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Abstract 

The loss of habitat and biodiversity worldwide has led to considerable resources being spent on conservation 

interventions. Prioritising these actions is challenging due to the complexity of the problem and because there 

can be multiple actors undertaking conservation actions, often with divergent or partially overlapping 

objectives. We explore this issue with a simulation study involving two agents sequentially purchasing land 

for the conservation of multiple species using three scenarios comprising either divergent or partially 

overlapping objectives between the agents. The first scenario investigates the situation where both agents are 

targeting different sets of threatened species. The second and third scenarios represent a case where a 

government agency attempts to implement a complementary conservation network representing 200 species, 

while a non-government organisation is focused on achieving additional protection for the ten rarest species. 

Simulated input data was generated using distributions taken from real data to model the cost of parcels, and 



the rarity and co-occurrence of species. We investigated three types of collaborative interactions between 

agents: acting in isolation, sharing information and pooling resources with the third option resulting in the 

agents combining their resources and effectively acting as a single entity. In each scenario we determine the 

cost savings when an agent moves from acting in isolation to either sharing information or pooling resources 

with the other agent. The model demonstrates how the value of collaboration can vary significantly in 

different situations. In most cases, collaborating would have associated costs and these costs need to be 

weighed against the potential benefits from collaboration. Our model demonstrates a method for determining 

the range of costs that would result in collaboration providing an efficient use of scarce conservation 

resources. 
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The loss of habitat and biodiversity worldwide has led many governments�and non-governmental 

organizations (NGOs) to expend considerable resources for conservation purposes. This is a challenging task, 

since determining the most effective conservation actions or policies involves balancing ecological, financial, 

and social constraints (Wu and Boggess, 1999). Additional difficulties result from the fact that multiple 

agencies with differing priorities and remits often undertake conservation actions within the same landscape 

(Bode et al., 2011). 

 

A range of approaches have been developed to assist with allocating and managing conservation resources, 

and these approaches are collectively referred to as Systematic Conservation Planning (SCP) (Margules and 

Pressey, 2000). Initially this field focused on the efficient spatial allocation of conservation reserves for 

multiple biological features (Williams et al., 2005) but more recently it has evolved to provide decision 

support tools for a broader range of conservation interventions (Wilson et al., 2009). Despite the success of 

SCP, it is still common for conservation to be undertaken on the basis of community preference and local 

knowledge rather than using formal SCP techniques, simply because of the cost involved with collecting and 

analyzing biophysical data, and the need to acquire land as it becomes available. In addition, most 

conservation bodies continue to manage legacy suites of parcels, which were acquired without recourse to 

these more modern methods. To some extent, community knowledge is a surrogate for habitat and species 

information gathered in a more systematic way, and the resulting networks of parcels may achieve some 

measure of the ecological representation that could be achieved using SCP; however, experimental results 

imply that this ‘opportunistic’ approach ultimately fails to protect as many ecological features (Hansen et al., 

2011). 

 

To date, most applications of SCP implicitly assume that conservation actions are implemented by a single 

agent acting in isolation, even though this is often not the case (Bode et al., 2011). When multiple 

organisations are undertaking conservation actions in a landscape, they often vary in focus, resources and 

geographic extent, and can include diverse agents; e.g., governments, private individuals and NGOs such as 

land trusts and charities. As an example, three agencies operating in one region might focus on, respectively, 



i) the conservation of breeding habitats generally used by migratory birds, ii) the acquisition of sites observed 

to support a specific threatened species, and iii) the development of sustainable forestry activities for local 

people. The ultimate goals of the three organisations may overlap substantially, in that the prospects of the 

threatened species may be improved by activities i) and ii). As the actions of one agency may contribute to 

(or may detrimentally affect) the aims of another (Gallo et al., 2009; Wiersma and Nudds, 2009) and strategic 

collaboration could increase the efficiency of planning efforts and actions for both agencies. This is 

particularly true where only a few organisations have the expertise and resources necessary for implementing 

an SCP approach (Prendergast et al., 1999), and others are constrained to act in an opportunistic manner (Ban 

et al., 2009). However, the metrics by which the organisations measure success are often very different. In 

some situations agencies compete for funding, volunteers and publicity, and the extent to which their 

conservation objectives overlap may differ (Haley and Clayton, 2003). However, collaboration is only 

worthwhile if the benefits outweigh the costs, and assessing the various costs of collaboration is rarely 

straighforward. Some factors, such as administrative burden or dilution of an agency’s perceived 

achievement, may be relatively easily quantified. Others, such as mistrust and mission conflict, are more 

subjective (Endicott, 1993; Wondolleck and Yaffee, 2000; Macdonald, 2002).  
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Most existing studies on the value of coordinated conservation effort focus primarily on agencies operating at 

different geographic scales, and on strategic, hierarchical approaches to the conservation of assemblages and 

groups distributed between many administrative areas (Strange et al., 2006; Jantke and Schneider, 2010, 

Moilanen and Arponen, 2011). The context described here, in contrast, considers agencies operating in the 

same environment but with varying objectives. Given the importance of cost-balancing and knowledge, a 

useful approach to these multi-agency interactions may be to model them as ‘games’ (Colyvan et al., 2011) 

and the few studies which attempt to incorporate this issue into modelling conservation interventions do just 

this (Bode et al., 2010, Frank and Sarkar, 2010). Bode et al. (2011), for example, use a game-theoretic 

approach to examine conservation outcomes with two agencies conserving land containing two biological 

features. Based on a thorough review of real-world contexts where conservations agencies’ efforts interfere, 

they simulate interactions between agencies which can be critical for the overall success of those efforts in a 

region, such as increases in land costs due to perceived demand. Albers et al. (2008) also took a game 

theoretic approach, modelling the effect of government actions on marginal benefits to private agents in the 



same landscape, and the resulting pattern of overall land conservation in a simple model containing 7 land 

parcels.  
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In this study we consider two agents, each applying SCP techniques to select land, and we specifically assess 

the utility of two different types of collaboration. Novel features of our analysis include varying land costs, 

agencies whose targets include multiple species, and realistic distributions of up to 200 species across 1600 

parcels in the landscape. We also partly address the real-life problems of quantifying collaboration costs by 

instead quantifying the cost savings resulting from more efficient conservation actions under different 

collaboration regimes.  

 

2. MATERIAL AND METHODS 

We extended a computational framework described in Langford et al. (2009) to work with multiple agents, 

where each agent attempted to implement a conservation network of parcels that met its specified target for 

species representation at the minimum cost. In our simulations we examined three types of interactions 

between agents, which we label acting in isolation, sharing information and pooling resources. In each case 

we examined the utility of these interactions from the viewpoint of the combined conservation network 

resulting from both agents' actions, as well as from each agent’s individual perspective. When the agents act 

in isolation, they are attempting to achieve their targets solely though their own actions and take no account 

of the benefits captured by the other agent’s actions (Halpern et al., 2006). This could model the case where 

an agent wants to demonstrate gains as a direct result of their own actions, or is ignorant of what others have 

achieved (Albers and Ando, 2003). Under the share information assumption, each agent is aware of the 

species representation achieved within the other agent’s conservation network and counts these gains towards 

their own targets, though they still act separately. For example, an NGO might consider the extent to which 

government reserves already protect their target species, and act to complement this by prioritising locations 

containing those species not yet covered. The pool resources assumption requires the greatest amount of 

interaction as agents combine their resources and undertake strategic conservation actions as a single entity 

with a shared objective (Kark et al., 2009). In our model the shared objective consisted of the sum of the two 

agents’ individual objectives. Below we briefly describe the steps in our simulation. 



2.1. Species distributions  128 
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We used a hypothetical landscape containing 1600 parcels and a scenario-specific number of species (see 

Section 2.3). Parcels were arranged in a rectangular lattice, but the spatial location of a parcel had no effect 

within our model. Habitat for each species was assigned as either present or absent from a parcel. The 

species habitat locations were determined by “rarity” and “richness” distributions. The “rarity distribution” 

describes the number of species that have habitat on a given number of parcels (e.g. 8 species have habitat on 

3 parcels, 5 species have habitat on 6 parcels, etc.) while the “richness distribution” describes how the 

number of species that have habitat varies across parcels and represents the extent to which species tend to 

co-occur on the same parcels. The computational framework used allows users to generate synthetic 

conservation planning problems where species habitat is distributed to match both user-specified “richness” 

and “rarity" distributions simultaneously (Langford et al. 2009). We derived “Victorian” richness and rarity 

distributions from data gathered across the state of Victoria, Australia by the Victorian Government’s 

Department of Sustainability and Environment. This data set consisted of  36,787  30×30m quadrats, 

scattered throughout Victoria, and contained information on the presence and absence of 4080 plant species. 

Fig. 1 shows examples of the “rarity” and “richness” values used in the simulations. These results were 

obtained using the “Victorian” rarity and richness distributions with 200 species and 1600 parcels.  

 

2.2. Parcel costs  

The cost for each parcel was determined by sampling from a lognormal distribution. The shape of the 

distribution was derived from a real data set comprising of a confidentialised extract of unit-record property 

sale valuations from agricultural land around Melbourne, Australia (2008 Victoria Valuer General Statewide 

Valuations Dataset). The best fit to the sale price distribution resulted in a lognormal distribution with mean 

of 0.37 AU$/m2 and a standard deviation of 0.13.  

 

2.3. Conservation actions  

Each agent used the conservation planning tool Marxan (Ball and Possingham, 1999) to determine the set of 

parcels to purchase. Marxan uses a stochastic search algorithm (simulated annealing) to identify parcels that 
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meet species representation targets for the least cost. We chose to use Marxan as it is the most widely used 

optimization tool for conservation planning and thus is likely to be used by real-world agents in situations 

similar to our modelled scenarios. Each agent used Marxan to find the set of unreserved parcels (P) which 

met its objective for the minimum cost:  

min
P

ci
i∈P
∑
⎡

⎣
⎢

⎤

⎦
⎥ , such that for each species, j, rij ≥

i∈P
∑ Tj                                                 (1) 159 
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where ci is the cost of parcel i, rij is an element of the representation matrix r specifying whether species i is 

present on parcel j, and Tj is the jth entry in the target vector T which specifies the agent’s representation 

target for each species j.  We make the simplifying assumptions that i) each agent buys all its parcels at once, 

ii) each agent acts in turn, with agent 1 acting first, and iii) each agent only gets one turn. Even with these 

constraints, interesting dynamics emerge. 

 

We examine three scenarios where a pair of agents interact, which we label NGO-NGO, Gov-NGO, NGO-

Gov. In the first scenario there are 40 species in the landscape, which all have the same rarity (occurring on 

5% of parcels) and co-occurrence is determined by the Victorian species richness distribution. In this 

scenario both agents are interested in a mutually exclusive set of species. Agent 1’s objective consists of 

obtaining two representations of the first twenty species, and has a target vector T , 

where each element of the vector represents the target number of parcels for the species labeled in the 

subscript. Agent 2 has the mutually exclusive objective consisting of the target vector 

. This could represent the situation where two NGOs are operating in the same 

landscape but both are targeting different sets of threatened species (e.g. plants and amphibians). We label 

this scenario as NGO-NGO, and because the representation targets are symmetrical with resect to the species 

distributions, it doesn’t matter which agent acts first.  

1 = 21, 22{ ,..., 220, 021,..., 040}

T2 = 01,02{ ,..., 020, 221,..., 240}

 

In the NGO-Gov and Gov-NGO scenarios, 200 species are distributed on parcels such that they match both 

the Victorian richness and rarity distributions (Langford et al., 2009). One agent (Gov) attempts to select 

parcels such that all species are represented and has a target vector TGov = 21, 22{ ,..., 2200}. The other agent 

(NGO) focuses only on the 10 rarest species with a target vector T

180 

NGO = 21, 22{ ,..., 210, 011,..., 0200}  (assuming 181 
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species are ordered by decreasing rarity). This could represent the case where a government agent attempts to 

implement a complementary conservation network representing all species, while an NGO is focused on 

achieving additional protection for the rarest and/or most endangered species. In these scenarios the two 

agents’ objectives overlap, and therefore the order in which agents act is important. Thus in the NGO-Gov 

scenario, the NGO agent acts first and the order is reversed in the Gov-NGO scenario.  

Finally, when collaborating as a single agent via the pool resources interaction, the representation target of 

the single agent is the sum of the two individual agents’ representation targets. Thus for the NGO-NGO 

scenario this would consist of a target vector TNGO,NGO = 21, 22{ , , 240}  and for the Gov-NGO and NGO-Gov 

scenarios the target vector is T .  
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NGO,Gov = 41, 42{ ,..., 410, 211,..., 2200}

 

2.4 Running simulations 

There were three sources of stochasticity in our model, resulted from: i) the algorithm for distributing species 

amongst the parcels (Section 2.1), ii) the process of assignment of costs to each parcel (Section 2.2) and iii) 

Marxan’s simulated annealing algorithm, which may result in different sets of parcels being selected for 

multiple model realisations (Section 2.3). Each scenario was run 20 times to incorporate the effects of model 

stochasticity, and the figures presented show the median values resulting from the 20 runs. Some figures also 

show the variance from the multiple runs. 

 

3. RESULTS 

The costs for each agent to achieve their objectives varied depending on the order in which the agents acted, 

the type of interaction between agents, and the extent to which the agent’s goals overlapped.  These costs are 

shown in Fig. 2 as boxplots to summarise the stochastic variation in multiple model runs. All costs were 

normalised with respect to the median value of the total cost to achieve both agents’ objectives under the pool 

resources scenario. In all cases when the two agents were either acting in isolation or sharing information, 

the combined cost of both agents was greater than when the agents acted as a single entity in the pool 

resources scenario (Fig. 2 (a)-(f)). This cost increase was greatest where the agents acted in isolation and 

could result in almost a 50% increase (Fig. 2(b)). 
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In the NGO-NGO scenario the agent acting second (agent 2) tended to spend less than the agent acting first if 

they shared information (Fig. 2(a)). This is because agent 2 knew which species were represented in the first 

agent’s conservation network and could select additional complementary parcels until they reached their 

objective. When acting in isolation, agent 2 had no knowledge of the species represented by agent 1 and 

needed to implement a whole new conservation network that met their objectives. This resulted in agent 2 

tending to spend slightly more than agent 1 (Fig. 2 (b)). 

 

This situation was reversed in the NGO-Gov scenario when the agents share information (Fig. 2 (c)). In this 

case the NGO targeted a small subset of the species compared to Gov and thus when it acted first, it spent 

significantly less than Gov. In this case Gov spent approximately 90% of what both agents would spend if 

they pooled resources. There was little difference when the agents acted in isolation except that Gov, as 

second agent, tended to spend slightly more compared to what it spent in the share information scenario.  

 

When the agents acted in reverse order in the Gov-NGO scenario, the situation was more similar to the NGO-

NGO scenario with the share information interaction (Figs. 2(e) and 2(f)). Compared to the NGO-Gov 

scenario, NGO now had increased costs while Gov’s costs were reduced. As with the NGO-Gov scenario 

there was little difference between the agents acting in isolation and sharing information. By comparing 

Figs. 2(c) and 2(d) with Figs. 2(e) and 2(f), it is clear that there was an increase in cost in moving from acting 

first to acting second for NGO and Gov under both the share information and act in isolation interactions. 

This is in contrast to the NGO-NGO scenario where it was advantageous for an agent to act second in the 

share information scenario, but slightly disadvantages to act second in the act in isolation scenario.  

 

3.1. Gains from sharing information 

From the results shown in Fig. 2, the cost savings generated by moving from acting in isolation to interacting 

by sharing information can be calculated. This was only of consequence for the agent acting second, since in 

this simulation, the first agent was assumed not to anticipate the second agent's actions and thus acted in an 



identical way in both the act in isolation and share information scenarios. This cost saving is shown in Fig. 3 

for each of the three scenarios. The largest savings occurred in the NGO-NGO scenario, with a median 

proportional cost saving of 0.27 but with a large variance. When acting second, the government achieves a 

significantly smaller cost saving in the NGO-Gov scenario and the NGO has the smallest saving when acting 

second in the Gov-NGO scenario.  
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3.2. Gains from pooling resources 

It is also possible that additional cost savings could be made for each of the agents if they act as a single 

entity via the pool resources interaction. This situation is more complex because the two agents are 

implementing a reserve network that meets both of their objectives in a single step, and there are multiple 

ways that the total cost could be split between both agents. There is always some cost-sharing proportion that 

would result in one agent gaining financially, but a more interesting question is whether a cost split exists 

whereby both agents benefit. Fig. 4 shows the proportional cost saving for each agent when moving from 

acting in isolation or sharing information to pooling resources under all possible proportions for dividing the 

total cost between agents. As in Fig. 2, proportional cost for each agent is defined as the proportion of the 

cost of the pool resources scenario. Gains and losses are shown as a solid line for the first agent and as a 

dashed or dotted line for the second agent when sharing information or acting in isolation, respectively. Cost 

splits where both agents would receive financial benefit occur at x-axis values where the sloping lines for 

both the first and second agents have y-values greater than zero. The x-value where the two lines intersect 

represents the cost-sharing proportion where both agents gain the same amount. At points away from this 

intersection, either one agent gains more than the other, or one agent makes a gain and the other a loss. Thus 

the intersection point defines the location for a “fair” sharing of costs while satisfying the two agents' 

differing objectives.  In multi-objective optimization terms, any sharing proportion represents a Pareto 

optimum and the lines in Fig. 4 represent Pareto frontiers. This means that at any sharing proportion, no 

improvement can be made for one agent that is not to the detriment of the other agent.  

 

In the NGO-NGO scenario, when moving from acting in isolation to pool resources there was a wide range 

of cost-sharing proportions where both agents benefited (Fig. 4(a)). This occurred if the first agent paid 



anything between 32% and 67% of the total cost. The point that equalized the gains for both agents occurred 

when costs were split almost equally, such that the first agent paid 49% of the total cost. This small 

divergence from the expected 50-50 split can be attributed to model stochasticity (see Section 2.4). In this 

case both agents had a proportional cost saving of 0.18. The location of the equal-sharing proportion when 

moving from share information to pool resources occurred when the first agent paid 66% of the total cost. In 

this case, gains to each agent had reduced to a proportional cost saving of 0.05. 
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In the NGO-Gov scenario, the difference between the curves representing acting in isolation and sharing 

information was reduced (Fig. 4(b)) and in the Gov-NGO scenario these two curves were almost identical 

(Fig. 4(c)). This indicates little difference between these two interactions as shown in Fig. 3. The point where 

the curves representing each agent intersect was close to zero on the y-axis in both Fig. 4(b) and 4(c), 

meaning that the financial gains were small for the cost-sharing proportions where both agents could make 

savings.  

 

4. DISCUSSION 

We have presented a model that seeks to quantify the changes in cost efficiency for various types of 

interactions between two agents undertaking land purchases using a Systematic Conservation Planning 

approach in a two-step sequential process. This setup could also cover contexts where the second agent acts 

in an area where conservation reserves already exist, and must decide whether it is cost effective to spend 

resources gathering information about existing reserves before implementing a conservation plan. 

 

The advantage of acting first varied between and within the scenarios. The NGO-NGO scenario showed a 

significant advantage for the agent acting second only if they shared information, while in the second and 

third scenarios, acting first was always advantageous, regardless of whether information was shared. Thus 

the second and third scenarios comprise a Stackelberg game (Albers et al., 2008) where it is advantageous to 

lead in a two-step sequential game. The Stackelberg game arises in the NGO-Gov and Gov-NGO scenarios, 

because one agent, Gov, has all 80 species in its representation target and thus needs to select a larger set of 

parcels in its conservation network than the NGO agent. When Gov acts first, this larger set of parcels places 



constraints on where NGO can act; when Gov acts second, the fact that it needs a larger number of parcels 

also makes its task more difficult after NGO has already made their parcel selection. As the representation 

targets of Gov and NGO overlap, the set of candidate parcels for the agent acting second will be constrained 

under act in isolation and sharing information, while under sharing information the agent acting second will 

also have their targets partially met (albeit in an inefficient way, from their perspective). In either case this 

usually results in greater costs for the second agent than those incurred if they could make an efficient 

selection of parcels without being constrained by the other agent’s actions. The first scenario did not 

comprise a Stackelberg game, since both agents had mutually exclusive objectives and attempted to 

implement similarly-sized conservation networks to fulfill their objectives. 
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Only the NGO-NGO scenario showed significant value in both types of collaboration. Moving from acting in 

isolation to sharing information provided a median proportional cost saving of 0.27 (with considerable 

variation (Fig. 3)), while moving from acting in isolation to pooling resources provided varying losses or 

gains depending on the cost-sharing between the agents (Fig. 4(a)). With the fairest cost-sharing, a median 

proportional cost saving of 0.18 was possible. Although smaller, this gain applied to both agents, whereas 

moving from acting in isolation to collaborating by sharing information only benefited the agent acting 

second. If expenses involved in collaborating exceeded these cost savings then collaboration would not be an 

efficient use of funds. Thus these cost savings provide bounds to determine the range of costs associated with 

collaboration that would make it a worthwhile undertaking for either agent. 

 

In the NGO-Gov and Gov-NGO scenarios, increased collaboration generated much smaller savings, with the 

largest gains from sharing information by the government agent in the NGO-Gov scenario (Fig. 3). There 

were no cost-sharing proportions where both agents could significantly gain from pooling resources (Fig. 

4(b), (c)). In cases like this, there may still be situations where both agents are willing to pool resources using 

an unfair cost-sharing. The agent that makes a loss relative to acting in isolation is then providing an 

incentive or subsidy for the other agent due to their cost savings from collaborating. A real word example of 

this could be a government agency which wishes to provide incentives for NGOs to undertake conservation 

actions targeting specific species or locations. For example if Gov paid 90% of the pool resources cost in Fig. 



4(c), NGO would have saved a proportional cost of 0.14 while Gov would have made a proportional cost loss 

of 0.11, relative to both agents acting in isolation. 
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While the model presented here shows a range of interesting behaviors, the results only apply to the specific 

species/landscape/cost and action scenarios described.  One of the advantages of a simulation approach is that 

it is possible to vary the problem characteristics in a systematic way to explore the extent to which the 

conclusions are in fact general, rather than an artifact of the model structure, parameterisation and inputs. 

There are numerous ways we plan to extend this model to make the results more generalisable. These 

extensions include i) modeling a greater range of species, landscapes, and costs ii) allowing agents to 

anticipate each others’ actions and to act sequentially or simultaneously for an arbitrary number of turns, and 

iii) modeling uncertainties in the information on which the agents base their decisions. This last extension 

provides many interesting opportunities as it includes both uncertainties in the species and cost information 

as well as uncertainties in an agent’s predictions about what the other agent might do. Systematic 

conservation planning, as practiced in these examples, can be sensitive to common uncertainties, such as 

variations in predicted species distribution (Wilson et al., 2005; Langford et al., 2009). Using this approach 

there is considerable scope for exploring how these uncertainties impact outcomes, relative to uncertainties in 

predicting the behaviour of other agents undertaking conservation actions in multi-agent problems. 

 

5. CONCLUSION 

Although the model presented here has a range of simplifying assumptions, it demonstrates that the value of 

collaboration can vary significantly in different situations. In most cases, collaboration would have associated 

transaction costs and these costs need to be weighed against the potential benefits from collaboration. Our 

model demonstrates a method for quantifying the benefits of collaboration and thus determining the range of 

costs that would result in collaboration providing an efficient use of scarce conservation resources. This 

approach can be useful for the pragmatic allocation of resources in many real-world contexts where monetary 

costs of collaboration are not immediately obvious, but must be inferred indirectly from subjective factors 

such as changes to an agent’s reputation or perceived effectiveness in addition to estimates of the transaction 



costs for collaboration. We believe that our approach (and its future extensions) may help encourage 

collaboration in situations where it will truly deliver improved conservation outcomes. 
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Figure Captions 

Fig. 1. Examples of the “rarity” and “richness” values used in simulations, derived from the “Victorian” 

dataset (see Section 2.1) using 200 species and 1600 parcels. (a) shows the rarity distribution, i.e., for each 

possible number of parcels that could contain habitat for a species (shown on the x-axis), the y-axis indicates 

the total number of species habitats in the sampled distribution that occupy the given number of parcels. (b) 

shows the number of species that have habitat on each parcel, sorted in decreasing order of number of 

species. 

Fig. 2. Boxplots representing the costs required for each agent to achieve their objectives, as a proportion of 

the total cost required when the two agents pool resources (depicted by the grey horizontal line). The left and 

right columns show the results when agents share information or act in isolation, respectively. Each plot 

shows three boxplots representing the distribution of costs for the agent acting first, the agent acting second, 

and the summed cost of both agents. 

Fig. 3. Boxplots showing the cost savings for the agent acting second when moving from acting in isolation 

to interacting by sharing information. 

Fig. 4. The cost saving or increase for each agent when moving from acting in isolation or sharing 

information to pooling resources under all possible cost-sharing proportions. The cost proportion for the first 

agent is shown on the lower axis of (c) and the proportion for the second agent is shown on the upper axis in 

(a). Values on the y-axis greater than zero represent a proportional cost saving and negative values represent 



an increase in cost relative to the acting in isolation scenario. The lines represent the median values from Fig. 

2. 
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