to integrate the phases”.
Without reuse, which 1s a major feature of the object-oriented paradigm, each system
has to be built from scratch instead of utilising existing tried and tested classes, hence
possibly increasing maintenance costs (see [2.4, 2.5]). Coad & Yourdon (1990) point
out that the difference in point of view between using data flows of structured analysis
and using structure charts/top-down functional decomposition of structured design,
may cause problems by introducing an unnecessary boundary between analysis and
design in the software life cycle resulting from a shift from the problem domain in
analysis to the solution domain in design; on the other hand, the “analysis and design
of the traditional life cycle, while remaining separate activities in the object-oriented life

cycle, work together closely to develop a model of the problem domain”.

The software life cycle for object-oriented development eliminates the distinct

boundaries between the various phases in the life cycle (Meyer, 1989a; Coad &

Yourdon, 1990). The primary reason for this blurring of boundaries is that “the items
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of interest in each phase are the same: objects” (Korson & McGregor, 1990). OBjects
and their interactions are identified in both analysis and design. Both object-oriented
analysis and design view the problem domain as a set of interacting objects.
Information derived in an object-oriented analysis phase becomes an integral part of
the object-oriented design rather than merely providing input to the latter as with
structured analysis and structured design. This smooth and seamless interface
between phases is facilitated by the homogeneity of their conceptual framework,
namely objects and classes. Korson & MacGregor (1990) also state that an object-
oriented analysis and object-oriented design approach is very natural and flexible “...
in the sense that the design pieces are closely identified with the real-world concepts
which they model ... quickly adapting to changes in the problem specifications”

(Korson & MacGregor, 1990).

3.1.2 Object-oriented Development Cycle
The Fountain Model

Henderson-Sellers & Edwards (1990) describe an alternative to the waterfall model for
the software life cycle, the fountain model, which reflects the stages and activities of
object-oriented software development more closely, emphasising the significant
amount of iteration and overlap that exists (Malhotra, Thomas, Carroll & Miller, 1980,
Meyer, 1989; Turner, 1987). The diagrammatic representation of the fountain model
(Figure 3.2) shows clearly its difference with the waterfall model, with the overlap and
iteration between stages being emphasised. The software life cycle “grows upward to
a pinnacle of software use, falling only in terms of necessary maintenance”
(Henderson-Sellers & Edwards, 1990), reverting to a previous level to begin the

climb acain — hence the name of the model. This repetition of activities also occurs
o

throughout the lower-level stages.



An object-oriented system is developed essentially as a system of interacting

classes, where each class can usually be developed independently; the stages of the life
cycle model can, therefore, be applied accurately to the development cycle of
individual classes (Gindre & Sada, 1989) (Figure 3.3). During the explicit stages of
generalization and aggregation in the fountain model, application-specific classes are
revised so that they may be sufficiently generic to be useful to other applications.
These extra stages of generalization and aggregation require a greater effort than one-
off design and implementation in the short term, but in the long term, this effort can
lead to significant reduction in overall system development time and effort. This
reduction is facilitated by the emphasis on code reuse in object-oriented development,
where bottom-up development of new classes based on existing classes often occurs
within the framework of an overall top-down object-oriented system analysis and
high-level design. Hence object-oriented development is a combination of both top-
down system development and bottom-up development of classes. This facilitates
modifications as changes can be made interactively between class development and
system specification; there is therefore no longer a need to freeze the overall system
requirements specification at an early stage of the system life cycle (Henderson-Sellers

& Edward, 1990).
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The Cluster Model

Often a small cluster of conceptually tightly related classes can be developed together.
Meyer (1989) describes the cluster model which relates to the life cycle of individual
clusters of classes. The cluster model consists of three phases: first, a specification is
written for a cluster of classes; next, this specification is design and implemented;

finally the classes in the cluster are validated and generalised. Again, generalisation is
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an extra development step carried out to improve the generality, genericity and
robustness of the classes so that they may be useful to future development projects.
Reuse is facilitated, thereby offsetting any short-term development overhead. The
cluster model life cycles of different clusters are independent, occurring at different
times and concurrently (Figure 3.4); within the cluster model, the stages of the
fountain model for the life cycle of a class (Figure 3.3) can hence apply concurrently to

the classes in a cluster.

A

Specification (B Design & - Validation &

implementation generalisation
o T
& Cluster n
e
e :
L : Design & Validation &
Specification (=i 519 _ .
implementation generalisation
Cluster 2
L . Design & Validation &
Specification (. v . —1 .
implementation generalisation
Cluster 1
Time

Figure 3.4 Cluster model of different clusters occurring concurrently.

The cluster model can be incorporated in the fountain model of a system at the
program design stage; requirements, design and implementation stages of the fountain
model of a system can progress and iterate over time while individual classes or
clusters of classes undergo their own cluster and fountain life cycle. The advantage of
this approach is that “characteristics of a system, which evolves dynamically as user’s
and analyst’s knowledge grow, can be incorporated in the overall life-cycle model”
(Henderson-Sellers & Edwards, 1990). System requirements and design spawn
clusters which are passed on to programmers for detailed design and implementation.
These implemented clusters are later incorporated into the final system, while system
requirements analysis and system design iterate. A change in requirements may cause
modifications to or even the abandonment of a single cluster but this will not cause

major redesign of the system since the overall system synthesis occurs later in the
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system’s life cycle.

On the other hand, changing the requirements of a system

designed and implemented using traditional top-down methods, could result in a great

deal of reworking on the detailed design which has been decomposed from the top-

level design and therefore highly dependent on it.

The Spiral Model

Wasserman & Pircher (1991, 1991a) use the spiral model of Boehm (1988) to
describe the development process of an object-oriented system. Like the fountain
model this model emphasises the continual, iterative elaboration of the details of
classes, objects and their relationships, rather than the clear transitions between
analysis, design and implementation found in the waterfall model. Another similarity
this spiral model has with the fountain model is that it also stresses the identification of

reusable classes and objects, and the derivation of new classes from existing ones.

Y/ —~ ™

Find Classes/Objects mm e

Find Methods/Behaviors ———————4§s-

Define Classes g -

Define Mcthods .

Architecture Design ————————fg=

Decuailed Design s

Implement Classes B

Implement Application——————-

.

Figure 3.5 Spiral model for object-oriented software development (Wasserman &

Pircher, 1991).



3.2 Object-oriented Analysis

Several techniques have been proposed by various authors for the analysis phase of
object-oriented development; this section looks at some of these techniques. The first
two are object-oriented approaches to the analysis process; here influence from
relational databases is apparent. Next, methods for modeling the problem domain

based on using informal English and the traditional Structured Analysis are reviewed.
Object-oriented System Analysis: Modeling the World in Data

Shlaer & Mellor (1988) propose an object-oriented analysis technique which they call
Object-oriented System Analysis: Modeling the World in Data. It uses a graphical
notation called an information structure diagram based on various forms of entity
relationship diagram used by other authors (Tsichritzis & Lochovsky, 1982; Martin,
1985; Chen, 1976). The method starts by constructing an information (or data) model
showing objects, their attributes, and the relationships between the objects. In Shlaer
& Mellor's terminology, an object refers to a class. Attributes are classified into
naming, referential and descriptive (Figure 3.6 (a)). Naming attributes are designated
with =, o indicates a descriptive attribute and (r) denotes a referential attribute.
Naming attributes constitute the identities of instances of an object; referential attributes
carry values which relate an instance of an object to an instance of another object (e.g.,
see Figure 3.6 (b), where the student object may contain an attribute at tends which
relates it to the university object), while descriptive attributes provide facts about
instances of an object. The potential problem with the use of (naming) attributes to
denote identities of object instances has already been explained in Section 2.2. The
requirement that attribute values must be atomic, e.g., integer, string, etc., (evidence
of influence from database technology) would seem to be too limiting for building an
object-oriented model of the problem domain where complex objects have to be

modeled. Relationships between objects are modeled in terms of cardinality (or



multiplicity) — one-to-one, one-to-many or many-to-many (Figure 3.6 (a)) — and
whether a relationship is conditional (or modality (Graham, 1991)). A conditional
relationship between objects is one in which not necessarily all instances of an object
involved participate in the relationship.  Anderson (1990), however, expresses
concern about the ease with which these relational database issues could be

implemented in object-oriented languages like Smalltalk or C++.

Object name
* attribute
* attribute < > (1 1)
o attribute
o attribute(r) ( » (1 : M)
<« > (M M)
Cbject relationship
(a)
University 1s attended Student
* name < ; * name

o address

© a?dress attends

O course

(o)

Figure 3.6 (a) Symbols for an object and object relationships and (b) an example

information structure diagram.

Shlaer & Mellor (1988) consider the task of 1dentifying objects as simple,
starting by looking for candidates in five categories: tangible things (e.g., plane, car,
book): roles (e.g., lecturer, student); incidents (e.g., flight, accident); interactions
(e.g., loan, lecture); specifications (e.g., course, loan type). Objects can be organised
into a hierarchy of supertypes and subtypes, where a supertype contains attributes

shared with its subtypes (Figure 3.7); this hierarchy may be used to represent

inheritance relationships amongst classes.



Student

I 1
Postgraduate Undergraduate
| _+_ 1
Master Research

Figure 3.7 Supertype/subtype hierarchy used by Shlaer & Melior.

From the information model, life cycles (state models) of objects are
constructed using state transition diagrams which record the behaviour over time of
instances of each object. Each state has some associated actions which an instance
must carry out when it arrives at that state; this differs from the use of state transition
diagrams by other authors where actions are more commonly associated with
transitions (de Champeaux & Faure, 1992). Lastly, data flow diagrams (DeMarco,
1977) are used as processing models to capture the flow of data between processes (or
states) in the state models. However, Coad & Yourdon (1990) point out that Shlaer &
Mellor's method does not provide any mechanism for expressing the concepts of
messages and methods; some authors (Winblad, Edwards & King, 1990; Graham,
1991) also note that there is no emphasis in the method on the encapsulation of

processing with data in an object.

Object-oriented Analysis

Coad & Yourdon (1990) describe an object-oriented analysis method which consists
of five layers (stages): Subjects, Objects, Structures, Attributes, and Services — or
‘SOSAS’. Like Shlaer & Mellor (1988), the term ‘object’ is used in place of ‘class’.
Coad & Yourdon state that “real systems have a substantial number of Objects and
Structures”, subjects provide the mechanism for partitioning the overall model of a
complex problem area into sub-models of manageable size, usually between five to

nine objects — these numbers being derived from Miller’s (1956) work described in

59



his paper entitled:

3 . :
The magical number seven, plus-or minus two: Some units on our

capacity for processing information”. Subjects thus serve to control the proportion of
a model a reader is able to consider and comprehend at one time, and they also serve as
a guide to the diagrams in the object-oriented analysis model. Subjects correspond to
Booch’s concept of class categories (1991) and to Meyer’s cluster concept (1987). In
the subject layer, a subject is initially assigned to each object and to each structure
(either a parent-child structure or inheritance structure between classes). When
instance and message connections between objects and structures are identified during
the subsequent attribute and service steps, tightly coupled subjects are merged until
eventually a small number of subjects remain. Subjects are represented in a subject
layer diagram with connections denoting potential message interactions between the
classes of the subjects (Figure 3.8). Diagrams of the subsequent layers may be

partitioned according to their subjects.

Subject A

L
Y

Subject B|==@--# [Subject C|==& -8 |Subject D

Figure 3.8 Coad & Yourdon’s subject layer diagram.

In the object layer, objects are identified in detail within each subject area and
recorded in an object layer diagram. Coad & Yourdon provide a list of possible
sources of objects, including structures (e.g., “kind of” and “part of” relationships),
other systems and devices, events (i.e., historical events that must be recorded, e.g., a
bank loan), roles (roles users play interacting with the system, e.g., bank customer,
bank clerk), locations (physical locations or sites important to the system),
organisational units (groups users belong to). Looking for nouns in a written
description of the problem is also suggested as a strategy (this approach is discussed in

detail by Abbott (1983) and is outlined in a subsequent section) .

60



In the structure layer, two types of structure are identified: classification

structure and assembly structure. The classification structure uses the inheritance
concept and shows generalisation and specialisation of real world entities (Figure 3.9
(a)). Muluple inheritance is allowed (Coad & Yourdon, 1991) but the only provision
for conflict resolution is to annotate each attribute and method explicitly (Graham,
1991). The assembly structure deals with the composition structure (or aggregation)
of real world objects, and can be related to the “parent-child” hierarchy and “containing
relationship” described in Section 2.2 (Figure 3.9 (b) shows an example assembly
structure). Three types of composition are distinguished: part-whole, container-
contents and collection-members. Graham (1991) considers the last two types of
composition relationship to be merely extra structure and not special cases of
composition, as contents and members can be regarded as parts of containers and

collections (which are the wholes) respectively.

) { ) . )
Student University
.
I ]
r ~ r ~
Postgraduate Undergraduate Staff Student

\ J \. J \_____._J | S

(&) (b)

Figure 3.9 (a) An example object inheritance structure and (b) an example assembly

structure.

In the attribute layer, attributes which describe instances of an object are

determined and noted in the ObjCCI’S symbol, €.g., Student, Postgraduate,
Undergraduate in Figure 3.9 (a). Again, the influence of relational databases is

apparent here as the authors require that attributes have to be atomic, as with Shlaer &

Mellor's approach. Also, like Shlaer & Mellor’s method, attributes are used to
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identify instances, which can cause problems (see Section 2.2). Next, relatior{ships
between instances of different objects (Figure 3.10 (a)) are considered and represented

vla 1nstance connections, where “an instance connection is a mapping from one

Instance to another”; each instance connection also implies a corresponding message
connection between the instances involved (Figure 3.10 (b)). For each instance
connection, its multiplicity and modality are considered; this information is also
included in an assembly structure. Instance and message connections model the “data
semantics” (Graham, 1991) of instances. Graham (199]) suggests that it may be
useful also to consider and represent the data semantics of objects (classes) as

relationships and messages could also arise between objects (i.e., classes).
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object (a)
Student University
Name instance Name
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Course V| L ;
Year
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\ / message \ J

connection

(%)
Figure 3.10 (a) Object symbols with attribute and service sections, and the different
gure 3.
combinations of multiplicity and modality in instance connections; (b) instance

connection and message connection.

The final stage of Coad & Yourdon’s method, the service layer, concentrates
on describing the functional requirements of the system. A service in an object
corresponds to a message in the protocol of a class. Each object must provide basic

services for adding, changing, deleting instances, as well as services characterising the
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object’s behaviour. Examination of object life histories and state—event-reSponsés are
strategies suggested for identifying services an object has to provide. Message
connections between object instances represent message-sending relationships between
instances. Enumeration of message names with each message connection is allowed,
although it could result in very confusing diagrams; moreover, it is redundant as the
services named clearly indicate which messages may be passed; Graham (1991) agrees
with this observation. Finally, the services are specified using template forms based
on the formal specification language Ina Jo described by Wing & Nixon (1989); where
required, diagrams are also used for specifying services, including data flow

diagrams, state transition diagrams, and decision trees.

Graham (1991) extends the object-oriented analysis method of Coad &
Yourdon to include an extra stage, called “declarative semantics”, or “rules”, during
which functional semantics, global control and business rules are explored and
recorded. He calls this method SOMA, or semantically rich object-oriented analysis.
Control rules are declared in objects for handling conflict resolution in multiple
inheritance, exception handling, default values for attributes, and demons (which are
methods that activate automatically whenever their triggering events occur). Business
rules are used to express “second order” information such as dependencies between
attribute values, e.g., a dependency between a student's year of course and the number
of books he is allowed to borrow from the library. Global pre- and post- conditions
relating to all methods of an object are allowed, as well as those pertaining to
individual methods. Control rules can be encapsulated within objects, allowing for
local variations between objects, or global rules can be inherited from the top-level
object. Graham (1991) regards the encapsulation of rules in objects as enhancing
reusability and extensibility of the requirements specification. This extra feature
introduced in SOMA is intended to be useful mainly for commercial systems
development where a relational or deductive database with object-oriented features is

the envisaged target environment. Hence the feature may not be as applicable if a
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design derived from such an analysis model is to be implemented in an object-oriented

programming language.
Informal English

Abbott (1983) suggests a strategy for deriving candidate classes, objects and their
operations from an informal English description of a problem solution. “The nouns
and noun phrases in the informal strategy are good indicators of the objects and their
classifications”, and an initial identification of the operations of these objects and
classes may be based on “the verbs, attributes, predicates, and descriptive expressions

in the informal strategy”.

Abbott classifies nouns and nouns phrases into several categories: common
nouns, proper nouns and direct references, mass nouns and units of measure. The
difference between a common noun and a proper noun is that a common noun is a
name of a class of individual entities (e.g., university), while a proper noun is the
name of a specific entity or being (e.g., Aston University); like a proper noun, a direct
reference refers to a specific entity, but without using its name (e.g., my university).
Mass nouns are names of qualities, activities or substances, which individually are not
regarded as entities (e.g., code, information) — a “good test for determining whether a
noun is a mass noun being whether it can be used in the phrase “how much ...””
(e.g., “how much code ...”", “how much information ...”"). Units of measure refer to
quantities of these qualities, activities and substances, and are usually names given to
arbitrary units used for subdividing mass nouns (e.g., lines (of code), bit (of

information)). Collective nouns which refer to groups of individuals, where each

group itself may be considered an entity, and integral counts of common nouns, are

also treated as units of measure. Based on the meaning of the various forms of noun,

a common noun may be taken as an indication of a class, and a proper noun or a direct
reference suggests an object (or an instance of a class).
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Verbs which express acts or occurrences can be mapped to operationsbf the

objects on which the acts are performed: for example, in the sentence “a bank customer

deposits money in his account”, the verb deposits could be selected as an operation

of an account object. Attributes could be taken as operations on objects which return
attribute values of the objects (e.g., address and accountBalance would be some of
the (attribute) operations of a bankCustomer object), and predicates which designate
properties or relations that are either true or false are usually represented as operations
which test whether the predicates hold regarding the objects, returning true or false
respectively (e.g., @ bankCustomer Object may receive the operation inCredit,
which returns true or false depending on the value of the object’s accountBalance).
A descriptive expression characterises an object (e.g., “investment account
customer”), and may be chosen as an operation which returns as its value objects
fitting the description (e.g., a bank object may have an operation
investmentAccountCustomer Which returns a list of all its bankCustomer objects

holding investment accounts).

The advantages of Abbott's approach include its simplicity, and it ability to
help the user to concentrate on the vocabulary of the problem space (Booch, 1991).
However, Abbott cautions that although at first glance the approach seems mechanical
and lends itself to automation, “differentiating among types of nouns is a matter of
semantics and not a simple syntactic distinction ... (which) requires knowledge of real-
world phenomena and an understanding of the meaning of words”. Often, the
category that fits a particular noun depends on its use and not just on the noun itself.
This concern with the difficulty in categorising nouns naturally also applies to
differentiating different types of verb. Abbott's approach however, has been widely
used by a number of authors and several object-oriented analysis and design méthods,
examples being HOOD (The HOOD Working Group, 1989), Sincovec & Wiener

(1984) and CRC (Beck & Cunningham, 1989).

65




Structured Analysis

Another alternative to an object-oriented approach to analysis would be to use
structured analysis techniques as a front end to object-oriented design. “This
technique is appealing simply because a large number of analysts are skilled in
structured analysis, and many CASE tools exist that support the automation of these
methods™ (Booch, 1991). Structured analysis techniques have been used by several
authors for identifying objects in the problem domain. Alabiso (1988) suggests a set
of rules for extracting possible objects and their methods from data flow diagrams and
data dictionaries. A data flow diagram describes the functional requirements of the
system in terms of the flow of data between processing. Alabiso's approach is based
on the “essential model” proposed by Ward & Mellor (1986), which includes real-time
extensions of the basic data flow diagram notation. Data in data flow diagrams and
data names in a data dictionary are mapped to objects, while a data process may be
assigned as a method of an input data object to the process. Figure 3.11 shows an
example of this process where the pop process on the input data aStack is assigned as
a method in the class Stack, of which aStack 1s an instance. Often output data is the
same as input data, only slightly modified (e.g., updatedStack refers to the same
instance aStack which has been modified after executing the pop method). Terminals
in a data flow diagram represent entities external to the system which produce or
consume data (also know as “sources” and “sinks”). Terminals can be mapped to
objects, with added methods for extracting data from and delivering data to these

objects. Data stores are files to which data is written, or from which data is read, by

processes. They are treated similarly to terminals.
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Figure 3.11 Example of Alabiso’s approach to identifying objects and methods from a

data flow diagram.

Functional decomposition of processes results in a hierarchy of data flow
diagrams, where lower-level data flow diagrams describe processes in higher-level
diagrams. This hierarchy of data flow diagrams is used to assist in the functional
decomposition of methods identified; the detail of a method is provided by a lower-
level data flow diagram of the process giving rise to the method. Entries in a data
dictionary detailing decomposition of data elements in data flow diagrams are used to
discover decomposition of corresponding objects identified. A data entry specifying a
sequence in the data can be mapped to variables in the object (e.g., a is composed of
a1 and a2 and a3 implies that class a contains variables a1, a2 and a3). Repetitionin
the data can mean the object contains a collection of other objects (e.g., a is composed
of 1 to n ax’s means class a contains a set, list or array, etc., of instances of class ax).
Selection in the data can indicate an inheritance relationship (e.g., a is composed of

either a1, a2, Or a3, may be interpreted as classes al, a2, and a3 are subclasses of

class a).

Seidewitz & Stark (1986) use a technique called abstraction analysis to look

for objects in data blow diagrams. The first step of abstraction analysis involves

identifying a “central entity” which represents  the best abstraction for what the

system does or models”. Similar to transform analysis (Yourdon & Constantine,

1979) of Structured Design which looks for where input and output are most abstract

in a data flow diagram, the central entity is located by determining a set of processes
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and data stores that are most abstract (this might require looking at lower-level data

flow diagrams) and grouping these to form the central entity. Having determined the
central entity in a data flow diagram, abstraction analysis proceeds by finding
supporting entities by following data flows from the central entity and grouping
process and data stores into abstract entities until all processes and data stores have
been allocated. An entiry graph is the result of the abstraction analysis process, and
serves as the starting point for object identification. Often entities are mapped directly
into objects; however, the authors concede that “identifying objects is not always this
simple”. Operations provided and used by each object are selected by examining each
process of the corresponding entity for primitive processes, as well as looking at the
data flows crossing boundaries between entities in a data flow diagram; each primitive
process becomes a method. Lower-level data flow diagrams are used to repeat the
process of object identification by again partitioning each data flow diagram into
entities, based on how they support the top-level object’s operations. This repetition

continues until the lowest level data flow diagrams have been examined.

Booch (1991) states that “structured design, as normally coupled with
structured analysis, is entirely orthogonal to the principles of object-oriented design”.
Alabiso (1988) concedes that the gap between the underlying models of structured
analysis, based on the flow of data between processes, and object-oriented design,
based on the object/message model, is significant, requiring “a sizable informal
quantum jump’ to derive an object-oriented design from data flow diagrams and data
dictionaries. Coad & Yourdon observe that such a gap could be difficult to reconcile,
especially when continual changes in requirements are difficult to move into the design
with little support for traceability. Alabiso (1988) suggests that the transformation
from structured analysis to object-oriented design would be better facilitated if

structured analysis could be made “object aware”; that is, if “the Analysis Model itself

were slightly modified to deal with ‘objects, classes and methods’, rather than ‘data
vite
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and processes’, ...

much less guesswork would be required to migrate from the

Analysis Model to the Object Oriented Model”.

A clear inadequacy in using structured analysis with object-oriented design is
the lack of support for inheritance. Although Alabiso considers inheritance to be a
purely design issue, Coad & Yourdon (1990) point out that the concept of inheritance
corresponds to one of the basic methods humans use to manage complexity, and
provides an important mechanism for the partitioning of a problem space; thus, its
significance should not be neglected during analysis prior to object-oriented design.
Inheritance is also a primary mechanism facilitating reuse in object-oriented
development (Winder & Pun, 1988), which should be an important consideration even
during analysis. Graham (1991) states that “inheritance and other structures [parent-
child relationship and use relationship] are an important part of the domain semantics;
the way objects are classified defines the domain, and often the purpose, of the
application”; by considering inheritance “the structural features of the-domain are
revealed, including natural notions of specialization and generalization”(Graham,

1991).

3.3 Object-oriented Design

A proliferation of design methods for object-oriented development has emerged.
Earlier methods such as HOOD (HOOD Working Group, 1989, 1989a) and the early

work by Booch (1986) were heavily influenced by the ADA language, being designed

primarily for ADA implementation. Structured Design (Yourdon & Constantine,

1979) has also been used as a basis for object-oriented design methods, e.g., OOSD

(Wasserman et al, 1989, 1990). Recent work attempts to depart from these two

approaches. The following outlines some of these different methods.
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Object-oriented Structured Design (OOSD)

Wasserman et al (1989; 1990) propose a method for architectural design called Object-
oriented Structured Design which aims to combined ideas and notation from Structured
Design as described by Stevens er al (1974) (such as modules and structure chart) with
object-oriented concepts such as abstract data types, class hierarchy, and inheritance.
The method includes a design notation which bears influence from Booch’s (1983,
1986, 1990, 1991) representation for ADA packages and tasks; the authors of OOSD
describe their notation as “a superset of structure charts and Booch’s notation”. The
main reason for using Structured Design as the basis for the method’s notation stems
from the authors’ desire to build on notation and concepts (e.g., modularity) already
familiar to most software designers, and to support a variety of analysis methods and
target implementations. Designers could continue to use familiar concepts from
Structured Design to document existing designs, but also make use of the new object-
oriented features for designing object-oriented systems using methods like Booch’s

and HOOD.

The basis of the notation used by Wasserman er al is that of structured design
used to describe modules and their inter-connections, €.g., calling structure and
parameter passing. The notation represents a class with a rectangle and each method
of the class is contained in a smaller rectangle superimposed on the border of the class
symbol, representing the class’s external interface; this arrangement looks very much
like Booch’s symbol for an ADA package. Hidden methods are allowed, shown
completely enclosed within the class symbol. Attributes of a class are not explicitly

mentioned or represented in the notation; the symbol for a private storage pool

enclosed in a class is used to represent the attributes as a collected group hidden in the

class (e.g., stack data in Figure 3.12): the notation for lexical inclusion of data

modules in Structured Design is also used for representing attribute data. Calls to

methods are shown as arrows going to the method boxes; parameters flowing into and
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out of methods use the same notation for parameter passing as in structure charts:. (e.g.,

item in Figure 3.12), with angled brackets denoting an-instance of the class

participating in the method (<stack> in Figure 3.12).

client
module

over

ltem

<stack> éstackl,
stack?2

<4QQ—>

push
@ stack
(stack data)

Figure 3.12 Example of OOSD notation.

A client/server relationship between two classes 1s shown as a thick arrow
between the two parties involved in the using relationship. An output data flow
appearing with such a client/server arrow indicates instantiation of the server class
(e.g., stackl and stack2 are instances of stack in the client module). O0OSD
facilitates the declaration of exception conditions represented as diamonds
superimposed on the border of a class. The possibility of an exception condition being

raised by a method (designated with a filled diamond) is shown with the parameter

flow of the relevant method .

Inheritance between classes is represented by a dashed arrow from the
subclass to its superclass (e.g., Figure 3.13 (a)). A subclass can add new methods
and redefine inherited methods; the subclass may also add new attribute data, though
again no mention is made of how individual attributes may be represented. Multiple
inheritance is also allowed, with fully qualified names being used to disambiguate any
conflicts. Generic classes are drawn with dashed borders with any formal generic

parameters shown as parameter flows to the class symbol itself; generic parameters are
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represented originating from dashed circles. A generic class is used to gene}ate a
specific class by providing values for the parameters of the generic class. Instantiation
of a generic class is denoted as a client/server relationship between the concrete and
generic classes. A seniority structure is used to represent the use relationship between

classes. There seems to be no mention of the parent-child relationship (or aggregation

structure) between classes.

é studqgnt :ébuniversity

? 5 ) "
gradupte graduhte sta studept
Emaster %research

(a) (b)

Figure 3.13 (a) Example class inheritance  (b) example seniority hierarchy in OOSD.

hierarchy in OOSD and

OOSD supports asynchronous processes in the form of monitors (similar to
task in ADA) for handling concurrency management. Monitors are represented using
Booch’s symbol for an ADA task, where a parallelogram is used instead of the
rectangle for a class. A monitor resembles a class except that its private data is shared
by its various methods while cach instance of a class has its own private state. Event-
driven asynchronous activation (e.g., an interrupt) of a monitor operation is shown

with a dashed line. The notation may have difficulty dealing with large numbers of

methods. and there is insufficient provisions for representing complex data structures

and attributes.
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Comments on OOSD include: “O0SD is not so much a method as a ‘no;tariiOn

to support object-oriented design methods in general” (Graham, 1991), and “the
provision of specific method guidance is scant” (Walker, 1992). However,
Wasserman ez al (1990) note that it is often impossible to introduce or enforce strict
design rules, and they have therefore “focused on a graphical notation without

addressing the method by which a design should be derived”.

HOOD

HOOD 1s an acronym for Hierarchical Object Oriented Design (HOOD Working
Group, 1989, 1989a; Robinson, 1989). HOOD was a design method developed at the
European Space Agency, aimed primarily at ADA development; as a result, “the
HOOD methodology constrains itself and the user” to a subset of the design issues in
object-oriented software development determined by the characteristics of ADA
(Walker, 1992), restricting the general applicability of HOOD and its usefulness in-a
language-independent context. The design strategy is “globally top-down” and
consists of a set of four basic design steps; these steps are repeated at each level of the
top-down process. At each level, each of the objects identified so far, called the parent
object, is decomposed into a set of component child objects which are viewed as
providing the functionality of their parent. The decomposition process begins with the
decomposition of the top-level parent object (root object) representing an abstract
model of the system as a whole, and proceeds until it arrives at terminal objects which

are designed in detail for direct implementation in code without further decomposition.

The first of the four basic design steps 1s the definition and analysis of the

problem, involving selecting the relevant requirements for the design. Requirements

of the system should already have been documented in a prior analysis phase. SADT

(Ross, 1976; Ross, 1985) was chosen by the European Space Agency for its

requirements analysis method. Here the designer states clearly the definition of the
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problem and the context of the system to be designed. The information gathéred is

analysed to make sure the problem is well understood.

The second step is to revise these requirements into an informal design
strategy stated in English. This description should include references to real world

objects and their actions, and is regarded as a baseline for further refinement in

subsequent steps.

In the third step, major concepts of the solution strategy are extracted to try to
formalise a solution. Objects and their operations (methods) are identified using a
technique akin to Abbott’s (1983) idea of using nouns and verbs respectively from the
informal design strategy. Potential objects also include hardware devices to be
localised, data to be stored and data to be transformed. The process is repeated as each
object is decomposed. In decomposing the root object, child objects consist of real
world problem domain objects, data, and data stores. At lower levels of
decomposition, types of object include object states, data pools, records and output
devices. Only objects at the right level of abstraction are selected at each level of
decomposition, and all properties relating to operation execution (e.g., parallelism,

synchronism, periodic execution) must be noted.

In the fourth step, operations are associated with objects, giving rise to an
object operation table. HOOD diagrams can now be produced based on this table
(Figure 3.14). Each diagram shows child objects and operations. The diagram should
also contain implemented-by links between the parent object and its child objects, and
use relationships, data flows and exceptions amongst child objects. An object symbol

looks very much like a Booch ADA package symbol.
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Figure 3.14 HOOD notation.

There are two type of objects in HOOD, passive and active (shown with an A
in an object symbol e.g., child_c in Figure 3.14 is an active object). A passive
object executes an operation immediately when control is passed to the object, while an
active object’s reaction to a stimulus may be delayed depending on its control
structure. A use relationship is established between two objects when an object uses
the operation of another object. Buhr’s (1988) symbols for data flow have also been
adapted (Robinson, 1989), mapping into ADA IN, OUT and 1IN oUT parameters. Cyclic
use relationship among objects is prohibited to make testing more secure. A passive
object may use only the operations of other passive objects, but this restriction does
not apply to active objects. The use relationship is shown with a bold arrow from the
using object to the used object (e.g., in Figure 3.14, child_A uses child_B and
child C, and child_B uses child _C). A parent object has an include relationship
with its child objects, represented by the child objects” symbols included in the parent
object symbol. A parent operation implemented by a child object operation is indicated

by an implemented-by link shown as a dashed arrow from the former to the latter

(e.g., Figure 3.14 shows that operationl is implemented by an operation in

shild A and operation2 is implemented by an operation in child_B).
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In the final step of HOOD’s basic design steps, a solution is derived which

describes each parent object in terms of its child objects, their operations, and the
relationships among the objects. This information is produced as a formal Object
Description Skeleton (ODS). The ODS includes an Object Control Structure (OBCS)
for each active object written in ADA semantics in terms of the entry points and
rendezvous semantics of each operation of the active object. Information in the ODS
also includes a formal description of operations provided by the object, types,
parameters, data flows and exceptions; the interface required by the object consisting
of a list of used objects, types, operations and exceptions is also mentioned in the
ODS. Each operation of the object will have an Operation Control Structure (OPCS)

defining the operation’s interface and logic using ADA pseudo-code.

There is no support for either inheritance or genericity. Generics 1s a
mechanism often used in ADA programming, so its absence in HOOD, according to
Hodgeson (1990), is a serious deficiency even for an object-based design method.
Classes can be defined in HOOD. Instance objects of a class use operations defined in
their class, but data types and data declarations must be defined explicitly in each
instance, which seems not to exploit fully the abstraction potential of the class concept.
Classes do not participate in an inheritance hierarchy, so reusability is not facilitated.
Hodgeson (1990) observes that there is also insufficient separation between the
definition of a class and its instantiation — the symbols for both class and instance,
and their use, are identical in the HOOD notation. Hodgeson (1990) also identifies
other deficiencies in the HOOD notation: data flows and exceptions (each exception is
shown as a bar across a use relationship arrow) are both associated with a use
relationship between two objects rather then defined for each operation; it is, therefore,

impossible to indicate clearly which parameters and exceptions are related to a

particular operation. Booch (1991) remarks that in HOOD, the role of data structures

(attributes) is played down in favour of concentrating on functional abstraction.
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Booch

Booch’s (1991) object-oriented design method uses a notation comprising six different
types of diagram. A class diagram is used to show the existence of different classes in
the design of a system, and the various relationships amongst the classes, including
inheritance, using, instantiation, and metaclass (see Figure 3.15 (a)). For inheritance,
the notation allows for classes whose instances are not type-compatible with instances
of its superclass (e.g., derived types in ADA). A using relationship between two
classes may occur when the implementation of one class uses the resources of the
other class, or when the interface of the former also depends on the latter — this is
relevant in strongly-typed languages where the interface (messages) of the using class
has to name the used class. The instantiation relationship is meaningful only for
languages that support generic parameterised classes (e.g., ADA, Eiffel) where a class
can be parameterised by other classes, objects and/or methods. Relative cardinality of
classes can also be indicated for each relationship, specifying for an instance of a class
the number of valid instances of another class participating in the relationship (see

Figure 3.15(b)).
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Figure 3.15 (a) Class diagram notation and (b) an example class diagram.

Booch’s method copes with a complex system with a large number of classes
by permitting logically related classes to be grouped into categories (cf. clusters and
subjects). A class category in a class diagram refers to another class diagram
containing the classes in the category. A top-level class diagram for a large system
could therefore contain class categories (similar to the subject layer used by Coad &
Yourdon (1990)) which in turn refer to lower-level class diagrams with further class
categories and/or classes and their relationships. Each class is also described in more
detail with a template form. The dynamic characteristics of each class are captured
graphically using a state transition diagram. However, Graham (1991) notes that state

transition diagrams are not appropriate when used with complex classes with very

large numbers of states; e.g., an object with n number of boolean state variables will

have 21 different states.
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An object diagram is used to show the existence of objects and their

interactions (see Figure 3.16 (a)). A relationship between two objects indicates that
the objects can send messages to each other; names of possible messages can be
enumerated. There are three possible ways in which an object A may send a message
to another object B (i.e., how A is visible to B): B is in the scope of A, B is sent as a
parameter of one of A’s methods, or B is a field (in the state) of A. An object’s
visibility to another object may also be shared with other objects via structural sharing,
e.g., where B is referred to by other objects apart from A (Figure 3.16(a)). Message
synchronisation semantics of interactions between objects is denoted using symbols
adapted from Buhr’s work (1988). Each object and message in an object diagram is
described 1n detail using an object template énd a message template respectively. The
dynamic semantics of message passing is described using a timing diagram showing
the flow of control amongst objects during the execution of an object method. Graham
(1991) also points out that timing diagrams suffer from the problem of coping with a

large numbers of objects and messages.

B same lexical scope
same lexical scope (shared)
E parameter
@ parameter (shared)
B ficld
field (shared)
object icon object visibility

graduate

promot e\

Figure 3.16 (a) Object diagram notation and (b) an example object diagram.

79




Class and object diagrams are used to document the logical desigrfl of a
system. Booch’s notation also uses module diagrams and process diagrams to support
the physical design of the system. Module diagrams are used to show the allocation of
classes and objects to modules, corresponding to separately compiled files in C++ and
packages in ADA; connections in a module diagram represents compilation
dependencies among modules. In some large systems, several programs are required
to implement the design on a distributed system of computers. Process diagrams are
used to visualise the allocation of processes to processors. Like block diagrams, a
process diagram shows connections between processors and devices. Walker (1992)
expresses concern that some of the diagrams in Booch's notation attempt to cover too
much detail about a system. On the other hand, Walker feels that Booch's notation has
also sacrificed detail or depth for breadth: “this can be useful at the early stages of the
design process, but needs to be capable of being reworked to increase the level of
detail”. Detail is provided in part by textual templates, but Walker considers that there
is insufficient correlation between the various templates and diagrams. Booch also
does not explain how independent object and class diagrams are related to each other,

in view of the fact that each object has to be an instance of a class.

Booch (1991) describes four main activities in his design method. The first
step is to identify classes and objects, and then invent the mechanism (i.e., the
message passing topology) which describes the “structure whereby objects work
together to provide some behaviour that satisfies a requirement of the problem”.
Booch suggests that this step could be achieved by studying the problem’s
requirements and/or by discussing with domain experts to learn the vocabulary of the

problem domain; tangible entities in the problem domain, and the roles they play, as

well as events that may occur, all form candidate classes and objects of the design.

Class and object diagrams are used here to show the various classes and objects and

their relationships, and class and object templates can be started. The second step is to

identify the semantics of the classes and objects, which means deciding on the
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interface (messages) of each class, and finding out which messages objects can send
each other. This step could be iterative in that deciding upon the protocol of an object
may require changes to decisions regarding the message protocol of another object.
Booch suggests that writing a script for the life cycle of an object could be useful for
identifying messages it can receive. The class and object templates started in the last
step can be updated with information collected in this step. State transition diagrams
and timing diagrams are used to document the dynamic semantics of classes and the
mechanisms between class instances. New object diagrams might also be drafted to

capture any new mechanisms invented in this step.

The third step is to identify the relationships amongst classes and amongst
objects. This is largely seen as an extension of the activities of the previous step and
involves two related activities, namely discovering patterns and making visibility
decisions. Patterns among classes help in organising the class inheritance structure
and patterns among cooperating objects can help in generalising mechanisms.
Visibility among classes and objects refers to how classes and objects see one another.
Classes see each other through relationships such as using, inheritance and
instantiation, while objects can send messages to each other in the three ways
mentioned above, taking into account the messages that can be sent between each pair

of objects. Class and object templates are refined and completed to form the logical

models of the design.

The fourth step is to implement the classes and objects. This involves
looking at the internal representation of these entities, and also allocating the classes

and objects to modules. At this point the design process may return to the first step,

and the design process is applied to designing the inside view of existing classes and

concentrating on lower-level abstractions. The result of this step includes refining the

class structure of the system and completing the implementation part of each

“important class template”. Implementing classes and objects may lead to the
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discovery of new classes and objects, which may in turn result in refinement and
improvement on the semantics of, and relationships amongst, existing classes and
objects. The process of object-oriented design stops when “there are no new key
abstractions [classes] or mechanisms, or when these classes and objects we have

already discovered may be implemented by composing them from existing reusable

software components” (Booch, 1991).

Pun & Winder

Pun & Winder (1989, 1989a) describe the framework for an object-oriented design
method and its accompanying notation. The design process comprises three levels,
conceptual, system, and specification. During the conceptual stage, application objects
and interactions are identified from a requirements specification produced from the
activities of a requirements analysis undertaken prior to the design process.
Application objects are described as “objects which are understood by the client and
end-users”, in other words, application objects are problem domain objects. The
method emphasises the importance of including the identification of user-interface
objects at this stage with which users directly interact. The result of this stage is
documented using an object interaction diagram showing the existence of the user

interface and other domain objects (“user transparent objects”) and their message

connectons.
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user interface

(a) (b)

Figure 3.17 (a) An object interaction diagram and (b) a levelled object interaction

diagram showing the contain relationship.

The system level is concerned with three kinds of relationships which can

exist between objects: contain, use, and inherit. Looking at the contain and use

relationships helps to identify implementation objects based on already identified

application objects — implementation objects differ from application objects in that

they are solution domain objects and must be implemented in the system e.g., an

application object user identified in the conceptual level may not be implemented in the
system. These additional objects are illustrated using levelled object interaction

diagrams showing decompositions of objects, rather like levelled data flow diagrams

(see Figure 3.17 (b)). The quthors also mention an ‘inheritance factorisation process’
based on formal algebraic structure (Pun & Winder, 1989) which has been developed

to help in the construction of a class inheritance hierarchy.




class
method
"""" ““*iteration
—d $ --l****loelection

Figure 3.18 Notation for a class structure chart.

In the specification level, class structure charts are used to record information
on each class including variables and messages, and the class’s inheritance
relationships with its superclasses. The method of each message in a class 1s also
described in the class’s class structure chart, showing the sequence of message
passing and control information like iteration and selection (see Figure 3.18). In the
notation for a class structure chart, a rectangle denotes a class and an arrow represents

a message send.

Other Methods

Other methods for object-oriented design include work by Rumbaugh et al (1991) and
Wirfs-Brock et al (1989, 1990). The Object Modeling Technique (OMT) described by
Rumbaugh er al is aimed at the analyss, design and implementation of an object-
oriented system. Influence of traditional methods is evident, including the use of
entity relationship modeling (Chen, 1976) in the object model for representing
associations among classes. These associations include aggregation, inheritance,
qualification, etc.; a qualification 1s used to specify a restriction on a class in an
association, e.g., in an aggregation relationship between a directory class and a
f£ile class, a qualification can be specified on the file class stating that each file
instance must have a unique fileName attribute value in relation to a directory

instance. State transition diagrams (based on Harel’s state diagram notation (1987))
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and modified data flow diagrams are used in the dynamic model and functional model
respectively. State transition diagrams are used to describe the states and events of
classes in the object model; actions associated with states and events refer to class
operations. Data stores and actors (classes with attributes and operations) in data flow
diagrams correspond to classes in the object model, and processes in low-level

diagrams are described in terms of class operations.

Wirfs-Brock er al describe a technique called Responsibility Driven Design
which models a system in terms of the client/server model. First, classes of objects
are identified, and then actions which must be accomplished by the system are
allocated to the classes to form the responsibilities of the classes (i.e., messages they
can respond to). Collaborations with other classes (via message-sending) may be
necessary to achieve class responsibilities in the client/server model. The set of
messages that may be sent between a client and 1ts server comprise a contract between
the two classes. The class inheritance hierarchy in Wirfs-Brock er al’s method is
structured based on a subclass inheriting only the responsibilities of its superclass
rather than the superclass’s structure (i.e., instance variables). The authors believe
that concentrating on “object behavior before object structure” helps to “maximize
encapsulation” in that structural information about an object does not become part of
the interface to that object; thus, modifications to the object’s structure is enabled
without affecting the object’s interactions with other objects. Wirfs-Brock er al use
Beck & Cunningham’s (1989) idea of recording the details of classes (including
responsibilities and collaborations with other classes) on index cards; collaboration
graphs are used to show graphically inheritance relationships and client/server
relationships between classes. “The description of the dynamics of objects is atypical.
There are no state-transition or data flow diagrams ... Instead, the behavior is

formulated in terms of contracts, responsibi]itics, and messages” (de Champeaux &

Faure, 1992).
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Conclusion

This chapter has looked at the object-oriented software development life cycle models
described by several authors. The essential feature they have in common shows that
object-oriented development is an iterative and incremental process, and is also a
combination of both top-down and bottom-up development. Several analysis and

design methods proposed for object-oriented development have also been outlined.
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Chapter 4 The Operational Approach and Object-oriented

Software Development

4.1 Introduction

“Recently there have been complaints about the chronic problems of the conventional
life cycle” (Zave, 1984). Balzer et al (1983) observe that maintenance on a system 1is
traditionally performed on the system’s source code (i.e., the implementation), and
point out that the task of maintaining source code is made very difficult by
optimisations in the code. The process of optimisation makes software harder to
understand as programmers usually substitute (simple) abstractions with efficient but
complex realisations. Optimisation also tends to increase dependencies among
different parts of the system as programmers use knowledge from different parts of a
program to facilitate optimisation, leading to scattering of related information; these

dependencies are often implicit, thereby hindering maintenance further.

McCracken & Jackson (1981) note that the traditional life cycle ignores the
fact that system requirements cannot usually be stated fully in advance, because often
the user does not know completely what he requires in advance, or what the possible
solutions are; the development process “changes the user’s perceptions of what 1s
possible, increases his insights into his own environment, and indeed often changes
that environment itself”. Swartout & Balzer (1982) consider the explicit separation of
specification and implementation in the traditional model to be unrealistic, and argue
that the specification and the implementation of a system are very much intertwined —
both resource limitations encountered during implementation, and insights gained
during actual implementation or while using the actual implemented system, may
highlight any incompleteness in a specification. Implementation decisions, therefore,

have the effect of modifying and refining the specification. Agresti (1986) notes other
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criticisms to the conventional life cycle model, which include the model’s inadequate

accommodation of prototyping, end-user development, and reusability.

4.2 The Operational Approach

New paradigms of system development have emerged in response to the problems
inherent in the conventional approach and to challenge the conventional approach to
software development; new ideas associated with these paradigms include prototyping,
executable specification and program transformations, which do not fit into the
conventional model. Executable specification and program transformation form an
alternative strategy to software development known as the operational approach.
Figure 4.1 shows the operational paradigm built around the preparation of an
(executable) operational specification.
Exercisc the operational

specification to validate
agamst requirements;

TCVISC as necessary
System requircments . . .
ysiem red Operational Transformed ; Delivered
(ofien informal specification specification system
and/or incomplele) Preparc an  |SP Aprp]y ransform map nto
operational ations to change implemen-
specification mechanisms that Lation
(problem- produce behaviour language
oricnted) (implementation- structures

oricnted)

Figure 4.1 The operational paradigm.

Operational Specifications

The first step in the operational approach involves the construction of an operational
specification. *The operational specification is executable by a suitable interpreter”

(Zave, 1984) to generate the behaviour of the specified system. An operational
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specification contains explicit descriptions of the intended behaviour of a syétem’s
operations in addition to the operations’ interfaces (Liskov & Zilles, 1975); the
descriptions of behaviour embody executable semantics and therefore enable the
execution of the specification. The conventional life cycle model stresses the
separation of external system behaviour — the “what” of requirements specification —
from internal system structure — the “how” of design. Agresti (1986a) notes that
separating software development activities on this basis introduces problems.
Swartout & Balzer (1982) explain the inherent difficulty of extricating the “what” of a
system from its “how” — discussing the “what” of a system requires design and
implementation considerations to be addressed. Agresti (1986a) points out another
problem associated with the rationale of separating behaviour from internal structure,
in that when the design phase starts, the designer is left with a range of issues which

impinge on design decisions. The designer needs to consider the following:

— problem-oriented issues of decomposing high-level functions into lower
levels

— purely design issues such as information-hiding and abstraction

— implementation issues such as system performance constraints and the
feasibility of implementing the design in the target hardware-software

environment.

The operational approach acknowledges the intertwining of a system’s
functional behaviour and its internal structure. The guiding principle of this approach
is not to overwhelm system designers by requiring them to deal with all these issues
simultaneously. In the preparation of a specification, the operational approach
partitions early development activities based on separating problem-oriented concerns
from implementatiomoriented issues. An operational specification specifies a system
in terms of problem-oriemed structures in some language or form which enables the

specification to be executed. Zave (1984) explains that the internal structure of a
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system 1s explicit in an operational specification, while the system’s external behéviour
is implicit but can be revealed when the specification is executed, evaluated, or
interpreted. “The operational specification resolves issues related to the behaviour of
the system using terms that are meaningful in the user’s problem domain. After the
operational specification is prepared, the implementation-oriented issues can be
addressed, without the confounding effects (experienced in the conventional model) of
still wrestling with the functional processing of the system” (Agresti, 1986a). An
operational specification uses structures that are independent of specific resource
configurations or resource allocation strategies (and so can be implemented by a wide
range of these) (Zave, 1984), which contrasts with a design of a system which is

inevitably constrained by a specific run-time environment.

An executable operational specification serves as a prototype which produces
the functional behaviour of the specified system, allowing the user to review the
proposed system capabilities (Yeh, 1990). The way the specification generates
behaviour may not relate to the actual run-time environment that will be used for the
implementation of the system, and the behaviour is usually not efficient; this lack of
efficiency is, however, not a main concern in preparing an operational specification.
“The mechanisms (usages of the specification structures) in an operational
specification are derived from the problem to be solved” (Zave, 1984). An operational
specification is, therefore, structured to reflect the user’s problem domain, hence
enhancing comprehension by both the user and designer, and improving modifiability
of the specification, regardless of any implementation characteristics. The key benefit
of this prototyping capability is that validation of system behaviour by both the
developer and the user can occur early in the development process. McCracken &
Jackson (1981) and Yeh (1990) observe that prototyping provides an opportunity to
understand and clarify the user’s needs and his environment early. Agresti (1986a)
points out that this early validation capability is difficult with traditional natural-

language, static specifications which lack executable semantics. “It 1s not possible to
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see the behaviour of the system until parts of the specification are realised in code,

which is normally late on in the development process” (Lewis, 1991).

Transformations

The transformation phase of the operational approach begins when a satisfactory
specification has been produced after the end of the validation and revision loop (see
Figure 4.1). The specification is subjected to a series of transformations which alter or
augment the behaviour-producing mechanisms of the specification while preserving
the external behaviour of the specification. The resulting transformed specification
specifies the same system in terms of implementation-oriented structures that will
eventually be mapped into the implementation language. Zave (1984) identifies two
main types of transformation. One type of transformation changes the mechanisms of
the operational specification to balance performance and implementation resources.
Other transformations are needed to manipulate the structures of the specification so
that they can be mapped straightforwardly and efficiently onto a particular
configuration of implementation resources (such as processes, memory,
communication channels, etc.). This second type of transformation on structures may
introduce explicit representations of implementation resources or resources allocation

mechanisms that were not present in the original specification.

The process of transforming an operational specification could potentially be
automated, addressing “the labor intensiveness of software development by using
specialized computer software to transform successive versions of the developing
system mechanically” (Agresti, 1986a). In addition, a knowledge-based software
“assistant” (Balzer, Cheatham & Green, 1983) could be used to guide the developer
during the transformation process in selecting the appropriate transformations (e.g.,
identifying candidate transformations, choosing data structures, etc.), ensuring

correctness at each step. Automation of the transformation process offers the
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capability of performing maintenance on a system’s specification rather than “on its
implementation (source code). Changes to a system’s functions may be achieved by
revising its specification, which is then re-implemented with computer assistance. Yeh
(1990) observes that this transformation approach reduces “the opportunity for new
errors to be introduced during modification and ensures error minimization as the
system evolves in response to changing user circumstances”. Balzer er al (1983) state
that “by maintaining the specification directly, we drastically simplify the maintenance
problem” as the specification is “the form that is closest to the user’s conceptual
model, least complex, and most localized ... before optimization decisions have been
integrated, so modifications are almost always simple, if not trivial. We are constantly
reminded of this insight by end users and managers who understand systems only at
this (unoptimized) specification level; they have no trouble integrating new or revised
capabilities in their mental models™. Balzer ez al also envisage that, with suitable
specification languages, users should be able to develop and maintain specifications
themselves, improving the interface between users and implementors. With
maintenance of specifications, the “goal of reusable software can be attained”;
specifications are placed in libraries and when a module is required, a suitable
specification is reused by modifying it appropriately and then re-implementing it with

automated transformations.

4.3 Qverview of Some Operational Methods

JSD

JSD specifies a system in terms of a network of long-running sequential processes
which communicate by writing and reading from buffers called datastreams, and by
inspecting each other’s internal states, known as staze vectors. Figure 4.2 shows an

example JSD network specification which describes the abstract architecture of the
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system. Processes are represented by rectangles, and datastreams and state vector
inspections are shown as circles and diamonds respectively. Beside model processes
that model real-world entities, other processes known as function processes are added
to a specification which realise the functional requirements of a system. Function
processes are used to handle data collection (to ensure error-free input), to extract
information from model processes and produce output, and to perform extra

processing and then feed results back to model processes.

input and >\ )\

error handling
processes

datastream

e

model
Processes

state vector
inspection
interactive
output process

A

Figure 4.2 An example JSD specification.

Each model process describes the time-ordering of events (or actions)
suffered or performed by a real-world entity. Representing real-world entities as time-
ordered event structures is known as entity life modelling (Cameron, 1988; Sanden,
1989). For example, a student registers as a student of a university, passes the
required examinations, before finally graduating; a student cannot violate this order of
events by graduating before registering or passing all the examinations. Figure 4.3 is
an example process diagram showing the time-ordering of actions for a Book entity of
a library. Actions are represented by leaf rectangles, and iterations and selections are

denoted by the symbols “*’ and ‘0’ respectively. Actions are atomic in that they
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cannot be decomposed into sub-actions; moreover, actions are considered to héppen
instantaneously. Each action has associated attributes which describe its
characteristics; for example, the action Lend in Figure 4.3 would have attributes such
as book-id, ISBN, borrower-id, date, €tC. An entity’s attributes may be derived
from the attributes of the entity’s actions, e.g., a Book entity would also have attributes

such as book-id and ISRBN.

fAcquire ”ClassinyiLoan Part ]

Lo& | Sollol Swap Scheme”)

{Lc nd ”Out On Loan”Return lOut Circulate ”Dellverl

l Renew*l

Figure 4.3 A process diagram for a Book entity.

For each similar entity that exists in the real world, a separate model process
is regarded as existing which models the entity’s life history. A model process type
and its actual instances may be considered as reflecting the class-instance relationship
present in an object-oriented environment. Each model process instance writes its own
datastream and its state can be inspected by a state inspection. Process multiplicity is
denoted by the symbol ==in a JSD specification diagram (e.g., Figure 4.2). Entities
belonging to a particular process type have common attributes which form the
individual state vectors of corresponding model process instances. The state vector of
a model process instance can be manipulated only by the actions of the process.
Identities of process instances form a part of their state vectors; however, the use of

identity as part of the state of an entity has been noted as undesirable in the object-

oriented sense (see Section 2.2).
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Using a process diagram, the intemal structure of a function proces:s in a
specification is also described in terms of the ordering of actions the process has to
perform. Actions of both model and function processes are defined by attaching
primitive operations — such as reading and writing of datastreams, assignments to
update process attributes, and state inspections — to the actions. For example, in a
library system specification, the process diagram of a function process, F1, which
periodically lists the overdue books grouped by borrower, may be annotated with

primitive operations as shown in Figure 4.4 (Cameron, 1986).

Fl
1
Requesti
/List
2 3 — |4 1
Borrower
5 *
0O’ due Book
1. rcad next REQUEST 4. write LIST-TRLR
2. read next BOOK SV (overduc books only) S. write BORROWER-HDR
3. writc HIST-HDR 6. write BOOK-LINE

Figure 4.4 Example JSD process diagram annotated with primitive operations.

Lewis (1991) refers to the datastream communication mechanism in JSD as
‘message sending’. This message sending mechanism is asynchronous; a process can
write a message to a datastream without being blocked but will get blocked when
reading from an empty datastream. This message sending mechanism in JSD differs
from the message sending mechanism in the object-oriented paradigm — Wolczko

(1988) notes that the object-oriented messaging mechanism is regarded as




O Do

1
4

synchronous. Lewis (1991) also observes that “asynchronous communication does

not generally exist in the object-oriented paradigm”, as an object in an object-oriented

environment is blocked on sending a message to wait for the response of the message

recelver.

A state vector inspection between two processes permits one process to
inspect the state of the other without interruption to the inspected process, and the

inspecting process is never blocked in its attempt. However, “the results of

inspections [must] correspond only to particular coherent states” of an inspected
process, i.e., the state of the process “just before the execution of a read operation”

(Cameron, 1986). This restriction means that an inspection must be delayed when the

inspected process is updating its state while executing an action. No mechanism
equivalent to state vector inspection exists in the object-oriented paradigm. Graham
(1991) points out that state vector inspection directly violates the principle of
information hiding. Encapsulation in an object-oriented environment ensures that
access to the values in an object’s state may be achieved only by the usual way of
sending the object appropriate messages provided in the object’s protocol which return

values of its instance variables.

Other existing operational methods include Gist (Balzer, Goldman & Wile,
1982; Cohen, Swartout & Balzer, 1982; Feather, 1982), Paisley (Zave, 1982; 1984)
and Me-Too (Henderson, 1986). A brief overview of the specification technique of

each is provided next.

Gist

Gist, like JSD, aims to model the problem-domain explicitly in its specifications. A
Gist specification is expressed in terms of descriptions of behaviours which

“correspond to the observable activities in the application domain”. Behaviours are
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specified using ‘stimulus-response rules’ called demons. A specification also cénsists
of a state comprising a set of abstract objects; activities in the problem-domain trigger
the relevant rules which map the current state of the specification into a new state by
modifying the values of its state objects. For example, the demons and object types in
a package routing example (Balzer ez al, 1982) may be specified in the Gist language
as shown in Figure 4.5. In the package routing system, “at random times, a new
package appears at a particular location called the source assigned to be routed to an
arbitrary destination bin. Packages located at the source are moved to their

destinations”.

demon CREATE_PACKAGE()

response
create package.new||package.new:DESTINATION=a bin and

package.new: LOCATED_AT=the source
demon MOVE_PACKAGE (package)
trigger package:LOCATED_AT=the source
Legpongse
update LOCATED_AT of package to package: DESTINATION

type package(located_at]|location)
type location gupertype of <source;bin>

Figure 4.5 A Gist specification example.

Paisley

Paisley is similar to JSD in using processes 1o model the real-world in 1its
specifications. A process simulates some part of the problem-domain and executes
indefinitely. Each process is specified by a "successor function’ using a functional
language based on side-effect-free “expressions formed from constants, formal
parameters, functions and functional operators”. The process’s successor function 1s
used to generate the process’s new state from its current state. For example, the
successor function of a producer-consumer buffer, next-buffer, may be specified in

Paisley as shown in Figure 4.6, where the buffer’s state is the current contents of the

buffer.
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next-buffer:BUFFER->BUFFER;
next-buffer[bl=give-to-consumer [get-from-producer[b]];

get-from-producer:BUFFER->BUFFER;
get-from-producer[b]=

/fullb]:b,
‘true’ :put-on-tail [ (b, xr-prod([ ‘null’})]
/!

give-to-consumer : BUFFER->BUFFER;
give~-to-consumer [b]=

/empty [b] :b,
‘true’:put—on—head[(xr—cons[first[b],rest[b])]

/i

Figure 4.6 A Paisley specification example.

Me-too

Me-Too uses a combination of the functional language Miranda (Turner, 1986) and the
formal language VDM (Jones, 1990) to formally express the abstract data objects and
operations of a system in terms of abstract data types and recursion equations. A
system is modelled by a set of state variables of abstract data types which “can be
assigned values of abstract objects” (Henderson, 1986). Functions defined for
abstract data types are used to construct new abstract objects to be assigned to system
variables. To illustrate the Me-too specification language, Henderson (1986) uses the
example of a database which can store a collection of notes (English phrases) and
which can be searched for recorded notes containing occurrences of a selected phrase.
Figure 4.7 shows the abstract data types required in the example and some functions
of the type Db.

Note=seq (Word)

Db=set (Note)

emptyDb:->Db

addNote :DbxNote->Db

delNote:DbxNote->Db

emptyDb () =empty

addNote (db, n)=db»{n]
delNote (db, n)=db-{n}

Figure 4.7 Example of abstract data types and functions in Me-too.
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Operations provided by the system may be specified as shown in Figure 4.8.

mentions:NoteXWord->Boolean
mentions (n,w)=or/<w=w’ |w’<-n>

mentions-all:NoteXNote->Boolean
mentions-all (n,n’)=and/<mentions(n,n’) |w’'<-n’>

all-mentions:DbXNote->Db
all-mentions (db,n)={n’ {n’<-db;mentions-all (n’,n)}

Figure 4.8 Example system operations in Me-t0o.

Specification Executabiliry

As stated earlier (see Operational Specifications in Section 4.2), explicit descriptions of
a system’s operations provide the executable semantics in an operational specification,
enabling its execution. In Paisley and Me-too, semantics of operations are specified n
a functional language. Functional languages are interpretable and therefore support the
executability property of operational specifications. For example, a process in Paisley
may be executed by repeatedly replacing its current state by a successor state obtained
by evaluating the expression representing its successor function. Me-too
specifications may be exercised using a “read-eval-print loop ... typical of interactive
programming systems, especially Lisp systems”. In the Me-too example above, once
the system is initialised (db: =emptyDb () ), the sytem may then be executed by issuing
commands such as:

db:=addNote (db, “result of a function”)
all-mentions (db, “value parameter”)

On the other hand, Gist and JSD both use an imperative style in specifying
their operations. Gist and JSD specifications are only executable in principle. “Gist
specifications can be evaluated to yield behaviour (a sequence of states) given an initial

state” (Balzer er al, 1982). When a demon’s trigger (a particular system state)
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becomes true, the demon is activated and modifies the system state. The nev\} state
may then trigger another demon and the cycle is repeated. However, Balzer er al admit
that the execution of Gist specifications “is not possible directly because the evaluation
of Gist specifications in (sic) intolerably slow”. Transformations to convert Gist
specifications into a suitable execution form (Feather, 1982) and the use of symbolic
evaluation techniques (Cohen et al, 1982) are two possible ways “for allowing Gist

specifications to be used as prototypes” (Balzer er al, 1982).

In a JSD specification, each long-running model process executes constantly,
reading inputs and carrying out actions to “coordinate itself with the reality” of its
corresponding real-world entity. Each model process takes as long to execute as its
corresponding entity. The execution of a JSD specification is dependent upon finding
a machine/operating system that will handle the execution of a large number of
instances of concurrent long-running processes. Cameron (1986) states that to execute
a JSD specification, “we often have to combine and package the specification
processes into a more familiar arrangement of “short-running” jobs and transaction-
handling modules”. A basic technique is to convert each process into a subroutine by
inserting a suspend-and-resume mechanism at its read statements and by passing input
records as parameters of the call (Jackson, 1983). Every time a subroutine is called, it

executes part of the long-running program (Cameron, 1986).

4.4 Adopting an Operational Approach in Object-oriented Development

Given the claimed advantages of the operational approach to system development,
object-oriented development could benefit from these advantages by incorporating the
operational characteristic of creating executable specifications as part of the object-

oriented development process. One possible route to this aim is to use elements of an
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existing operational method in an object-oriented design context to construct executable

specifications of systems which are then implemented in object-oriented languages.

Research has been carried out by Lewis (1991) to explore the feasibility of
using JSD in this respect. However, in comparing the two paradigms, Birchenough &
Cameron (1989) state that “JSD is explicitly object-oriented only during the modelling
phase”. Lewis (1991) adds that although “there are superficial connections which
have been identified at the specification phase of JSD ... the differences between the
two domains are such that JSD cannot really be categorised as object oriented (sic)”.
Due to the differences between the abstractions used in JSD specifications and the
concepts of the object-oriented paradigm, in using JSD as a requirements specification
technique with object-oriented development, a transformation phase between the
specification of a system and the system’s implementation becomes mandatory to map
between the two paradigms. Lewis (1991) describes some transformation strategies
which may be used to map JSD specifications into Smalltalk-80 implementations, but
also explains the attendant problems and constraints associated with applying these

strategies.

Important points which make the use of JSD specifications unsuitable for
object-oriented development include the absence of support for inheritance and the
containing (or association) relationship between objects (see Section 2.2). Gist, on the
other hand, does provide a supertype-subtype relationship between data types which
may be used to represent inheritance. The containing relationship may also be
expressed in Gist as shown in the example in Figure 4.5 (e.g., between the types
package and location). However, it has no mechanism 1in its demon definition,
similar to the write primitive of JSD, which may be used to represent a message
sending relationship between objects. Also, all demons in Gist share a database of
state variables, making it difficult to represent encapsulation of state and processing.

The using relationship amongst obijects (see Section 2.2) cannot be represented in Gist
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(cf network diagrams of JSD), and so animation of specification execution is not

facilitated (see Executable Semantics and Execution Animation overleaf).

There is also no support for inheritance in Paisley or Me-too. In Paisley, the
only type of data object is the list or sequence, and substructure within these structures
“cannot be explicitly acknowledged” (Zave, 1982). This makes it difficult to represent
containing relationships between objects. Side-effect-free functions in Paisley cannot
represent the concept of a method which must have update privilege to an object’s state
and be able to send messages to the state objects. Me-too, however, borrows VDM’s
syntax for the description of record or tuple structures, which may be used to represent
the containing relationship between objects. Standard constructors for, and selectors
on, tuples are also provided, which facilitates the definition of methods. The using
relationship cannot be represented explicitly in either Paisley or Me-too, and thus, as

with Gist, animation of specification execution is not facilitated.

Instead of using an existing operational specification technique, another
approach would be to use an existing object-oriented method to create operational
specifications which ensures that important features of the object-oriented paradigm are
addressed. The subsequent implementation of the specifications in an object-oriented
language would be facilitated by avoiding the need for transformations required in
bridging the gap between two different paradigms. First, however, it is necessary to
determine the dynamic properties and executable semantics present in an object-
oriented system. These dynamic properties and executable semantics could then be
used to assess the extent to which the notation in each object-oriented method
described in Chapter 3 provides support for building operational specifications of

object-oriented systems.
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Executable Semantics and Execution Animation

Operations of an object-oriented system are provided by object methods. A medium is
needed in the specification for describing explicitly the internal details of methods to
provide the executable semantics required to enable the specification’s execution (see
Specification Executabiliry in Section 4.3). The description of a method must express

the messages sent to other objects within the method to achieve the method’s task.

Animating the execution of a specification of an object-oriented system
requires the dynamic behaviour of the system to be represented explicitly in the
specification. The dynamic behaviour of an object-oriented system may be viewed as

relating to two separate aspects: the system’s functions and objects in the system.

An object-oriented system consists of a set of objects interacting dynamically
to provide the required functionality of the system. To address the function aspect of
the dynamic behaviour of a system, a specification must contain a model which
expresses the dynamic message interactions of objects in the system. A particular
characteristic of the operational approach is its emphasis on constructing a specifiéation
of a system which represents “an operating model of the system functioning in its
environment”, showing the system interacting with its environment (Zave, 1982). The
specification model of an object-oriented system must therefore show the effect of the

environment on the system in terms of external sources of messages to objects in the

system.

Objects in the system may be seen as active entities receiving messages and
responding by manifesting their own behaviour while contributing to the overall
functionality of the system. The dynamic “lifestyle” of each individual object in terms

of the messages the object receives in its life-time forms the second (or life-history)

aspect of the dynamic behaviour of a system and should be recorded in the

103




specification of the system. This aspect of a system’s dynamic behaviour is similar to

entity life modelling mentioned earlier (see Section 4.3) used for modelling the
dynamic behaviour of real-world entities. The function and life-history aspects of an
object-oriented system’s dynamic behaviour need to be captured in detail in order to
facilitate the animation of the dynamic message sending and receiving activities of

objects during an object-oriented system’s execution.

Analysis of Some Existing Object-oriented Methods

Most of the object-oriented methods described in Chapter 3 use state transition
diagrams and data flow diagrams to represent dynamic information about an object-
oriented system. State transition diagrams (STDs) are used to represent the dynamic
behaviour of individual objects over time in the methods OOSA (Shlaer & Mellor,
1988), OMT (Rumbaugh et al, 1991), and that of Booch (1991). But as Graham
(1991) points out, the use of STDs is not practical where a very complex object is
concerned which may have a large number of states. Moreover, the state of an object
may comprise other complex objects; the precise definition of each state that would be
required in order for the STD to be executable is therefore difficult to construct. In this
respect, STDs are not effective for modelling the dynamic behaviour of objects.
Booch and OOA (Coad & Yourdon, 1990) suggest using STDs for representing
method details. Used in this context, an STD is only able to show what se1f or this
messages (Smalltalk and C++ terminology respectively) an object needs to send itself
to execute the method, but not what messages need to be sent to other objects in
collaboration. Moreover, it is difficult to represent any sequencing of message
interactions which Bailin (1989) considers “a necessary concept 1n specifying

operational scenarios of a system”.

Data flow diagrams (DFDs) are used in OOSA, OOA and OMT for different

purposes. Coad & Yourdon (1990) use DFDs in OOA for defining services (i.e.,
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methods). A DFD can implicitly represent message interactions with other objecrts ina
method when interpreted using the strategy proposed by Alabiso (1988) for converting
DEDs into object-oriented designs. It is difficult, however, to represent any
sequencing of these interactions. In OOSA, DFDs are used to denote data flow
between states in STDs, each state having associated actions which an object must
carry out on reaching the state. In this context, DFDs cannot really represent dynamic
object behaviour or details of methods. Coad & Yourdon (1990) make the same
observation and state that OOSA does not really provide any mechanism for
expressing the concept of method. Another problem with OOSA’s use of DFDs
involves identifying which data flow relates to which action for a given state, as each
state can have several actions attached. OMT uses DFDs to model the system structure
in terms of data flow amongst classes. Monarchi & Puhr (1992), however, express
concern about the difficulty of recognising “how an object, behavior or attribute ...
relates to a data flow or data flow process”. A DFD is not, therefore, very useful for
representing the system function aspect of the dynamic behaviour of a system.
Alabiso (1988) provides function design charts in his notation to express the “make up
of Methods (sic)” in terms of message interactions with other objects. However, the

notation does not provide sequencing constructs for representing flow of control.

Explicit representation of method details is provided only in Booch’s method
and the approach of Pun & Winder (1989). Timing diagrams in Booch’s method
depicts the flow of control amongst objects during the execution of a method. Pun &
Winder’s notation includes class specification charts for defining each method in terms
of the sequencing of message sends to attribute objects. Also, object diagrams and
object interaction diagrams respectively in Booch’s and Pun & Winder’s notation
explicitly model the system function aspect of dynamic behaviour in terms of message

interactions amongst objects in a system.




In summary, no single method provides representations for the executable
semantics, and the function and life-history aspects of the dynamic behaviour in an
object-oriented system. Most notably the life-history aspect of dynamic behaviour
described previously cannot be modelled adequately, and hence animation of
specification execution cannot be supported fully by using the notation of any existing
method. A new operational specification notation is needed which addresses equally
the executable semantics and dynamic behaviour in an object-oriented system. The

new notation could also incorporate useful features of some of the existing methods.

4.5 Conclusion

This chapter has outlined the operational paradigm of system development. The
operational approach constructs executable specifications which can serve as system
prototypes, thereby offering the potential to overcome some of the problems associated
with the traditional approach to system development. It is proposed that object-
oriented development could also benefit from an operational approach by using
executable specifications. Different approaches for how this might be achieved have
been considered. It is suggested that a new operational specification notation is
required for specifying object-oriented systems which embodies executable semantics
to enable specification execution, and at the same time represents dynamic behaviour
explicitly so that animation of specification execution is facilitated. The next chapter
discusses how behaviour and executable semantics may be specified using the new
notation, and describes a method for developing operational object-oriented
specifications using the notation. Chapter 6 introduces a tool which has been

implemented to support the method and which can animate the behaviour expressed in

the specifications constructed.
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Chapter 5 Operational Object-oriented Development

5.1 Representation of Dynamic Behaviour and Executable Semantics

Dynamic Behaviour

Atkins & Brown (1991) state that objects are said to exhibit behaviour because an
object can receive messages that invoke “operations which selectively reveal or
manipulate the object’s state”. This object behaviour gives rise to two important
aspects of dynamic behaviour in object-oriented systems — system function and object
life history (see Section 4.4) — which need to be explicitly represented in a

specification to facilitate animation of the specification’s execution.

An object-oriented system’s behaviour stems from the message interactions of
objects in the system. The importance of inter-object behaviour is recognised by other
authors who refer to this behaviour in terms of collaborations (Wirfs-Brock &
Johnson, 1990), responsibilities (Wirfs-Brock & Wilkerson, 1989), contracts (Helm
et al, 1990), and rﬁecharzisms (Booch, 1991); the authors emphasise the description of
the “behavioral dependencies” (Helm et al, 1990) amongst objects in an object-oriented
system, where a client object’s behaviour depends on a server object’s services (1.e.,
messages) (Wirfs-Brock & Wilkerson, 1989). The new notation being proposed
should, therefore, be able to represent behavioural dependencies and client/server
relationships amongst objects. Apart from the object-oriented methods described in
Chapter 3, the notation of other development methods will now be considered as to
their appropriateness for representing this system behaviour. The ‘activity model” in

SADT (Ross, 1976) and the ‘dynamic diagram’ in CORE (Mullery, 1979) resemble
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data flow diagrams in that they are used to show flow of data amongst activities in a

system. Earher criticism (in Section 4.4) against using data flow diagrams for
representing behaviour of object-oriented systems applies to these notations also.
More importantly, a data-flow notation cannot represent explicitly the behaviour
dependencies and client/server relationships of objects. Petri nets (Peterson, 1981)
used for real-time system development describe a system in terms of a set of
transitions representing processing steps or events, and a set of places representing
system states between the transitions. It has been noted in Section 4.4 that state
transition diagrams are not practical for describing the behaviour of complex objects
which may have large number of states (Graham, 1991). A similar problem could
arise in using a petri net to describe an object-oriented system because the net would
have to include places to represent all the possible states of all objects, and any
combinations of these, in the system. Moreover, behavioural dependencies and
client/server relationships amongst objects are not directly represented and will have to
be inferred from the places and transitions in a petri net. Petri nets are therefore not

ideal for modelling the system behaviour of an object-oriented system.

The system function aspect of an object-oriented system’s dynamic behaviour
may be best represented in the new notation, using a network model similar to the
object diagram or the object interaction diagram of Booch’s and Pun & Winder’s
notation respectively. In addition, given the operational emphasis on the specification
reflecting the system functioning in its environment, the model must be enhanced to

include the system’s interactions with its environment in terms of external sources of

message to objects in the model.

The life history aspect of dynamic behaviour relates to individual objects as
independent entities receiving messages over time. Object-oriented methods described
in Chapter 3 which address dynamic behaviour of objects use state transition diagrams

to represent this object behaviour. The limitations of describing object life history in
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terms of state transitions have been diséussed in Section 4.4. Booch (1991) slatés that
“the existence of state within an object means that the order in which operations are
invoked is important”. The life history of an object may alternatively, therefore, be
modelled in terms of the temporal ordering of messages the object receives, similar to

entity life modelling in JSD and SSADM (Ashworth & Goodland, 1990).

Purchase & Winder (1990) consider the ordering of messages received by an
object a vital issue in implementation; they describe a specification mechanism called
Message Pattern Specification (MPS) in the parallel object-oriented programming
language Solve (Roberts er al, 1988) for expressing “legal patterns of run-time
behaviour” for objects as part of a system’s implementation. The specification of a
system, therefore, also needs to address this view of dynamic behaviour of an object,
i.e., as the sequencing of messages an object receives in its life-time. The entity life
history diagram in SSADM and the process structure diagram in JSD could be adapted
for this purpose in the proposed notation, where events and actions of entities and

processes are interpreted as messages of objects.
Executable Semantics

Definitions of methods in an object-oriented system provide the executable semantics
required in an operational specification to enable the specification’s execution. Timing
diagrams used by Booch (1991) and class structure charts in Pun & Winder’s notation
(1989) for representing method definitioﬁs concentrate only on showing the flow of
control in a method as messages are sent to other objects. However, “the action [of a
method] following the message send is a function of the present object state, the
message selector, and its arguments” (Purchase & Winder, 1991). Representation of

method detail of an object in the new notation must therefore provide for all of the

following elements:
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a. the method’s message selector and arguments

b. the effects on/of the state of the object

c. the messages that need to be sent to other objects to help achieve the goal

of the method

d. the sequencing of (b) and (¢) in the method.

SREM (Alford, 1985) — a method for developing distributed real-time
systems — use R-nets to specify ‘stimulus-response’ processing in a system. “Each
R-net specifies the transformation of a single input message plus current state into
some number of output messages plus an updated state” (Alford, 1985). It appears
possible to use an R-net to express the detail of an object method. However, because
SREM has been developed for the procedural paradigm, modifications to the R-net
notation would be required, e.g., to convert ALPHASs which are procedure-calls in an
R-net into message sends and their receiver objects. It has been decided, therefore,
that new constructs for method definition will be built into the new notation instead of
using modified R-nets. In addition, the syntax and semantics of Smalltalk-80 will be
used to provide the formal basis required for the design of the method definition

constructs so that a new grammar for the constructs will not have to be defined.

The new notation and the development process for using it to construct

operational specifications of object-oriented systems are described in the rest of the

chapter.

5.2 The Development Process

The activities of developing an operational specification of an object-oriented system

may be divided into four basic steps:
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1) identify the objects
2) establish the interactions amongst the objects
3) determine the semantics of the objects

4) implement the objects.

These steps look familiar as they have been described in other object-oriented
development methods in various forms; thus, the steps to be described are not
revolutionary. However, the aim of the development method being proposed here is
to construct an operational specification of an object-oriented system; the operational
specification can then be executed and the execution animated. The following sections
describe the activities in each step of the development process, wherein the system’s
executable semantics and dynamic behaviour (discussed in the Section 4.4) are

expressed in terms of a new graphical notation.

5.3 Object Identification

The first step of the process to develop an operational specification of an object-
oriented system is to identify the main objects in the system. These objects represent
the key abstractions in the problem domain: “they give boundaries to our problem; they
highlight the things that are in the system and therefore relevant to our design, and
suppress the things that are outside the system and therefore superfluous™ (Booch,
1991). Although it seems relatively simple, the task of selecting a good set of objects
is not a straight-forward activity, the main reason being that there is no general
consensus on the best way to identify the right objects. Ideally a requirements analysis
will have been completed prior to object identification, during which information
regarding functional and non-functional requirements has been gathered. This
information is then used as a basis for deriving the initial set of objects to be included
in the system. Various methods of analysis have been described in Section 3.2, all of

which may form the starting point for this task. Identifying the right objects is highly
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domain-specific. Goldberg (1984) observes that the “appropriate choice of objects

depends, of course, on the purposes to which the application will be put and the
granularity of information to be manipulated”. It is the policy of the proposed
development method not to offer a single prescription to follow for selecting objects.
It may be advisable and desirable to use a combination of the techniques already
suggested for finding objects. Most would also agree that the task of object

identification still requires a balance of intuition, experience and creativity.

Objects that are derived from analysis will generally be problem-domain or
real-world entities. Thomas (1989) notes that while conducting the analysis, “if the
domain expert talks about it, then the abstraction [or entity] is usually important” and
should be included as an object in the system. Problem-domain objects form the
framework of a model of real-world activities that is independent of the functionality
the system has to provide. This model serves as a basis for communication with the
user, defines the terms for system functionality and implicitly circumscribes a set of
possible functions. Because the model is more stable than the functions, problem-
domain objects tend to be stable and will normally survive any subsequent changes to
the functionality of the system and remain in the architecture of the system. This
principle of modelling reality is shared by the object-oriented paradigm and the
operational approach. Additional objects may also be required which are not
necessarily part of the problem domain but which are essential for the functions of the
system; these extra objects belong to the solution domain. For example, in a bank,
obvious objects in the domain that must be considered are customers, accounts,
deposits and withdrawals. A system for the bank must also take 1nto account other
objects such as a database object to store information about customers and their
accounts. Stroustrup (1986) suggests that after a set of objects has been selected, the
decision to include them must be evaluated by asking questions such as: “How are
objects of this class created ? Can objects of this class be copied and/or destroyed ?

What operations can be done on such objects ? If there are no good answers to such




questions, the concept probably wasn’t ‘clean’ in the first place, and it might be a good

idea to think a bit more about the problem and the proposed solution instead of

immediately starting to ‘code around’ the problems”.

When a set of objects has been obtained, it is necessary to decide on the level
of abstraction of each; for example, some objects may become the child objects of
others. As more details of the system are developed, examining the pattern of
interactions amongst objects and implementing an object may suggest improvements or
changes to the boundaries of objects, or expose other objects required in the system.
New objects identified as a result of implementing higher abstraction objects are less
likely to be problem domain entities and exist solely to support the functionalities of

more abstract objects.

The product of the object identification step 1s a list of candidate objects that
should be implemented in the system. At the highest level of abstraction, the objects
identified are recorded in the notation using an object interaction diagram; the object
interaction diagram is used to specify the system function aspect of an object-oriented
system’s dynamic behaviour in terms of the message interactions of the system’s
objects (at the highest level of abstraction). In the object identification step, the object
interaction diagram contains only a group of objects that form the framework of the
system; interactions amongst the objects are added in the diagram in the next step in the
development process. Objects belonging to lower abstraction levels and which form
the attributes of other objects are recorded in object attribute diagrams of their
respective parent objects. Object attribute diagrams are used in the third step of the
development process (described in Section 5.5) when the detail of each object is

determined. Objects are represented in an object interaction diagram by the following

symbols (Figure 5.1):
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(a) (b)

Figure 5.1 Object symbols used in an object interaction diagram.

(a) 1s used to represent a single object, and (b) represents two or more similar objects.
For example, consider a library system consisting of books, members, and the library
itself. The objects present would be a 1ibrary object and multiple membe r and book

objects, which will appear in an object interaction diagram as shown in Figure 5.2.

SRS ENC)

Figure 5.2 Objects in a library system’s object interaction diagram.

5.4 Establishing Object Interactions

“An object by itself is intensely uninteresting. Objects contribute to the behavior of a

system by collaborating with one another” (Booch, 1991). The second step in the

development process is to determine the message interactions — using relationships —
amongst the objects in the object interaction diagram created in the previous step,
which involves deciding what objects an object may send messages to. The message
interaction relationships define the structure within which objects work together to

provide the system behaviour that would satisfy the requirements of the problem.

An example of such a structure housing and regulating object interactions 1s
the graphical user interface mechanism used in the Smalltalk-80 programming system
known as the Model-View-Controller (MVC) paradigm (Krasner & Pope, 1988). In

this paradigm three main objects cooperate with each other to produce an image in a

window: a controller, a view, and a model whose detail is to be displayed in the view.
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The controller sends messages to its view and model objects when. it receives
instructions (e.g., through menu selections or mouse button input) to display contents
of the model in the view or to initiate changes to the model. The view also sends
messages to the model to obtain the relevant information for creating an image to be
displayed. However, the model object is entirely decoupled from both the controller

and view and cannot send any message to them directly.

Obviously, the structure of a system could have different configurations,
where objects may be connected in different ways to produce the same functionality of
the system; a design decision has to be made as to the most suitable form this structure
should take. Once a particular structure is chosen, “the work is distributed among
many objects” (Booch, 1991) by defining the protocol of these objects to include the
appropriate messages required to achieve the functions of the system. Establishing the
message architecture of the system first helps to facilitate the next step in the process of
defining the semantics of objects by suggesting the messages that need to be included

in the protocol of the appropriate objects.

The system’s interactions with its environment also need to be considered at
this point, in terms of which objects can receive messages directly from the system’s
environment. These messages must also be provided in the objects’ protocols. Thus,
the object interaction diagram serves as a model of the system operating within its
environment. When an interface object receives a message from the system’s
environment, the object’s processing may result in messages being propagated to other

objects throughout the system’s structure.

Results from requirements analysis could facilitate the process of determining
visibility relationships amongst the objects in an object interaction diagram. How this
proceeds depends on the particular analysis method used. Abbott (1983) suggests

using verbs appearing in an English description of the problem to identify message




interaction between objects; e.g., the statement “a member borrows a book from the

library” would suggest an interaction between the objects member and library. In
data flow diagrams produced from Structured Analysis, processes can also suggest
message interactions. Using object-oriented analysis methods (some of which are
described in Section 3.2) should simplify the task of identifying message interactions

as they address the different relationships between objects in the problem domain.

The structure of message interactions amongst objects is expressed in an
object interaction diagram as a network in which the objects communicate via message
channels. Each message channel is unidirectional and carries messages from its sender
object to its connected receiver object. A message channel is shown as a directed arc
indicating the direction of flow of messages, with a small rectangle appended to it,
denoting an unspecified message being sent along the channel. An object which
interfaces with the problem environment is identified by attaching an external entiry
object to the object; the external entity provides environment input to the system by
sending messages to its linked object. External entities are represented by shaded
object symbols to distinguish them from system objects, and to signify that internal
details of external objects are not required to be defined. Each external entity in an
object interaction diagram has the same name as the system object to which it is linked.
The MVC example described previously could be represented as shown in Figure 5.3.

The figure shows an example in which the model receives messages from one

controller and view! :

' In Smalltalk more than onc controller and view pair can share the same model object, cach concerned
with a different aspect of the model.
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Figure 5.3 Object interaction diagram for the MVC paradigm.

5.5 Determining Object Semantics

Having established the topology of object message interactions in the system, the next
step in the development process is to determine the detail of each object in the object
interaction diagram. The activities required in this step include building the parent-
child hierarchy of each object, and composing the protocol of the object. As described
in Section 2.2, the parent-child hierarchy describes the containing relationships of an
object with its attribute objects in its state. Attribute objects collectively describe the
characteristics of the object and contribute to the functionality of their parent object; the
parent object is, therefore, an abstraction of its attribute objects. For example, a car
object would contain attribute objects such as wheels, steering, engine, etc. The
use of an object-oriented analysis method such as Coad & Yourdon (1990, 1991)
would undoubtedly facilitate this activity of determining object semantics as the
characteristics of an object identified during the method would suggest appropriate

object attributes.

A metric which could help in constructing the parent-child hierarchy 1s
cohesion, which “measures the degree of connectivity among the elements of a single

module” (Booch, 1991) — in the object-oriented paradigm, a module and its elements

117




correspond to a parent object and its state objects respectively. Booch considérs the
least desirable form of cohesion to be coincidental cohesion, in which completely
unrelated abstractions are contained in an object; as an example of a badly constructed
parent-child hierarchy, consider an object containing attributes such as
numSunWorkstations dand carRegistration which do not seem to describe any
coherent concept/abstraction. Functional cohesion, in Booch’s opinion, is the most
desirable, in which the attribute objects would all cooperate to provide the required
behaviour of their parent object. Perhaps another relevant form of cohesion associated
with an object would be descriptive cohesion whereby each attribute describes a
characteristic of its parent object, e.g., attributes such as name and address describe a
person object. The process of abstraction (see Section 2.2) must be applied here so
that only the attributes relevant to the central purpose of an object in the system should
be considered. For example consider a 1ibraryMember object; an attribute such as
religion 1s of no interest to a library system and should not be included in the

libraryMember Object’s parent-child hierarchy.

All objects in an object interaction diagram are ‘colleagues’ at the same level
of abstraction. When an object in the diagram needs to send messages to another
object in the same diagram, the sender object needs to be aware of the identity of the
receiver object. The receiver object in this case does not conceptually form a part of
the state of the sender object, but is an object with which the sender object has a close
association. An object remembers the identities of its colleagues as part of its state;
hence, an object’s state contains the identities of other objects it needs to communicate
with, as well as the object’s attributes. Thus, it is necessary to include in an object’s
parent-child hierarchy the identities of objects to which the object is connected by

message channels.

In designing the representation of an object, a knowledge of existing classes

is important as “they serve as more primitive classes and objects upon which we




compose all higher level classes and objects” (Booch, 1991), and hence could
influence how we choose to represent the state of an object. The object-oriented
process 1s, therefore, not strictly top-down as explained in Section 3.1. Wirth (1986)
also states that “the choice of representation is often a fairly difficult one, and it is not
uniquely determined by the facilities [1.e., existing classes) available. It must always
be taken 1n light of the operations that are to be performed”. Keene (1989) mentions a
/common dilemma of deciding either to store an attribute value or to compute it using
other values. He illustrates this problem using the example of a cone object with the
attribute volume, and asks whether volume should be stored as an attribute value in
cone’s state, or whether its volume should be calculated using the height and radius
attributes of the cone. In such situations, the choice between time and space efficiency
needs to be made. There are also trade-offs between containing relationships and
using relationships. “Containing rather then using an object is sometimes better
because containing reduces the number of objects that must be visible at the level of the
enclosing object. On the other hand, using is sometimes better than containing

because containing leads to undesirable tighter coupling among objects. Intelligent

engineering decisions require careful weighing of these two factors” (Booch, 1991).

Object Definitions

An object attribute diagram is used to represent the parent-child hierarchy of an object,
revealing the underlying structure in the object consisting of its state objects and 1ts
colleagues with whom it communicates via message channels. An object attribute
diagram is useful in highlighting additional objects that are needed in the systems and
which therefore need to be investigated further. An object’s attribute diagram is also
required in the next step in the process, when a class definition for the object must be
determined and implemented if an existing class cannot be found which provides the
required implementation. All child objects appearing in the object’s state in its attribute
variables in the class definition. A rectangle connected to the

diagram become instance
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object s used to denote the encapsulated state of the enclosing object containifng 1ts
attributes. In the MVC example described earlier, the object attribute diagrams of the
controller and view objects may be represented as shown in Figure 5.4. The
multiple object symbol is used in each case to indicate that the controller and view
objects may contain numerous menus and subviews respectively. A multiple object
symbol in an object diagram indicates that the class implementing the object will
necessarily use a Collection object (e.g., Array, Set, €tc) as an instance variable of

the class.

cantroller view

) @ @) |

Figure 5.4 Object attribute diagrams of controller and view.

The second activity of composing the protocol of an object involves
identifying the set of messages which may be sent to the objec; and the operations that
may be performed on the object. The different analysis methods mentioned in Section
3.2 each suggests a different approach to message identification. Lippman (1989) and
Booch (1991) suggest different ways of categorising the types of operation on an
object (see Section 2.2); considering each of these categories would suggest some of
the basic messages which should be included in the object’s protocol. Pun & Winder
(1989) observe that although -functional decomposition from Structured Design is often
dismissed in relation to object-oriented methods, functionally decomposing messages
could often help to uncover further messages that are needed in an object’s protocol;
messages thus derived would probably be ‘private’ messages (Smalltalk-80

terminology) that are used only for the implementation of other messages. Also,

120




studying an object interaction diagram and deciding what messages may be sent to an

object on each in-coming message channel is a useful way of working out the object’s

protocol.

Object Life Histories

As the system receives input and executes its function, objects in the system are
involved in receiving messages and then progressing through the phases in their own
life history. In the notation, the life history of an object is represented using an object
life history diagram. The life history aspect of dynamic behaviour in an object-
oriented system is therefore represented by the object life history diagrams of the
objects in the system. In their analysis method Coad & Yourdon use determination of
entity life histories to help in identifying messages that apply to entities. Booch
suggests writing a script for the life of each object starting from creation to destruction.
Working out the life history of an object with respect to the order of messages that may
be sent to it, therefore, is useful in identifying any missing messages that make up the
life of the object. The object’s life history could also help to clarify the contents of
messages in the next development step when each object and its messages are

implemented by a class and methods in the class.

Like entity life history diagrams and process structure diagrams in SSADM
and JSD, an object life history diagram consists of three basic elements: sequence,
iteration and selection. A sequence is composed of a list of messages which must be
sent to the object in the strict order they appear in the sequence, without any
backtracking or repetition. An iteration is a sequence which may be repeated an
unspecified number of times, or not occur at all. A selection, on the other hand, is a
group of messages which are mutually exclusive, i.e., only one message in the group
may be sent to the object. An object life history diagram is a tree structure with

messages as its leaves and the object it describes at the root. The main branch(es) of a




life history tree form a sequence ordered from left to right; this sequence could of
course, for example, contain a single message, iteration or selection. Messages are
denoted by rectangles, each containing the selector (or name) of the message.
Iterations and selections are represented as subtrees; the root of a subtree is a rectangle
annotated by the symbol “*” or ‘O’ (an upper-case letter o) indicating an iteration or a
selection respectively. A sequence may include iterations and selections if required
conceptually to reflect the life of the object the sequence describes; similarly, an
iteration could contain selections and other iterations. Figure 5.5 is an example of a

valid object life history diagram.

Figure 5.5 An example object life history diagram.

The sequence of the life history of object exampleobject consists of the message a,
an iteration, a selection, and the message i. The iteration in the sequence contains the
message b, a selection (of messages c or d) and an iteration (of messages e and f£).
The selection in the sequence comprises the messages g and h. Two possible
sequences of messages received by the object exampleObject may be (a, b, d, e, £,

e, f,qg,1)and (a, h, i).

A selection can also contain iterations and other selections. The only
restriction on a selection containing a selection subtree is that the subtree should not be

connected directly to the higher-level selection (e.g., Figure 5.6 (a)); this is because a




directly connected selection subtree is redundant as its alternatives could become the

options in the higher-level selection as illustrated in Figure 5.6 (b). The selection

subtree (a) may be replaced by the simpler description in subtree (b).

b] [

(a) (b)

Figure 5.6 Simplifying selection in object life history diagram.

As an example, consider the life history of a 1ibraryBook object in Figure
5.7 which may be compared with the JSD process diagram in Figure 4.3. Notice that
the actions out Circulate and Deliver in the JSD diagram have been omitted. This
omission has happened because in JSD each action is regarded as atomic, but this
restriction does not apply in this development method; the implementation of the
message swapScheme is considered to involve sending the messages outCirculate

and deliver to the libraryBook object.

acquireJ Elassifyj

lendJ * ” returnJ‘ swapScheme l sell

i renew l

Figure 5.7 Object life history diagram of a libraryBook.

Certain messages are not constrained by the order in which they are sent to an

object; such messages are usually inquiry messages used to obtain information about




the object and do not contain the side effect of altering the state of the object. These

unconstrained messages therefore are not included in the object’s life history diagram.

Three metrics may be considered in relation with constructing the protocol of
an object: sufficiency, completeness, and primitiveness (Booch, 1991). An object is
sufficient if it possesses enough messages in its protocol to allow meaningful and
efficient interaction, otherwise it is useless. Consider a stack object which can
receive the pop message for removing the stack object’s top item; the stack object’s
protocol would be adequate only if a push message is also included in the protocol so
that items may also be added to the stack. To be complete, an object must have a
protocol which provides all messages meaningful to the object. Sufficiency implies a
minimal protocol, whereas a complete protocol must be general enough so that the
object would be generally useful to any client. However, in the latter case, the object’s
protocol can become unnecessarily complicated if every conceivable message is
included. Moreover, the operations of some complex messages may sometimes be
achieved by using several more primitive messages, in which case these complex
messages may be left out of an object’s protocol. The third metric, therefore, suggests
that primitive messages only should be included in an object’s protocol. Primitive
operations are those which can be implemented only by having access to the state of an
object. For example, the push message of a stack object is primitive because it needs
to manipulate the state of the stack. On the other hand, a message push4Items to
add four items onto the stack 1 obviously not primitive since its purpose may be

achieved by sending the push message four times.

5.6 Implementing Objects

When the semantics of objects have been established, these object details must be
implemented as classes since each object is an instance of a class. An object may be

instantiated from an existing class present in the target environment (either a pre-
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defined class provided in the environment, or a user-defined class implemented earlier)

which provides the required definition for the object’s state and protocol. If no
suitable class can be found, a new class definition has to be created for the object. The
issue of inheritance must be considered since each new class must be defined as a
subclass of an existing one. Johnson (1988) observes that “software reuse does not
happen by accident, even with object-oriented languages. System designers must plan
to reuse old components and must look for new reusable components”. When creating
a class, existing classes must be examined to see if a suitable superclass can be reused;
otherwise, it may be necessary for a new inheritance chain to be constructed to
accommodate the new class. Effort must be made to design an inheritance structure
that would be useful for future reuse; abstract classes could be used to abstract useful
features that are likely to be inherited. Pun & Winder (1989b) describe a manipulation
process called “inheritance factorisation”, based on formal algebra, which could help
in the design of a class hierarchy by suggesting inheritance relationships and abstract

classes required by new classes.

An inheritance hierarchy may be wide and shallow, narrow and deep, or
balanced (Lea, 1988). Lea comments that a wide and shallow structure contains a
majority of free standing classes that can be mixed and matched, while a narrow and
deep structure contains classes that are related by common ancestors. There are
advantages and disadvantages to either approach. Free standing classes represent
loose coupling, but they may not exploit all the commonality amongst the classes. On
the other hand, classes that are closely related do exploit commonality, but in order to
understand a particular class, it is usually necessary o understand the meaning of all
the classes it inherits from. The appropriate shape of a class structure is highly
problem-dependent. Consideration must also be given to the use of inheritance versus
the containing relationship. For example, should the class car inherit or use the
classes Engine and wheel 7 In this particular instance, it may be obvious that the

containing relationship would be more appropriate where instances of Engine and




wheel form part of the abstraction of a car. Meyer (1988) suggests that between two
classes a and B, “inheritance is appropriate if each instance of B may also be viewed as
an instance of A. The client [containing] relationship is appropriate when every

instance of B simply possesses one of more attributes of a™.

Class Definitions

A class is defined using a class definition diagram. As described in Section 2.2, a
class’s definition comprises both its instance variables and protocol, and its class
variables and protocol; these two sets of information are contained in two separate
diagrams — an instance variables and protocol (IVP) diagram and a class variables and
protocol (CVP) diagram — that together compose a complete class definition diagram.
An IVP diagram shows a class’s instance variables and messages, while a CVP
diagram displays its class variables and messages. The IVP and CVP diagrams of an
example stack class is shown in Figure 5.8. In the IVP diagram, the stack class 18
denoted by a double circle which distinguishes it from an instance object, and
represents a template from which its instances are instantiated. The instance variables
stSpace, stLength and maxStLength are represented in the same way as state
objects in an object attribute diagram; a rectangle connected to the stack class symbol
encapsulates the instance variables denoted by single object symbols. Each instance
message is shown as a small rectangle containing the selector of the message, e.g.,
push:, pop and top, and these are located outside the‘encapsulation enclosure of the
instance variables. The clear segregation of the messages from the instance variables
shows that the messages form the shared visible interface of the instances, while the

instance variables are the protected details of the instances.

Inherited variables and protocol form an integral part of a class’s definition.
An IVP diagram shows this ancestral detail by including the class’s immediate

superclass in the diagram. The superclass is represented by a class symbol above the




class, and the inheritance relationship between them is denoted by an arrow from the
class to its superclass. Wilson (1990) suggests it is important that the direction of an
arrow representing an inheritance relationship should signify that the subclass is
referring to the definition of its superclass, not vice versa, and the existence of the
subclass 1s anonymous to its superclass. Figure 5.8 shows that stack 1s a subclass of

Object.

A CVP diagram is represented in the same format as its IVP counterpart. The
CVP diagram of stack in Figure 5.8 shows that it has one class message

(newStack:) but contains no class variable.

bjec

se st:th rnaxgth

lstSetUp :J[exception : ] [ push: ]rtopJ

[ isEmpty ]rpop Jl—length ]

instance variables and protocol (IVP)
diagram

class variables and protocol (CVP)
diagram

Figure 5.8 Class definition of class stack.

For each class, only the immediate superclass is shown in its class definition
diagram to avoid complexity. A separate class inheritance diagram is required to show
the total inheritance chain of a class, leading from the class itself through all its
superclasses to the root of its inheritance chain — the class object. Object 1s the

superclass of all other classes, and provides the basic default behaviour common to all
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objects, such as instantiation, copying and printing. The class symbol is used to
denote each class in the inheritance diagram, and an inheritance arrow links each
subclass to 1ts superclass in the chain. Because inherited characteristics are not
enumerated in class definition diagrams, the class inheritance diagram serves as an

important guide to accessing the full definition of a given class.

Method Definitions

The message in each class definition must be implemented by a method. A useful
guideline for the definition of a method is provided by the Law of Demeter, which
states that “the methods of a class should not depend in any way on the structure of
any class, except the immediate (top-level) structure of their own class. Further, each
method should send messages to objects belonging to a very limited set of classes
only” (Sakkinen, 1988). The aim of this rule is to encourage creating classes that are
loosely coupled so that understanding the characteristics of a class is not dependent on
knowing the details of other classes. Classes are also more robust and easier to

modify as their implementation details are encapsulated.

It is sometimes necessary to decompose a complex method and contract out
behaviour to one or more other methods. Spreading behaviour across several methods
leads to a more complicated class protocol, but the methods are simpler. On the other
hand, if a single monolithic method is used, a more complicated method may result
while keeping the protocol of the class simple. Meyer (1987) observes that “a good
designer knows how to find the appropriate balance between too much contracting,
which produces fragmentation, and too little, which yields unmanageably large

modules”.

Working out the meaning of a method may result in a better understanding

about the life history of objects of a class, so modification to the life history of objects




may be necessary. This may in turn uncover more messages required in the object’s

protocol which will need to be implemented in the object’s class. During the
implementation of a class, it is necessary to determine the set of classes the class uses.
The instances of this set of classes make up the state of each instance of the client
class. Unless the state objects are trivial and may be instantiated from available
classes, the steps of the development process must be repeated at this point and applied
to designing the details of these state objects. The process is therefore highly iterative
and stops only when all the objects and classes of the system have been discovered

and implemented by existing classes.

A method is defined in the notation using a method definition diagram, which
contains the executable semantics in a specification. The structures and semantics of
constructs used in a method definition diagram are based on the Smalltalk-80
language. A method definition diagram consists of a declaration section in which
formal parameters and local variables required in the method’s definition are declared.
There are three types of message: unary, binary and keyword. Formal parameters in
binary and keyword messages are variables which contain references to actual
parameter objects; each formal parameter is denoted by an object symbol. A unary
message does not need any parameter, an example being the pop message of a stack
object. A binary message takes a single parameter, and is composed of one or two
non alphanumeric characters; examples for number objects are +, -, <=, etc. A
keyword message requires one or more parameters. The selector (name) of a keyword
message consists of one or more keywords, each preceding a parameter; each keyword
is an identifier with a trailing colon. An example keyword message for the stack
object is push: 30, which adds the number 30 to the stack. The three types of

message are represented in the following format in their method definition diagram

(Figure 5.9):




(-6

Figure 5.9 Examples of unary, binary and keyword messages.

Local (or temporary) variables required in a method definition are declared in
a similar manner to instance variables in a class definition diagram. Local variables are
represented by object symbols enclosed in a rectangle connected to the message
representation in the declaration section of the method definition; the rectangle shows
that the variables it contains are private to the method. Not all local variables that may
be required in a method could be known when the method is first declared. When the
details of the method are developed, the local variables needed will emerge and can be
added to the declaration as they appear. As an example, consider an initial declaration

of the method for the instance message push: belonging to class stack (Figure 5.10):

Figure 5.10 Declaration of the push: message.

A formal parameter item is required to refer to the actual parameter object to be added

to a stack object; at this stage, no local variable is known yet.

In each method, messages are sent to other objects and/or other classes to
carry out its task. Objects and classes are represented by their usual symbols in a
method definition diagram. Other objects that may appear in a method definition
include literal objects and objects referred to by variables. Literal objects are constant
values and are represented by literal expressions. The set of literal objects supported
are character, string, symbol, number, and array. Explanations and examples of each

class of literal object are given below (Figure 5.11).
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literal values indexed by
integers from 1 to the size

of the array

Class Explanation Literal expression
Character - a symbol of an alphabet |- denoted by a dollar sign
e.g. $a $1 S$A 83
String - a sequence of characters |- delimited by single quotes
€.g. ‘hello world’
Symbol - a string used as a unique |- preceded by a hash sign
name €.g. #statusOK #M6
Number - a numeric value €.g. -3 54
Array - a data structure containing | - delimited by parentheses and

preceded by a hash sign
- each pair of literal values
are separated by a space
e.g #(1 ‘Me’ SA)
- an array containing a
number, a string, and
a character
#('a’ (-123) #open)

- an array

containing another array

at index 2

Three basic types of statement make up the definition of a method: message
expressions, assignment expressions, and return expressions. A message expression
refers to a message send and its receiver. A message expression is represented by
connecting the message (and any parameters) 1o the object with a vertical line (see
Figure 5.12). A variable is made to refer to an object via an assignment expression,
which is denoted by an arrow linking the assigned value (an object) to the variable (see
Figure 5.12). The object being assigned may be derived by one of three ways: it may
be a literal object or another variable, or a message expression. The result of a
message send is always an object; the receipt of a return value from a message

expression indicates to the message sender that the response of the receiver is

complete.

Figure 5.11 Different classes of literal object provided.




Return
(:)[::j<:> expression

Message

expression (:)
Assignment
expression

Figure 5.12 Examples of a message expression, an assignment expression, and a

return expression.

Some messages are meant only to inform the receiver about something, e.g.,
the stack object message push: 30 to add the number 30 to the stack object; in such
cases the values of message expressions are not significant. On the other hand, if the
sender is expecting a specific response from sending a message (e.g., the message top
to return the top object in a stack), the method of the receiver needs to include an
explicit return expression to return the correct object. If a return expression is missing
in the method of a message, some default value will be returned automaticaily. A
return expression is denoted by preceding the return value with a vertical arrow (see

Figure 5.12). The return object may be derived in three ways:

— aliteral object or the object referred to by a variable
— the value of a message expression

— the assigned object of an assignment eXpression.

Another type of variable exists in Smalltalk-80, known as a pseudo-variable.
A pseudo-variable differs from a normal variable in that its value cannot be altered by
an assignment. Some of these pseudo-variables are constants, i.e., they always refer
to the same objects; important examples are nil, true and false, which refer to the
default nu11l object and the Boolean objects. The other pseudo-variables have values

that change depending on their contexts; examples are self and super. The variable

—
U8}
8]




self always refers to the message receiver object executing the message’s method in
which self appears; therefore, in different invocations of the same method by
different receivers, self refers to a different object in each instance. super also refers
to the message receiver in a message’s method, except that a message sent to super
causes the search for the message’s method to start in the immediate superclass of
super’s class. Both kinds of pseudo-variables are supported, and are represented

using the object symbol as shown in Figure 5.13:

SRCRORCHT

Figure 5.13 Pseudo-variables.
Control Structures and Blocks

A control structure determines the order of execution of statements in a method. The
basic control structure is sequential in which statements are executed in sequence from
left to right in the method definition diagram. Non-sequential forms of control are

provided using blocks.

A block is an object which represents a sequence of statements. When
execution reaches a block object, the statements contained in the block are not executed
immediately (i.e., the execution is deferred); the statements are evaluated only when
the block object is sent the unary message value. The result returned from sending
the value message to a block is the value of the last statement in the block’s sequence;
an empty block will return the nil value. Like other objects, blocks may be assigned
to variables; the only restriction is that a block must be assigned to a variable before a
message can be sent to it. A block is represented in a method definition diagram by the
symbol T 1delimiting any statements the block contains, instead of the usual
object symbol. Figure 5.14 shows an example block object containing a message

expression, an assignment expression, and a return expression.
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Figure 5.14 Example of a block object.

Two forms of non-sequential control structure are provided: conditional
selection and conditional repetition. Conditional selection is similar to the
if...then...else statements of languages such as C and Ada, and is provided by
the messages i fTrue:ifFalse:, ifFalse:ifTrue:, ifTrue: and ifFalse: $entto
the Boolean objects true and false; all these messages use block objects as
arguments. Figure 5.15 shows the message ifTrue:ifFalse: being sent to a
Boolean object referred to by the variable booleanobject. Conditional repetition is
similar to the while and until statements in those procedural languages. Conditional
repetition is achieved by sending the messages whileTrue:, whileFalse:,
whileTrue, whileFalse and repeat to a block object, with a second block as
argument if required. A block receiver of a conditional repetition message must

contain statement(s) which evaluate to a Boolean object.

l h fFalse: [ |

O

Figure 5.15 Example of sending the ifTrue:ifFalse: MESSALE to @ Boolean object.
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As stated earlier, a restriction on a block object is that it has to be assig}led to
a variable before a message may be sent to it. An example of using the whileTrue:
message in a method definition diagram is shown in Figure 5.16, in which a block
object is first assigned to the variable variableBlock before the message

whileTrue: 1§ sent to the block.

lock wvariabpleBlock

| whileTrue:l l

O O

Figure 5.16 A block assignment and sending the whileTrue: message to the block.

To illustrate the definition of a method, the instance message push: of the
class stack is declared and defined using the method definition notation introduced,
based on the stack class definition shown in Figure 5.8. The instance variable
stSpace uses an Array object to store the contents of a Stack object. maxStLength
and stLength are Integer objects indicating the size of the stSpace array and the
current number of items on the stack respectively. In the push: method (Figure 5.17),
the conditional selection message ifFalse: is used to add the item object onto a

stack object only if the stack object 1s not already full.
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max gth alse: 1
st
= st..

Figure 5.17 Method definition for push:.

5.7 Example

To illustrate the use of the notation introduced in the preceding sections, an example

specification of an automobile cruise control system is described below.

Brief Problem Definition

The driver of a vehicle normally monitors the speed of the vehicle by checking the
reading on the speedometer and moving the accelerator to keep the vehicle’s actual
speed close to a desired speed. The cruise control system performs this task for the

driver by automatically maintaining the vehicle at the requested speed.
The cruise control system can operate when the vehicle’s engine is switched
on. When activated, the system stores the current speed as the desired cruising speed

and maintains this speed by monitoring the speed shown on the speedometer and then
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setting the throttle to the required position. While cruising, the driver can instruct the
system to accelerate, then stop accelerating and use the current speed as the new
cruising speed. The driver can deactivate the system directly to stop cruising;
switching off the vehicle’s engine also has the effect of deactivating the system. The
driver can also use the brake to temporarily disable cruising and slow down, and then

request the system to resume cruising once the target speed is reached.
Specification

The first task is to identify the main objects and their interactions. The obvious objects
that can be pinpointed so far from the problem description are the cruise control
system, the engine, the speedometer, the brake and the throttle. The cruise control
system needs to send messages to the throttle and speedometer to set the throttle
position and to enquire the current speed respectively. The cruise control system also
needs to send messages to the engine to check if it is switched on before cruising can
operate. The engine and brake need to send messages to the cruise control system to
inform the latter when the engine is switched off (and so cruising, if in operation,
needs to be disabled), and when the driver is braking. These objects and their

interactions are recorded in an object interaction diagram (Figure 5.18).

cruiseControl




Next, the driver’s interactions with the system is determined to identi:fy the
interface objects. The driver can activate and deactivate cruising, and can instruct the
system to accelerate or stop acceleration; the engine can be turned on and off, and the
user may use the brake to slow down. Therefore, the interface objects are
cruiseControl, brake and engine, each of which has its own external entity in the

object interaction diagram in Figure 5.18.

Each object in the object interaction diagram has to be defined using an object
attribute diagram and an object life history diagram. In examining the detail of the
cruiseControl object, it is obvious that it’s colleague objects are speedometer,
engine and throttle. Other objects required in the state of cruiseControl would
include status and desiredspeed. These objects are shown in the object attribute

diagram of cruiseControl in Figure 5.19.

crulseConjtrol

% deseed sp er te

Figure 5.19 Object attribute diagram of the cruiseControl object.

The cruising function of the cruiseControl object may be activated and
deactivated repeatedly; the life history diagram of cruiseControl shown in Figure
520 describes this with an iteration of the messages cruise and stopCruise. While
cruising, cruiseControl may be instructed to accelerate and then stop acceleration an
infinite number of times; this 1s represented by an iteration of the messages
accelerate and stopA;celerate within the first iteration (of cruise and

stopCruise). On receiving the accelerate message, cruiseControl must first
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disable cruising, hence the stopCruise message follov;/ing the accelerate me%sagc.
When instructed to stop accelerate, cruising must again be enabled so that the current
speed is used as the desired speed, hence the cruise message following
stopAccelerate. The behaviour of the brake object may cause cruiseControl to
stop acceleration or disable cruising depending on its status. When the driver wishes
to resume cruising, cruiseControl would start its operation after stopCruise or

stopAccelerate.

cruiseControl

stopCruise

{accelerate] [stopCruiseI lstopAccelerate] Eruise]

Figure 5.20 Life history diagram of the cruiseControl object.

Both the child objects status and desiredspeed can be implemented by the
pre-defined Smalltalk-80 classes symbol and Integer and so do not need to be
defined further. Colleague objects throttle, engine and speedometer would
require definition with respect to their states and life histories. When all the system
objects in the object interaction diagram have been defined, the next task is to
determine the class implementation of the objects. The cruiseControl object cannot
be implemented by an existing class in the Smalltalk-80 library; a new class

CruiseControl needs to be defined for its implementation. Figure 5.21 shows the

IVP diagram of the class definition of CruiseControl.




Crof ol

cruise stopCruise accelerate stopAccelerate
braking resume speedometer:trottle:engine:
status

Figure 5.21 Class definition diagram of the class CruiseControl.

The instance protocol of the class includes a message to initialise the identities of the
COHCague(ﬂﬁects(speedometer:throttle:engine:),and[helﬂessagGScruise,
stopCruise,accelerate,stopAccelerateandkmaking,ew. Each message 1s

implemented by a method. Figure 5.22 shows the method definition diagram for the

method cruise.
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Figure 5.22 Method definition diagram of the method cruise.

The method first checks that the engine is switched on. The current speed is then used
as the desired speed to calculate the required throttle setting. The throttle is then set to

the required value to maintain the desired speed.

5.8 Summary

An operational specification notation for object-oriented systems has been introduced
and the development process for using the notation has been described. A tool is
required which can not only facilitate the graphical input of specification diagrams, but
more importantly, must be able to execute a specification and also animate this

execution. Chapter 6 describes the implementation of this tool to support the

development process.
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Chapter 6 Tool Support for Operational Object-oriented

Development

6.1 Introduction

A tool has been implemented to support the operational approach to object-oriented
development discussed in the previous chapter. The implementation has been carried
out using the Smalltalk-80 programming language (version 2.5). The two main

objectives of the tool are:

— to support the building of operational specifications of object-oriented
systems, using the graphical notation introduced in the last chapter
— to execute a system described by an operational specification generated

with the tool, and to animate the system’s behaviour.

Two main components make up the tool and perform its two functions: the
editor and the interpreter. The editor facilitates the input of the various diagrams that
comprise a specification. As the elements of the specification’s diagrams are added,
internal data structures representing the details of the specification are gradually
constructed. When a specification 1s complete (or partially complete), the interpreter
may be invoked which can access the data structure representation of the specification
and then animate the behaviour of the system graphically using the diagrams of the
specification, while the system is executed. Execution of a system and the animation of

its behaviour is described in Section 6.5.
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6.2 The Editor

The editor provides a WIMP interface for the graphical input of specification diagrams
based on the MVC paradigm of the Smalltalk-80 system. Each type of diagram is
created using its own view (window). The controller for each view provides context-
sensitive pop-up menus for selecting editing functions to be performed on a diagram.
Depending on the position of the cursor in a view, different pop-up menus are opened
to show the relevant operations that may be performed with respect to the element in the
view’s diagram selected by the cursor. The controller classes used by the editor are
implemented as subclasses of the class boubleScrollController! which enhances
the scrolling facility provided by the Smalltalk-80 class scrollController by
allowing scrolling to be performed on a view in the horizontal as well as the vertical
direction for large diagrams. The editor is implemented as a group of controller and
view class pairs used for creating the windows for specification diagrams; these classes

include:

e SpecificationController and SpecificationView

* ObjectLifeCycleController and ObjectLifeCycleView

° SystemObjectController and SystemObjectView

e ClassDefinitionsController and ClassDefinitionsView

» MessageExpressionsController and MessageExpressionsView.

The following sections give a brief overview of how each type of specification

diagram is created in its view.

! This class has been implemented by Colin Lewis.




Object Interaction Diagrams

A specification view is used for creating an object interaction diagram of a
specification. In this view a system object or an external entity is added to the diagram
by selecting the 0pti0n add single system object (Or add multiple system
object), or the option add external entity respectively in the specification menu
in an empty area in the diagram. The user is prompted for the name of the object or
entity with a Fi11InTheBlank dialog box. The cursor then adopts the form of an
object symbol or an external entity, with the shape of a hand over the symbol — a
mobile symbol cursor. The mobile symbol cursor is used by the user toc move the
symbol around in the view. The symbol is placed in the diagram when the user clicks
the mouse button at the desired location. Figure 6.1 shows examples of the mobile
symbol cursor for the object cruiseControl and its external entity, and Figure 6.2

shows a specification view and its pop-up menus.

cruliseControl PrglseControl

(a) (b)

Figure 6.1 Mobile symbol cursor for (a) an object and (b) an external entity.

An external entity is connected to its system object by selecting the external
entity and then the option connect object in the external entity menu. The
connecting line leading from the external entity follows the movement of the cursor
until the user clicks the mouse button to indicate the system object; if a system object 1s
selected by the cursor the link between the external entity and the object is added in the
diagram. A message channel between a sender object and a receiver object can be
added by selecting the sender object and then the send message option in the system
object menu. A message channel leading from the sender object tracks the movement

of the cursor until the user clicks the mouse button twice, first to designate the location




of the channel’s message symbol, and then to indicate the receiver object; if a system
object is selected as the receiver, the message channel is added in the diagram. By
checking the validity of an external entity link or a message channel the editor helps the

user to avoid creating a meaningless diagram.

£ Parent~chiig glagram: cruiseControl

: CrutsaControlSystam

IV ¢ P
fsenlor ob octy ddMultipteChill

i status @aaauu @m@lem«u@‘

cmhlcnn(ml

cruisgControt

spaadomatar
—

:.ns messag

Snlnn
— Tnstantiate |
Inspact.

theottie bra

@ add singie system objact

jags muitiple 3ystem objects
sdd extornal entit

Y CECYTAC DL LI

execute

Rardcopy

file_out

@

e TTsae ta obiscH

Laceusrace | {,..,,c.m,.l [ I [l

e SN ST i e

e e

-pnx:ﬂ vcreenduap wenul.file

Pop-up menus

1 specification menu 3 external entity menu 5 parent object menu 7 life history menu
2 system object menu 4 objcct definition menu 6 child object menu

Figure 6.2 A specification view (left) and a system object view (right).

When the define option is selected in a system object menu, a system object
view (Figure 6.2) is opened to allow the user to create an object attribute (parent-child
hierarchy) diagram and life history diagram for the selected system object.

Object Definition Diagrams and Life History Diagrams

A system object view consists of two subviews allowing the object attribute diagram

and the life history diagram of an object to be viewed at the same time (Figure 6.2).



Pop-up menus are used in both subviews to help the user create the diagrams.: In the
object definition diagram, when the parent object symbol (placed in the diagram by
default) 1s selected followed by the senior object option in the parent object menu, a
list of names of all colleague objects which the parent interacts with is displayed.
Selecting a colleague from this list causes the cursor to become a mobile symbol cursor
which the user then uses to position the symbol for the colleague in the diagram. The
encapsulation rectangle enclosing all child and colleague objects automatically adjusts
itself to include the new symbol. A child object is added by selecting the add child
object option in the ohject definition menu outside the parent object symbol. The user
is prompted for the object’s name and then its symbol is placed in the diagram in the
same way as for a colleague object. Details of a child object (i.e., its object definition
diagram and life history diagram) can be defined by selecting the child object and then
the define option in the child object menu; a new system object view is then opened

for the child object and its diagrams can be created in the same manner.

In the life history diagram, initially only the symbol for the owner of the life
history is present. If the object does not need any constraint on its messages, its life
history diagram will not need any modification. To add messages to the diagram, the
user selects the add event option in the life history menu and is prompted for the
event, which may be a message, an iteration or a selection. The symbol for the event is
automatically placed in the diagram in the correct position ensuring that the diagram
remains tidy. The user is then prompted for the next event to be added. This process
continues until the user presses the return key when prompted, signalling that no more
new event is required. The same process is used for building an iteration or a selection
subtree: new events entered by the user are added as components of the subtree if the
previous event was an iteration or a selection symbol, until the user presses return to
complete the subtree. On completing a subtree, the process continues and the user 1s
prompted for the next event to be added in the life history at the same level as the root

of the iteration or selection subtree.
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Class Definition Diagrams

A class definition view (Figure 6.3) is opened for the input of class definitions when
the user selects the add class definition option in the specification menu. A class
definition view consists of two boolean buttons and a subview. The class and instance
buttons are used by the user to switch between looking at the IVP diagram and the CVP
diagram of a class — they are similar to the class/instance buttons in the browser of the
Smalltalk-80 environment. The subview displays either the IVP or the CVP diagram
depending on the user’s button selection — by default the instance buttorn is selected

when the class definition view is first opened.

To define a new class the user selects the define new class option in the
class definition menu in an empty area in the subview. Assuming the instance button is
selected, a new 1VP diagram for the new class is displayed in the subview. The useris
first prompted for the name of the class, followed by its superclass, and class symbols
for both are placed in the diagram automatically in default positions connected by an
inheritance arrow. The add variables and add messages options in the class
definition menu can now be used to add instance variables and instance messages to the
class respectively. In each case, a dialog box is provided for the user to enter a list of
variables or messages. To complete a list the user selects the accept menu option In
the dialog box, and symbols for the variables or messages are added in the diagram
automatically. Default positioning is used to help the user generate a diagram quickly
and to ensure its neatness. When the class button is selected, the same process 1s used
for creating the CVP diagram of the class. There is no restriction on the order in which
the two diagrams of a class definition are built, and the user can return to any diagram
using the instance and class buttons 10 make alterations any time. The show class

option in the class definition menu can be used to display any class defined previously.
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To create a method for a message, the user selects the message and thén the
define method option in the message menu. A method definition view is then opened

for the user to create the method’s definition diagram.
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Figure 6.3 A class definition view (left) and a method definition view (right).

Method Definition Diagrams

A method definition view (Figure 6.3) consists of two subviews. The top subview
displays the declaration section of a method definition diagram. Initially the declaration
contains the message selectors and formal parameters of the method. The user can add
temporary variables required in the method by selecting the add local variables

option in the method declaration meni. The process is similar to adding variables in a

class definition view.
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The lower subview of the method definition view is used to add statem‘-ents in
the method definition; the options add message expression, add assignment and
add return are provided in the method definition menu for this purpose. For each of
these options, a relevant pop-up menu is provided for specifying each component
element of a statement. For example, to add a message expression, the user is first
given a menu containing the different types of receiver of a message, i.e., variable,
literal, class. When a type is selected, the user is prompted for the name (of the
variable or class) or value (of the literal) and then the correct symbol for the receiver is
added to the diagram automatically. The user is next prompted for the message, and
the symbols for the message selectors and parameters are added to the diagram
connected to the receiver. To insert a statement before another statement in the
diagram, the user selects one of the insert options in the method definition menu:
insert message expression,insert assignment and insert return. In each
case, the user first indicates the statement in the diagram before which the new
statement is to be added by selecting the top element of the statement (e.g., the receiver
is the top element in a message expression), then proceeds as normal to specify the

components of the new statement.

There is no restriction on the order in which the two sections of a method
definition are completed, and because the two sections are viewed together, the user
can edit each section taking into account what is present in the other. When a method
definition is complete, the statements must be compiled into a form the interpreter can
execute. The accept option in the method definition menu is used to compile the
statements, rather like the accept menu option provided in the text view of the
Smalltalk-80 browser for compiling a method. Sections 6.3 and 6.5 describe
respectively the data structures used by the compilation process, and the behaviour of

the interpreter and its instruction set used to express the result of the compilation

process.
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6.3 Data Structure Representation of a Specification

The specification of a system described by a set of specification diagrams is represented
by data structures constructed as the diagrams are created using the editor. A brief

overview of the data structures used is now provided.

A specification needs to contain the descriptions of system objects which
define the top-level structure of a system in the specification’s object interaction
diagram. Each system object description includes the object’s parent-child hierarchy
and its life history. The parent-child hierarchy must maintain a collection of
descriptions of the child objects in the object’s state; each description of a child object
must again describe the parent-child hierarchy and life history of the child object. This
pattern repeats until a child object does not need to be defined further. A specification
is implemented as an instance of the class specification and descriptions of system
objects and child objects are defined by the class systemobject, which contains the
instance variables childobjects and 1ifeCycle. Figure 6.4 shows the hierarchical
nature of the data structures of a specification comprising a Specification object
which refers to a set of Systemobject instances in its instance variable
systemObjects; these latter objects describe the system objects in the specification’s
object interaction diagram. Each of the systemObject Instances in turn refers to other
systemObject instances which describe child objects of a system object. The life

history of an object is described in detail in Section 6.4.
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Figure 6.4 Hierarchical data structures of a specification.

A specification also contains a set of class definitions which implement objects
in the specification. Each class definition stores details defined in the IVP and the CVP
diagrams. The class ClassDefinition implements the class definitions. A class
definition must contain a method for each message in the class’s instance and class
protocols. The method associated with a message is realised by the class
MethodDetail. Apart from listing the local variables and formal parameters required
in a method, a MethodDetail object contains the statements of the method. The three
types of statement in a method are implemented by the classes MessageExpression,

Assignment and ReturnObject.

Compilation of Methods

When the accept option is selected in a method definition view, the editor compiles the
statements of the method in the view and the instructions generated from the
compilation are also located in the method’s Met hodbetail definition. During the

compilation of a method, some context sensitive checks are incorporated to ensure that,
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as far as possible, no illegal message send or access to a variable is accepted. In the

case of a message send, a limit to the extent to which checking may be performed is
imposed by the effect of dynamic binding — the binding of a method to a message
occurs only during run-time so context sensitive checks on a message send cannot take
place during compilation. However, it is possible to validate messages sent to the
receiver, referred to by the pseudo-variables self and super; as explained in Section
5.5, se1f and super always refer to the message receiver in a method and their values
cannot be altered dynamically within the method by an assignment during run time. It
is therefore feasible to check that only instance messages defined in the receiver’s class
are sent to the receiver. Validation may also be carried out during compilation on
messages sent to a class to ensure that the message is present in the class protocol of

the class’s definition.

During compilation, each statement in a method is compiled into a series of
instructions in the interpreter’s instruction set; each instruction is stored in the form of
an Array object, containing the label (or name) of the instruction — which is a symbol
object — followed by any parameters the instruction requires. For example, one
instruction in the instruction set is the unconditional jump instruction which réquires
one integer parameter; an example of this jump instruction is shown below using the
Smalltalk-80 literal expression for an aArray object:

#(Gump 1)

The interpreter’s instruction set is described in more detail in Section 6.5.
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6.4 Object Life Histories

Precede-sets

Each message in an object’s life history diagram defines a precede-ser which is a set of
acceptable messages from which one must be sent to the object immediately before the
message itself. For example, the life history diagram of the object 1ibraryBook in
Figure 6.5 shows that the message 1end can only follow the classify or return
message. The precede-set of 1end therefore contains the messages classify and
return. The precede-sets of all messages in an object’s life history are stored in the
instance variable messages 1n the object’s systemObject implementation . When an
object receives a message, the interpreter first determines if the message has a precede-
set, i.e., if the message is constrained by the object’s life history. If the message has a
precede-set, the latter is used to ascertain that the life history of the object will not be
violated by the message send. The message’s precede-set is searched to check if it
includes the last message the object received; if the last message is present in the
precede-set then the message receive is allowed to proceed. For example, assume the
object 1ibraryBook has received the message acquire. A following message send
involving the message lend is invalid because the precede-set of lend does not contain

the message acquire, and so the message receive will not be allowed to proceed.

A message’s precede-set is constructed as the message is introduced into a life
history diagram. Since a message may occur more than once in a life history diagram,
the precede-set of the message needs to be updated each time the message 1s added 1n
the diagram. To facilitate the process of constructing and updating the precede-sets of
messages, sequences, iterations and selections in a life history are also implemented
with their own precede-sets. Each of these precede-sets contains the possible messages
that may be sent to an object immediately before a sequence, iteration or selection. The

main structure of an object’s life history is implemented as a sequence. The object

—
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should not receive any message before its life history sequence starts. The precede-set
of a sequence 1s initialised to contain the nil object to indicate the absence of any
message. For example, the sequence representing the life history of 1ibraryBook has

the precede-set IdentitySet (nil).

acquire J [ classiny

*

| lend |

I return ” swapScheme ” sellJ

swapScheme  IdentitySei(return, classify)

Message Precede-sct : Scquence/Subtree Precede-set

L]
acquire IdentitySe(nil) ! scquence IdentityScet(nil)
classify Identity Sct(acquire) ' iteration(lend, *, return) IdentitySct(classify)
lend IdentitySet(classify, return) . ileration(rencw) IdentitySct(lend)

]
renew IdentitySct(lend, rencw) ' sclection(swapScheme, sell) IdentitySet(return, classify)
return IdentitySet(renew, lend) :

‘

]

]

]

scll Identity Sei(return, classify)

Figure 6.5 Life history of the object libraryBook and the associated precede-sets.

The precede-set of an iteration or a selection depends on the position in a life
history that the iteration or selection occupies. When an iteration or a selection is the
first entry in a life history, its precede-set is initialised to the precede-set of the life
history (i.e., a set containing the nil object). This happens because an object should
not receive any message before the first entry in its life history. For an iteration or a
selection occurring in any other position, its precede-set depends on the immediately
preceding entry in the life history. If the preceding entry was a message, the precede-
set of the iteration or selection must contain this message. For example, the 1teration
(lend, *, return) inlibraryBook’s life history has the precede-set

TdentitySet (classify). Butif the preceding entry was another iteration or

selection, all the messages that could occur last in the preceding iteration or selection




must be included in the precede-set of the iteration or selection itself. Figure 6.5 shows

all the precede-sets of all entries in the libraryBook object life history diagram.

Last-sets

To facilitate the process of deriving precede-sets, each entry type (i.e., message,
iteration and selection) defines a set of message(s) known as a last-set. The last-set of
an entry contains the possible messages an object could have received last after the
entry in the object’s life history has occurred. The precede-set of an entry would be
equivalent to the last-set of its preceding entry. The last-set of a message entry
logically contains the message itself, e.g., the message entry classify in Figure 6.5
has the last-set TdentitySet(classify). All entries in a selection (including
messages and iterations) have equal likelihood of occurring, so the selection’s last-set
must include the last-set of every entry it contains. For example, the last-set of the
selection (swapScheme, sell) in Figure 6.5 contains the messages swapScheme and
sell. The last-set of an iteration contains the last-set of the final entry in the iteration,
but must also include the iteration’s precede-set because the iteration might not occur,
in which case the messages in the precede-set of the iteration become the last possible
messages an object could have received after skipping the iteration. For example, the
last-set of the iteration (lend,*,return) in Figure 6.5 contains the messages return

and classify.

The precede-set of a message is also derived using the same principle as for
iterations and selections, i.e., its precede-set is dependent on the position in a life
history or a subtree in which the message is added. When the message is added as the
first entry of a sequence, or an iteration or selection subtree, its precede-set would be
equivalent to the precede-set of the sequence or subtree. When added in any other

position, the message’s precede-set is equivalent to the last-set of its preceding entry in




the sequence or subtree. For example, in Figure 6.5 the precede-set of the rﬂessage

return 18 equivalent to the last-set of the iteration (renew).

First-sets

Extra attention must be given to the precede-set(s) of the message(s) in the first entry of
an iteration. After the last entry in the iteration has occurred, the whole iteration may
repeat and the first entry in the iteration would occur again. The precede-set of a
message first entry in an iteration must be augmented to include the last-set of the
iteration. When the first entry in the iteration is a selection or another iteration, it 1s the

precede-sets of the first messages in these subtrees that need to be expanded.

The set of message(s) in an iteration whose precede-sets need to be modified
as described is called its first-ser. To facilitate the derivation of an iteration’s first-set,
each message and selection entry also defines its own first-set. The first-set of a
message contains only the message itself. The first-set of a selection would include the
first-set of every entry in the selection, which may be a message or an iteration, since
each entry in the selection can. The first-set of an iteration is therefore equivalent to the
first-set of the iteration’s first entry, which could be a message, a selection or another
iteration. For example, the first-set of the iteration (lend, *, return) in Figure 6.5
contains the message 1end; the precede-set of 1end contains classify, but must also

be expanded to include the last-set of the iteration which contains the message return.

Implementation

The main building blocks of life histories are implemented by the classes sequence,
Iteration and Selection. Each class defines an instance variable precedeSet.

Messages in a life history are implemented by the class MessageSymbol; as described




in the section Precede-seis, however, the precede-sets of messages are stored in the

systemObject instance of the object which owns the life history.

The last-set and first-set of each entry type are not stored but are implemented
as the instance messages lastSet and first of the classes Iteration, Selection
and Messagesymbol. The last-set and first-set of an entry are used only when a life
history 1s constructed but are not required during run-time, so there is no advantage in
storing these information for each entry. Figures 6.6 and 6.7 show the implementation
of these instance messages in the three classes.

lastSet
[idSet |

idSet <- IdentitySet new.
idSet add: messageName.

~idSet

(a)
lastSet
|idSet |
idSet <~ IdentitySet new.
self do: [:event] event lastSet

do: [:item| 1dSet add: item]].

~1dSet

(b)
lastSet
|idSet |
idSet <- (self at: self size) lastSet.
self precedeSet do: [:item|idSet add: item].
~i1dSet

(c)

Figure 6.6 Instance method 1astset of the classes (a) MessageSymbol, (b)

Selection and (¢) Tteration.




first
~(self at: 1) first

(a)

first first

| idSet | |1dSet |

idSet <- IdentitySet new. idSet <- IdentitySet new.

idSet add: messageName. self do: [:event| event first do:

~idSet [:item| idSet add: item]].
: ~idSet

(b) (c)

Figure 6.7 Instance method first of the classes (a) tteration, (b) MessageSymbol

and (¢) Selection.

6.5 The Interpreter
Implementation and Behaviour of the Interpreter

The interpreter executes the compiled instructions of a method. The interpreter is
implemented by the class Interpreter and is referred to by the Smalltalk-80 global
variable SpecificationInterpreter. The details of the required implementation for
the interpreter are derived from understanding the virtual machine of the Smalltalk-80
system. Five items of information are required by the interpreter for executing the

instructions of a method:

1. the instructions to be executed

ii. the location of the next instruction to be executed — indicated by an
instruction pointer

iii. the receiver and arguments of the message that invoked the method

iv. any local variables required by the method

v. a stack.



The execution of most instructions (described in the following section Instruction Set)
involves the stack. A push instruction causes an object to be located and added to the
stack. A store instruction results in an object on the top of the stack being removed and
placed in a variable. A send instruction removes the receiver and arguments of a
message from the stack, and when the result of the message send is computed, it is
pushed onto the stack. The interpreter repeatedly performs a three-step cycle when

executing a method as follows:

1. fetch the next instruction from the method designated by the instruction
pointer
1i. increment the instruction pointer

ii. perform the function specified by the instruction.

Push, store, and jump instructions require only small changes to the
information held by the interpreter — objects may be added to or removed from the
stack, and the instruction pointer is modified after every instruction. However, send
and return instructions may require greater changes to the interpreter’s state. When a
message send is encountered, information used by the interpreter has to be changed in
order to execute the instructions of the method corresponding to the message send.
The information currently used by the interpreter must be remembered before the send
instruction is executed because the execution of the remaining instructions in the
method following the send instruction must be resumed after the value of the message
send is returned. The logical way to implement this is to maintain the five-part
information relating to the execution of a method in an object called a context.
Whenever the interpreter arrives at a send instruction, a new context is created for the
message send to hold the information associated with the method of the message. The

interpreter, therefore, must be able to deal with more than one context at any one time.
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The context containing the information currently being used by the intefrprcter
is called the active context. When a new context is created in response to a send
instruction, the active context becomes suspended and the new context succeeds as the
active context. The order of creation of contexts must be maintained so that when the
interpreter finishes executing the instructions of an active context, the suspended
context which gave rise to the active context may be reactivated and its execution
resumed from where it was previously halted. A stack, called a context stack, is used

for storing contexts in the correct order in the interpreter.

The execution of a block’s instructions may be compared with executing the
instructions of a method. The #evaluateBlock instruction is therefore implemented in
a similar way to a send instruction, involving a new context to be created for the
block’s execution. The meaning of a block is dependent on the method in which the
block resides; the block shares the same receiver, message arguments, and local
variables of its method. Hence, the receiver, arguments and local variables of the
block’s context refer to the same values as the suspended context of the block’s parent
method. On the other hand, the block’s context contains its own set of instructions
compiled from the statements in the block, and must contain its own instruction pointer

and stack.

When an object receives a message and a method is executed, the interpreter is
required to reflect the effect of the execution on the life history of the object in 1ts life
history diagram, and also show the messages the object sends to its child and colleague
objects in the object’s attribute diagram. This animation of behaviour by the interpreter
is described in more detail in a later section (System Execution and Behaviour
Animation). The interpreter has to access the object’s detail in its SystemObject

definition in order to carry out this animation.
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A child or colleague object receiving a message may also require thé same
animation of its behaviour. The interpreter will also need to access the Systemobject
definition of the child or colleague object. When the child or colleague object finishes
its execution, the interpreter may need to return to the definition of the parent object to
continue animation of the object’s method execution. The interpreter therefore needs to
be able to refer to the systemobject definition of more than one object at any time.
This is implemented by another stack in the interpreter. The systemobject instance of
a child or colleague object is added to or removed from this stack when the object

receives a message or completes its execution.

Instruction Set

The instruction set of the interpreter is based on the instruction set used by the virtual
machine of the Smalltalk-80 system. The interpreter’s instructions may be grouped
into six main categories: push, store, send, return, jump, and evaluate. The push
instructions are used to indicate the source of an object to be added onto the top of the

interpreter’s stack. Possible sources include:

* 4 receiver e instance variables of a receiver
o q class  class variables of a receiver’s class
« a literal value > a block.

The store instructions are used in the compilation of Assignment objects.
Instructions from compiling an assignment instance first compute the value to be
assigned, and an appropriate push instruction is used to place the value on the top of
the interpreter’s stack. A store instruction is then used to move the stack-top object into

the variable specified by the store instruction. The variables whose values may be

updated by a store instruction include:
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e instance variables of a receiver
* local variables of a method

e class variables of a receiver’s class.

In compiling a MessageExpression object, a send instruction is used to
specify the selector of a message and the number of arguments the message expects in
the message expression. The receiver and arguments of the message must be found on
the interpreter’s stack top before the execution of a send instruction. The appropriate
push instructions are therefore generated during the compilation before the send
instruction. The execution of a send instruction removes the message’s receiver and

arguments from the stack and replaces them with the value of the message send.

The return instruction #returnStackTop 1$ generated in compiling a
ReturnObiject instance, and is used to indicate to the interpreter that the execution of a
method’s instructions is complete and to return the value of the message send which
invoked the method. The value to be returned is removed from the top of the
interpreter’s stack; therefore, an appropriate push instruction is included by the
compilation process before #returnstackTop. If the value to be returned happens to
be a message expression or an assignment, the correct instructions to compute the

return value are generated by the compilation before the push instruction.

Normally, the interpreter executes instructions sequentially in the order they
were generated during the method’s compilation. A jump instruction, however, is used
to alter the interpreter’s execution sequence. There are two types of jump instruction:
unconditional and conditional. The unconditional jump instruction transfers control
whenever it is encountered, while the conditional jump instruction will only transfer
control if the interpreter’s stack top is an expected value — a Boolean object. Both
types of jump instruction specify the position of the next instruction to be executed in

the form of an 1nteger offset relative to the location of the jump instruction itself; the
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offset indicates to the interpreter the number of instructions to skip following the jump
instruction. Jump instructions are used to optimise the implementation of control

structures provided by Boolean objects and blocks (see Section 5.5).

The #evaluateBlock instruction implements the message value sent to a
block object. #evaluateBlock starts the execution of the instructions of a compiled
block located at the top of the interpreter’s stack; the compilation of a block object
therefore generates an appropriate push instruction before #evaluateBlock to place
the compiled instructions of the block on the stack. Figure 6.8 shows the compiled
instructions of the instance method push: item (Figure 5.20) defined in the example
class stack in Figure 5.8; the compiled instructions are shown using the Smalltalk-80

literal expressions for representing orderedCollection and Array objects.



OrderedCollection (

(pushIntvar maxStLength)

(receiver maxStLength)

(pushIntVar stLength)

(send an InteractionMessage 1)

(receiver nil)

(storeTempVar stackFull)

(pushTempVar stackFull)

(pushTempVar stackFull)

(JumpIfTrue 4)

(pushBlock OrderedCollection (
{pushIntVar stLlength)
(receiver stLength)
(pushLit 1)
(send an InteractionMessage 1)
(receiver nil)
(storeIntVar stLength)
(pushIntVar stSpace)
(receiver stSpace)
(pushIntVar stLength)
(pushArg item)
(send an InteractionMessage 2)
(reciever nil)

(returnStackTop)))
(blockReceiver)
(evaluateBlock (236 @ 150 corner: 2897 @ 186))
(jJump 1)

(pushlit nil)

(receiver nil)

(pushReceiver)

(pushLit full)

(send an InteractionMessage 1)
(receiver nil))

Figure 6.8 Instructions generated by compiling the method push: item.

Some of the instructions in Figure 6.8 which have not been described, including
#receiver and #blockReceiver, are used by the interpreter to facilitate its animation
process during the execution of a system. Figure 6.9 shows the data structure
representation of the statements and compiled instructions in the Methodbetail

Instance of the method push: item.
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method statements anAssignment

stored in an Arrayg object
object aMessageExpression
objcct
aMessageExpression
messageSequenca objcct

MethodDetail objcct
for the
method push: item

#pustIntVar
#maxStLength

>
! Array
: objects

compiled instructions storcd

In an OrderedCollection -
objcct Q

Figure 6.9 Data structure representation of the statements and compiled instructions of

the method push: item.
Object Instantiations During System Execution

The tool allows classes in the Smalltalk-80 class library to be instantiated at run-time
during the execution of a system. On the other hand, run-time objects “instantiated”
from classes defined using the tool as part of the specification are realised by the class
InstanceObject. AN InstanceObject instance represents an object and contains its
own copy of all the instance variables named in the IVP diagram of the object’s class.
The instance variables refer to actual state values of the object, and these state values
will in turn be instances of InstanceObject, or instances of Smalltalk-80 classes.
Each InstanceObject instance representing an object contains the name of the
object’s class to facilitate access to the instance method definitions in the class. Each
InstanceObiject instance also has to remember the latest message it has received; this
information is used by the interpreter for checking that the life history of the object is
not violated. The information held by the class InstanceObject is found in the

instance variables instancevariables, class and life. For example, Figure 6.10



shows the instantiation of the class stack defined in Figure 5.8. Each instantiation

credtes an InstanceObject INStance representing a Stack object.

jec

'0“
jaly
,\“S‘ay\“a_ e L 4

...

se stth maxgth \"n\ T

lstSetUp:”éxception:” push:JLtop ]

[ isEmpty || pop || 1ength] InstanceObject
instances

instanceVariables

stSpace
stLength

maxStLength

class D
lifel:]

instance variables & protocol
diagram

Figure 6.10 Instantiations of the class stack.

Execution of Message Sends

A send instruction specifies the message selector of a message send and the number of
parameters the message requires. When a send instruction is encountered, the
interpreter first removes the correct number of parameters and the receiver of the
message from the stack of the active context. If the receiver has been instantiated from
a Smalltalk-80 pre-defined class (e.g., the receiver may be an array object), the
interpreter effects the message send by sending the receiver the instance message
perform:withArguments:, with the message selector and the parameter objects as the
arguments. perform:withirguments: is implemented by the Smalltalk-80 class
Object — Object is the root class in the Smalltalk-80 class hierarchy and so its
protocol is inherited by all classes in the hierarchy. perform:withArguments: returns
the result of the message send to the receiver. Therefore, for a message receiver

instantiated from a Smalltalk-80 class, the interpreter makes use of the Smalltalk-80
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virtual machine to carry out its message sending function, thereby avoiding the ﬁeed to
create a new context for the execution of the message send. On the other hand, if the
receiver of the message send was an Tnstanceobject object (i.e., the receiver had
been instantiated from a class defined using the editor), the interpreter is required to
perform the message send itself and a new context is therefore created and added to the

context stack.

The method corresponding to the message selector specified in the send
instruction must be located to obtain the compiled instructions the interpreter has to
execute; this entails searching the class hierarchy of the specification. Once the method
1s located, the interpreter starts its three-step cycle to execute the instructions. The
cycle of the interpreter 1s performed by its instance method executeCode: code

(Figure 6.11):

executeCode: code
lactiveContext value]
activeContext <- contextStack last.
activeContext instructionPointer: 1.
[activeContext instructionPointer <= code size]
whileTrue: [value <- self execute:
(code at: context instructionPointer).
(value isMemberOf: Interpreter) not
1fTrue: ["value].
activeContext instructionPointer:
activeContext instructionPointer + 1]

Figure 6.11 Interpreter’s instance method for executing a method.

The formal parameter code contains the instructions of the method to be executed. The
instruction pointer of the active context is initialised and the interpreter starts the
execution of the method at the current instruction indicated by the instruction pointer.
The message execute: executes each instruction and assigns the result to the variable
value. As explained in the previous section (/nstruction Set), the purpose of the
freturnStackTop instruction is to terminate execution of a method and return the

value of a message send which invoked the method. The result of executing the
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#returnStackTop instruction causes the method execute: to return the valué of the
message send which is assigned to value. When an instruction other than
#returnStackTop is executed, the interpreter itself is returned by execute: and
assigned to value. This is the effect of the Smalltalk-80 system’s message sending
function which returns the receiver of a message as the default value in the absence of a
return expression in the message’s method — in this case, the receiver of execute: is
the interpreter itself. Hence, by checking the class of an object referred to by the value
after each instruction’s execution, the interpreter can detect when the
4returnStackTop instruction is executed. When this occurs, the interpreter’s
execution of the method is stopped and value is returned from executeCode: as the
result of the message send. Otherwise, execution of the method’s instructions

continues and so the instruction pointer is incremented.

When execute: code completes the execution of the method, the active
context of the message send is removed from the interpreter’s context stack. The
execution of the method must return the value of the message send to the current active
context; this value is placed at the top of the stack in the context. If the value returned
was the interpreter, it is clear that the method of the message send does not contain a
return expression; the receiver of the message send is regarded as the latter’s result and
is placed on the stack, replicating the default behaviour of the Smalltalk-80 system. If
the value returned was not the interpreter, the value is placed on the stack in the active

context.

System Execution and System Behaviour Animation

Along with executing the activities of a system described in a specification, an
important function of the interpreter must be to animate this execution so as to provide

some visual feedback to demonstrate the dynamic behaviour of the system during

execution. A system is executed by sending messages to system objects in the object
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interaction diagram of the system’s speéification. As explained in Section 5.3, ;certain
system objects of a system are designated as interface objects of the system and these
interface objects can react to messages sent to the system from the system’s
environment (e.g., the user); interface system objects are identified by their connections
to their own external entities in the object interaction diagram. A system execution
diagram is used to specify operations to be performed on a system in terms of message
sends to interface system objects. A new system execution diagram is displayed in a
specification execution view in subview @ in Figure 6.12 when the execute option
1s selected 1n the specification menu (Figure 6.2). A system execution diagram is
constructed with the same editing functions as for a method definition diagram, as can
be shown by comparing the method definition menu and the system execution menu in

Figures 6.2 and 6.12 respectively.

When the system execution diagram 1s completed, the operations specified in
the diagram may be executed by selecting the do it or step options in the diagram’s
menu. Both options start the execution of the system but in different modes. The step
mode pauses the system execution after each message send, and resumes execution
when the step button (subview @ in Figure 6.12) 1s pressed; the step mode thus
allows the user to observe the execution at a preferred pace. The do it mode enables

the execution of the system to be animated at a constant pace without interruption.
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Figure 6.12 Specification execution view.

When the execution of the operations specified in a system execution diagram
commences, the interpreter highlights the current message send being performed in

subview @ as execution progresses.

A system object reacting to a message it receives may send messages to other
system objects in the object interaction diagram to complete its task. Messages are thus
propagated from object to object amongst the system objects in the object interaction
diagram which together contribute to the behaviour of the system in response to a
message. The messaging activities of the system objects during the operation of the
system is shown dynamically by displaying the flow of messages as they are sent
amongst the network of system objects. A message flow is shown by highlighting the
message symbol of the message channel connecting the system objects in the object
interaction diagram and annotating with the name of the message in subview @ in

Figure 6.12.
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A message received by a system object may also cause the system object to
send messages 1o its state objects to carry out the function of the message; this is
shown using the parent-child hierarchy in the system object’s object definition diagram,
displaying each message flow to a child object dynamically as it occurs in subview @
in Figure 6.12. Displaying the message communication from a parent to its child
objects is not limited to the top-level system objects but is also used for lower-level

objects when they send messages to their state objects.

As a message 1s being sent to an object in a system, the object’s life history, if
defined, is first examined to ensure that the receipt of the message will not violate the
object’s life history (see Section 6.4). If the message send to the object is permitted to
proceed, 1t 1s useful to be able to observe the effect of receiving the message on the life
history of the receiver. In this respect, the interpreter highlights the stage in the
object’s life history diagram the object has reached on receiving the message in
subview @ in Figure 6.12. The message subview @ in Figure 6.12 displays the
current message being sent in the system or an error message when an object’s life

history 1s violated.

Appendix A contains a series of snapshots showing the execution of the
system in the example specification of an automobile cruise control system described in
Section 5.6; these snapshots provide a flavour of the animation capability of the

Interpreter.

In the step mode of system execution, the user may examine the state values
of system objects in the object interaction diagram during an execution pause by
selecting the inspect option in the system object menu. An inspector view is opened
listing the state objects present in the designated system object. The state of any state

object may also be inspected by again selecting the inspect option in the inspector
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view menu when the state object is selected in the inspector view. Figure 6.13 shows

an inspector view opened on the system object cruiseControl.

The interpreter also provides the facility whereby the user may choose to
pause execution of the system at a designated point. The user may interrupt execution
by using the message send self halt in either a method definition diagram, or the
system execution diagram. In both cases, an execution halt view appears which allows
the user to inspect the interpreter’s context stack and the values of objects in each
context. On closing the execution halt view, execution of the system resumes. Figure
6.14 shows the halting of system execution when the message send self halt is
encountered while the system object cruiseControl is reacting to the message

cruise.
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Figure 6.13 An inspector view on the object cruiseControl.
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Chapter 7 Conclusion

7.1 The Operational and Object-oriented Paradigms

The aim of this research has been to explore the feasibility of developing an
operational specification technique specifically for object-oriented software
development, and to implement a tool which can support the specification process.
An important objective of the work has been that a specification developed using the
technique is not only executable, but also lends itself to animation of its execution;
the tool must therefore facilitate this objective. Analysis of some current object-
oriented methods has shown that the development of a new graphical notation has
been necessary which can represent both the executable semantics in an object-
oriented system to enable the execution of a specification, as well as the system’s
dynamic behaviour so that the execution may be animated. Guidelines for using the

notation have also been provided.

The tool implemented comprises an editor to facilitate the input of
specifications, and an interpreter to execute and animate the execution of
specifications. Executable semantics and dynamic information about an object-
oriented system is specified using specification diagrams expressed in the notation.
The editor used for specification input is able to build up a data structure
representation which the interpreter uses to execute the specification. The interpreter
animates this execution graphically based on the specification diagrams. Figure 7.1

shows the components of the work implemented.

The result of the research carried out suggests that the approach of

incorporating executable semantics and dynamic behaviour in the specifications of



object-oriented systems is possible, and the execution and animati(;n of
specifications by the tool is a useful facility for both the analyst and the user. Real-
world entities in the problem domain of an object-oriented system are modelled in a
specification in terms of objects and their behaviour. Functions of the system are
then defined in terms of interactions amongst the objects. The tool’s visualisation of
the execution of a specification enables the behaviour of objects in the specified
system to be demonstrated, as well as allowing the functionality of the system
provided by the interactions of the objects to be revealed. The analyst’s
understanding of domain entities could be aided by using the tool, and a more
accurate model of the problem domain can be created in the specification as a result.
A system is likely to be more robust to future changes to its functionality if its
implementation is based on a specification which describes the system’s problem
domain accurately. Through animation, the execution of a specification based on
entities in the user’s environment would be conceptually easier for the user to
understand; the user can, therefore, help the analyst in validating the behaviour of

objects in the specification and the functional requirements expressed.

specification ,
Editor Interpreter

nput

&
©
2D
S
&
LS

Operational
specification

¢

Data structure

Figure 7.1 Components of the tool implemented.

The user may not often know fully what he requires or what the possible
solutions are. It is useful for the developer and user to be able to modify the
specification and experiment with different system architectures without incurring

significant extra cost. The notation and tool together could therefore provide the

175



potential for early validation during the specification phase which, as Agresti (1"98621)
notes, is difficult to achieve with traditional static natural-language specifications
which do not possess executable semantics. The behaviour of a system specified in a
static specification cannot be visible until the implementation phase; mistakes in the
specification may then be costly and difficult to rectify in the code as explained in
Section 4.1. An early validation capability could help to reduce development costs

by lowering the probability of error in specifications.

Relationships Berween the Two Paradigms

The emphasis of the operational approach is on the creation of executable
specifications; this emphasis suggests that the dynamic characteristics of a system
should be modelled in the system’s specification. The initial task of this work
therefore involved identifying the dynamic behaviours in an object-oriented system
which must be represented in a specification which would render the specification

executable.

Operations in an object-oriented system are carried out by methods of
objects in the system. Executable semantics are therefore provided by method
definitions. The obvious aspect of the dynamic behaviour in an object-oriented
system is the interactions amongst objects which provide the functionality of a
system, and each object’s interactions with other objects when executing a method
in response to a message. State changes in an object imply that another aspect of the
dynamic behaviour is the life cycle of an object in terms of the messages it receives
throughout its life span. A further dynamic aspect would involve the method
resolution for a message received by an object at run-time. The inheritance
mechanism causes a dynamic search for the message’s method which can propagate

up an inheritance structure of the object’s class before the right method is invoked.



|
|
|
|

An 1mportant point to stress is that the central aim of this research h:as not
been to develop a graphical programming language. However, in order to support
execution, low-level implementation details relating to the object’s method must be
expressed in a specification. This aspect of a specification therefore resembles an
object-oriented language. It therefore appears that the requirement for executable
semantics necessarily imposes a certain degree of implementation detail in a
specification. Swartout & Balzer (1982) argue that the explicit separation of
specification and implementation in traditional development is unrealistic as both

sets of development decisions are very much intertwined.

7.2 The Software Life Cycle and Future Development

The Object-oriented Software Life Cycle

The problems associated with the traditional waterfall model of the software life
cycle have been described in Section 3.1. One such problem relates to the model’s
inadequate support for the natural iteration that exists particularly in object-oriented
software development. The fountain and cluster models described in Section 3.2
have been proposed to remedy this problem. By incorporating operational
specification animation into the object-oriented development process, the fountain
and cluster models may be enhanced to emphasise the potential for early validation
provided. Significant iteration occurs at the specification phase in which a
specification may be continually executed and refined to arrive at a satisfactory
statement about the functionality of the required system. Validation and testing are
therefore no longer limited to the end of the life cycle as shown in the fountain and
cluster models. Maintenance to correct errors in the implementation due to mistakes
in the specification may be reduced. Generalisation and aggregation of classes in the
models could also occur at this early stage with the benefit and ease of being able to

experiment with different class structures and observe the behaviours of objects.
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Future Development

The data structure representation of a specification may provide possible input to a
code generator tool which would produce an initial implementation of a system in an
object-oriented language. This approach would ensure consistency between the
specification and its implementation. Different code generators may be used to
derived implementations of the same system in different object-oriented languages.
Currently, data structure representations of classes defined in a specification can be
‘filed out’ using the editor and then reused in other specifications by filing in. This
reuse could also be extended to apply to other components of a specification such as
object definitions and object interactions. The facility to incorporate pre-defined
specification components could facilitate the reuse of specifications as envisaged by

Balzer er al (1983).

Single inheritance only has been considered in the notation and tool. The
notation should not require substantial extension to allow representation of multiple
inheritance amongst classes. The main addition required in the notation to
incorporate multiple inheritance would involve a way to express conflict resolution
rules for resolving ambiguities that can arise in multiple inheritance as described in
Section 2.5. At present the dynamic resolution of method invocation at run-time
attributed to the inheritance mechanism is presented in the notation implicitly
through the class inheritance relationship. The animation of a specification’s
execution does not explicitly show the search for a method when an object receives a
message. It would be useful for this feature to be present in the tool’s animation
capability such that it would be possible to observe the effect of the inheritance
mechanism on the behaviour of objects. This feature would be even more valuable
with the inclusion of multiple inheritance as the inheritance structure could become

extremely complex and the conflict resolution would need to be evaluated.
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Two limitations exist in the present form of the notation. Firstly, messages
in an object’s protocol which do not appear in the object’s life history diagram (i.e.,
messages which are not constrained by the order they are sent to the object) are not
recorded anywhere else in the notation. The notation should be extended so that any
uncontrained message of an object can be documented. Secondly, an improvement
to the life history diagram would be to make it possible to denote time ordering of
messages an object sends itself within a method (i.e., self messages in Smalltalk or
this messages in C++) . This would involve allowing a message node in a diagram
to own a sequence subtree containing iterations and/or selections of self or this

messages.

The user interface of the tool should also be improved, for example in the
execution view. In the execution view, a static layout is used where subviews share
the display area of the view. This arrangement is not very practical for large
specification diagrams as during execution not all parts of a diagram in each subview
may be visible. Although horizontal and vertical scroll bars are provided in each
subview, execution in the do it mode suspends scrolling. A more flexible
arrangement may be to allow the user to select which subviews to focus on and to

position and size each subview independently before execution.

7.3 Summary

This research has identified the potential benefit of joining the operational and
object-oriented paradigms to provide a specification technique which combines the
prototyping capability of executable specifications with the concepts of data
abstraction, information hiding and reuse. It has been shown that the union may be
achieved by representing the dynamic behaviours of objects in an object-oriented

system in a specification. Different categories of these dynamic behaviours have
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been identified. The tool implemented has also demonstrated that it is possi/ble to
animate the execution of a specification produced using the method to provide early
validation of functional requirements traditionally available only by building
prototypes. The concepts used help the developer manage the complexity of the
problem domain, and also ensure that a specification closely reflects the problem
domain so that the specification is easier for the user to understand. Validation may
be done more effectively because the user can understand the content of the
specification and its execution. A more accurate model of the problem-domain may
be derived through the animation of the specification’s execution; when the model 1s
incorporated in the implementated system, it can help to ensure that the system is

more robust to cope with future changes to its functionality.

Research effort in the object-oriented paradigm has so far concentrated on
developing programming languages, and analysis and design methods for object-
oriented software development. With the increasing amount of investment in object-
oriented systems, this research has hopefully shown that further work on developing
the object-oriented software life cycle is worthwhile and can improve the chances of

producing software that meet users’s requirements.
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Appendix A Snapshots showing execution animation of the

automobile cruise control specification

throttle

1

l . pjrpit soresndusp screon.file

Figure A.1 engine receives the message on.

The engine object receives the message on from the user. on is the first entry

iteration of the object’s life history.
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Figure A.2 cruiseControl Teceives the cruise message.

The cruiseControl object receives the cruise message from the user. cruise 1§

the first entry in the overall iteration of the object’s life history.
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Figure A.3 cruiseControl sends the message engineOn to engine.

cruisecontrol needs to check that the engine is on before starting its cruising

function. The message engineon does not have any constraint on its invocation and

so does not appear in the engine object’s life history.
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Figure A4 speedometer receives the current Speed message from cruiseControl.

The current speed is obtained from the speedometer object and used as the cruising
speed. The currentSpeed message is the only entry in the iteration of the

speedometer object’s life history.
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Figure A.5 cruiseControl sends itself the message calThrottle.
cruiseControl sends itself the message calThrottle 1O calculate the required

throttle position to maintain the cruising speed based on the current speed returned

by speedometer. calThrottle is not contrained in cruiseControl’s life history.
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Figure A.6 Throttle receives setThrottle: from cruiseControl.

The last task to achieve cruising involves cruiseControl sending the required

throttle setting to the throttle object. The message setThrottle: is the only entry

in the iteration of the throttle object’s life history.
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