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Classical studies of area summation measure contrast detection thresholds as a function of grating diameter. Unfortunately,
(i) this approach is compromised by retinal inhomogeneity and (ii) it potentially confounds summation of signal with
summation of internal noise. The Swiss cheese stimulus of T. S. Meese and R. J. Summers (2007) and the closely related
Battenberg stimulus of T. S. Meese (2010) were designed to avoid these problems by keeping target diameter constant and
modulating interdigitated checks of first-order carrier contrast within the stimulus region. This approach has revealed a
contrast integration process with greater potency than the classical model of spatial probability summation. Here, we used
Swiss cheese stimuli to investigate the spatial limits of contrast integration over a range of carrier frequencies (1–16 c/deg)
and raised plaid modulator frequencies (0.25–32 cycles/check). Subthreshold summation for interdigitated carrier pairs
remained strong (È4 to 6 dB) up to 4 to 8 cycles/check. Our computational analysis of these results implied linear signal
combination (following square-law transduction) over either (i) 12 carrier cycles or more or (ii) 1.27 deg or more. Our model
has three stages of summation: short-range summation within linear receptive fields, medium-range integration to compute
contrast energy for multiple patches of the image, and long-range pooling of the contrast integrators by probability
summation. Our analysis legitimizes the inclusion of widespread integration of signal (and noise) within hierarchical image
processing models. It also confirms the individual differences in the spatial extent of integration that emerge from our
approach.
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Introduction

Most models of spatial vision attribute area (spatial)
summation of contrast to probability summation between
independent noisy detecting mechanisms (Anderson &
Burr, 1991; Graham, 1989; Robson & Graham, 1981).
However, recent psychophysical evidence (Meese, 2010;
Meese & Baker, 2011; Meese & Summers, 2007, 2009) is
inconsistent with this. A more successful model is one in
which contrast integration (linear spatial summation of
contrast) follows a nonlinear (square-law) contrast trans-
ducer (Foley, Varadharajan, Koh, & Farias, 2007; Meese
& Summers, 2007, 2009) and additive noise (Meese,
2010). The cascade of the two quadratic effects produced
by square-law transduction (Legge, 1984) and summation
of signal and noise (Campbell & Green, 1965; Tyler &
Chen, 2000) means that sensitivity improves with the
fourth root of area, similar to the conventional probability
summation model and several empirical reports (see Meese
& Baker, 2011 for a review). However, the behavior of
model and humans is very different when contrast area is
manipulated in more interesting ways, as we now describe.

Meese and Summers (2007) designed what we have
come to call a “Swiss cheese” stimulus (Meese & Baker,
2011). In this type of stimulus, diameter is constant and a
sine-wave carrier is modulated by a raised plaid pattern
such that it contains interdigitated patches of high-contrast
regions (“cheese”) and low/zero-contrast regions (“holes”).
Using plaid modulators of opposite phase, a complementary
pair of Swiss cheese stimuli can be created (see Figure 1a).
For convenience, we sometimes give these the nominal
titles of “black” and “white” cheese (or “checks”), by
reference to the polarity of the modulator at the center of
the display. Of course, when “black” and “white” cheeses
are summed, this recreates the original carrier grating (the
“full fat cheese” or the “full” stimulus). Thus, contrast
detection thresholds of the carriers for “black” and
“white” cheeses and their sum can be used to assess area
summation of contrast.
Meese and Summers (2007, 2009) did this and found

that sensitivity improved substantially when a “black”
cheese was added to an original “white” cheese, providing
good evidence for the physiological signal combination
model described above. Based on the results of an
identification experiment, they argued that observers
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could not construct an accurate template of the Swiss
cheese and therefore resorted to uniform integration over
much of the stimulus region. This meant that the level of
internal noise (assumed to be Gaussian and additive) did
not vary with the stimulus condition and that the primary
factor affecting the performance benefit from area sum-
mation was the square-law signal transduction. For the
Swiss cheese stimulus, this benefit is somewhat greater (in
model and data) than the factor of ¾2 (3 dB) that might be
expected on first approximation (Legge, 1984) because the
“black” and “white” cheeses are not independent signals
(there is spatial overlap between them). This point was
addressed using the closely related Battenberg stimuli of
Meese (2010). These are made from clumps of indepen-
dent micropatterns, which means that complementary
stimulus pairs can be constructed without spatial overlap.
In summation experiments with these stimuli, perfor-
mance dropped to the expected factor of ¾2 (3 dB),
supporting the model (Meese, 2010).
Meese and Baker (2011) proposed that the process of

area summation of contrast is involved in deriving a
general-purpose size code for textures and patterns. They
suggested that this task is achieved with the help of a

contrast normalization network (Meese & Baker, 2011;
Meese & Summers, 2007) that protects the suprathreshold
image-contrast code (Albrecht & Geisler, 1991; Heeger,
1992). On this hypothesis, suprathreshold stimulus size is
encoded by a population of mechanisms with different
sized integration apertures (Meese & Baker, 2011), but
perceived contrast is prevented from varying with stim-
ulus size, as is required (Cannon & Fullenkamp, 1991).
On the other hand, when the stimulus is around detection
threshold, the gain control is (effectively) inoperative and
only the performance-enhancing benefits of contrast
integration are seen. Hence, sensitivity improves with
the integral of contrast over space. We use the term
“contrast integration” to refer to this type of signal
combination (Syväjärvi, Näsänen, & Rovamo, 1999),
distinct from formulations that attribute area summation
to probability summation (Meese & Williams, 2000;
Robson & Graham, 1981).
Having concluded that contrast integration extends

beyond that of a typical three- or four-lobe receptive field
in V1 (Meese, 2010), two questions naturally arose. First,
over what spatial range does this integration extend (i.e.,
what is the size of the integration aperture)? Second, is the

Figure 1. Swiss cheese and full stimuli. (a) Cheeses (check stimuli) were the product of a full stimulus and a raised plaid modulator. The
modulator was in T cosine phase with the center of the image, producing either “white” or “black” cheeses (left and right columns). The
original full stimulus could be reconstructed by summing the two cheeses. (b) High-contrast examples of “white” cheese stimuli for a range
of carrier and modulator frequencies. Stimuli for the 16 c/deg carrier were identical to those labeled 8 c/deg but viewed at twice the
distance. Symbols on the left correspond to those used in subsequent data figures. Stimuli along a diagonal path through this stimulus
space have the same number of cycles per check but differ in carrier and modulator frequencies.
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process we have identified scale invariant (Banks, Geisler,
& Bennett, 1987; Howell & Hess, 1978; Rovamo,
Ukkonen, Thompson, & Näsänen, 1994), relating to the
number of carrier cycles, or does it relate to retinal image
size?
Here, we vary the modulation and carrier frequencies in

Swiss cheese stimuli at contrast detection threshold to
address the first and second questions, respectively.

Basic intuitions

The intuitions behind our approach can be described as
follows. First, the integral of contrast over area (the
“contrast area”) in a full stimulus is exactly twice that in a
Swiss cheese stimulus. Therefore, if vision performs
extensive spatial integration of contrast over the stimulus,
then sensitivity to the full stimulus should be twice that to
the Swiss cheese (we assume a linear contrast transducer
here, merely to simplify the exposition). However, this
benefit arises only if the integration aperture extends
across at least a pair of checks (i.e., a cheese and hole
pair). For example, if the integration aperture is no larger
than a single check, there can be little benefit from filling
the holes in the Swiss cheese (to make a full stimulus)
because this makes little difference to the contrast area
within the aperture. Therefore, we reasoned that by
manipulating the size of the check region, we could
determine the size of the integration aperture by observing
the point at which the benefit of filling the holes in the
Swiss cheese is lost.
One potentially complicating factor is retinal inhomo-

geneity. The Swiss cheese stimulus was designed to
combat this problem (Meese & Summers, 2007), at least
in part. For example, if the check size is small compared
to the rate at which sensitivity declines with eccentricity,
then each type of cheese (“black” and “white”) are spread
fairly equally over the inhomogeneity, with the net result
that sensitivity is fairly equal for the two (Meese & Baker,
2011; Meese & Summers, 2007, 2009). However, if the
check size is large compared to the rate of decline, then
the size of the integration aperture might be under-
estimated because the loss of sensitivity in the peripheral
hole regions would mean that there is little benefit from
filling them in. For this reason, we repeated the experi-
ments using a second method (the normalization method),
where we adjusted the contrasts in the two different check
regions to equate their sensitivity.

Methods

Equipment

A PC was used to control a ViSaGe system (Cambridge
Research Systems, Kent, UK) with 14-bit contrast

resolution. Stimuli were displayed on a gamma-corrected
Nokia Multigraph 445� monitor with a mean luminance
of 60 cd/m2 and a refresh rate of 120 Hz.

Observers

Three observers took part in the experiments (DHB,
SAW, and TSM). DHB and SAW were emmetropic and
TSM wore his normal spectacle correction. All three were
psychophysically well experienced. DHB and TSM are
authors.

Stimuli

Carrier signals were horizontal sinusoidal gratings with
a diameter of 10-, spatially curtailed by a raised cosine
envelope (cosine half-period of 1-; full-width, half-height
of 9-). Carrier frequencies (at the primary viewing
distance of 119 cm) were 1, 2, 4, and 8 c/deg, and all
carriers were in sine phase with the center of the display.
Modulators were raised plaids, constructed from two

orthogonal grating stimuli (T45-) in positive (“white”
check) or negative (“black” check) cosine phase with the
center of the display (see Figure 1a). The two phases of
modulator (“black” and “white”) were applied to the
contrast of the carrier to produce interdigitated “Swiss
cheese” component stimuli, which could be summed to
reproduce the original (unmodulated) carrier (see Meese
& Summers, 2007). Modulator frequencies were at and
between 0.18 c/deg and 2.82 c/deg, which produced a
stimulus set with check sizes from 0.25 to 32 cycles/check
(arranged in octave steps). High-contrast examples of
“white” cheese stimuli are shown in Figure 1b.
For the 16 c/deg carrier condition, we used the highest

spatial frequency stimuli described above and doubled the
viewing distance. This doubled the carrier and modulator
frequencies and halved the stimulus diameter (in degrees
of visual angle).
We measured contrast detection thresholds for the

carriers of our stimuli. We express carrier contrast in
decibels (dB), calculated as CdB = 20log10(C%), where C%

is Michelson contrast in percent, defined as C% =
100(Lmax j Lmin)/(Lmax + Lmin), where L is luminance.
Goodness of fit for models was assessed using the root-
mean-square error (RMSe), defined as

RMSe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1:n

ðmodeli j dataiÞ2

n
;

vuut
ð1Þ

where modeli and datai are the model predictions and
empirical data points (in dB) for the ith condition, and n is
the number of data points.
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Procedure

Observers were seated with their head and chin
supported by a rest. Stimuli were viewed binocularly and
presented in the center of the display. Observers were
instructed to fixate a small black dot, which was presented
continuously in the center of the display.
A two-interval forced-choice (2IFC) paradigm was used

to estimate contrast detection thresholds for the carriers.
Stimuli were presented for 100 ms in one of two intervals
(selected at random), each indicated by auditory beeps and
separated by an interstimulus interval (ISI) of 400 ms. In
the interval that did not contain the stimulus, and in the
gaps between intervals and trials, the display remained at
a constant mean luminance (apart from the fixation point).
Observers indicated which interval they believed con-
tained the target using a two-button mouse and received
feedback on the correctness of each response. Carrier
contrast was controlled by a pair of 3-down, 1-up staircases
with a minimum step size of 3 dB. Each staircase
terminated after the lesser of 70 trials or 12 reversals, and
the data from the two staircases were pooled for threshold
estimation (see below).
Two different experimental procedures were used to

measure summation of contrast over area. In the basic
method, we measured thresholds for the “black” and
“white” cheeses (the two components) and the full
stimulus (the compound). Summation was estimated by
subtracting the threshold for the full stimulus (in dB) from
the lowest (best) of the two cheese stimuli (usually the
“white” cheese threshold). This is equivalent to calculat-
ing the ratio of these two threshold contrasts when
expressed in percent. In the normalization method, the
full stimulus was the sum of “black” and “white” cheeses
as before, but to equate sensitivity to the two cheeses, the
contrast of the cheese to which the observer was least
sensitive was raised (based on the initial estimates of
thresholds; e.g., see Baker, Meese, Mansouri, & Hess,
2007). Summation was calculated in the same way as
above.
DHB ran each method in separate experiments for all

carrier frequencies. In each case, the pairs of “black” and
“white” cheese thresholds were measured contempora-
neously using an interleaved design. The cheese stimuli
were identical across methods and so their thresholds were
averaged to achieve the most robust estimates. For SAW,
the approach was slightly different. First, the pairs of
cheese thresholds were measured in interleaved trials.
Then, thresholds for each of the full stimuli (basic and
normalized) were measured, also interleaved across trials.
SAW performed the experiment at all carrier frequencies
except 1 c/deg. TSM performed the experiment in the
same way as SAW but for only the 4 c/deg carrier
condition.
The raw data were analyzed using probit analysis

(Finney, 1971) to estimate threshold at the 75% correct
point on the psychometric function. Following our usual

procedure, if the standard error of the probit fit exceeded
3 dB, the data were discarded and the appropriate
condition was repeated. Because the normalization
method required reliable estimates of the thresholds for
the two cheeses and the full stimulus, if any one of these
was discarded all three were remeasured. Thresholds and
summation ratios were averaged across 4 repetitions of the
experiment.

Results and discussion

Preliminary analysis

Figure 2 shows the summation results using the normal-
ization method for each of the 3 observers for the 4 c/deg
carrier (see Methods section). The summation measure
indicates the performance benefit (in dB) of filling the
holes in the Swiss cheese with contrast. The curves in
Figure 2 show the predicted benefit (summation) for a
single sine-phase linear filter element (receptive field)
in the center of the display for each of two filter
bandwidths (see inset and figure caption). (All filters were
Cartesian separable two-dimensional log-Gabor filters (see
Appendix C of Meese, 2010) with bandwidths reported as
full-widths (for spatial frequency) or T half-widths (for
orientation) at half-height.)
The analyses in Figure 2 show the effects of contrast

summation within the model filter elements. However,
even for the large 8-lobe filter elementVwhich is
probably unreasonably large (Foley et al., 2007)Vthe
breadth of summation is nowhere near enough to account
for the experimental results: Spatial pooling of some sort
must be involved.
Previous detailed analyses (Meese, 2010; Meese &

Summers, 2007, 2009) have consistently shown that
spatial probability summation across the elements of
our standard size filter (spatial frequency bandwidth of
1.6 octaves, orientation bandwidth of T25-, 4-lobe sine-
phase receptive field) cannot account for our results. This
was confirmed again here as follows. Figure 3 shows the
results for 3 observers for each method of data collection
(standard and normalization methods) and predictions
using Minkowski summation across filter outputs with
exponents (2) of 4 and 8, arguably each of which are good
approximations to spatial probability summation (see
Appendix A). For the standard size filter element (solid
curves), each of these formulations typically underesti-
mated summation for all three observersVsometimes
quite badly. For the larger filter element (dashed curves),
the predictions for 2 = 4 were quite good for SAW and
DHB but still underestimated summation for TSM
(particularly in Figure 3f). Furthermore, as we have
shown elsewhere (Meese & Summers, 2009), this for-
mulation is also inconsistent with the steep slope of the
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psychometric function (not shown here). Thus, even when
we constructed the model to favor probability summation
as best we might (a fairly large filter element with a linear
transducer and a fairly low Minkowski summation
exponent of 4; see Appendix A), it could not account for
all of our results. Therefore, we abandoned the probability
summation model and turned our attention (see later) to a
model involving linear summation (contrast integration)
over area, following spatial filtering and square-law
contrast transduction.

Main analysis

Contrast detection thresholds for “black” and “white”
cheeses are shown in Figures 4a–4c for three observers.
The results are plotted as functions of carrier cycles per
modulator check (i.e., check size), so that lower frequency
modulators are placed to the right of the plot (consistent
with the layout of Figure 1b). As check size increased,
thresholds for the “black” and “white” cheeses diverged.
Sensitivity to “white” cheese stimuli tended to improve
with check size. Presumably, this was because more of the
stimulus energy was concentrated in the central part of the
visual field where sensitivity was greatest (Foley et al.,
2007; Pointer & Hess, 1989; Robson & Graham, 1981).
Conversely, for the “black” cheese stimuli, the contrast
energy was distributed further away from the central
visual field and sensitivity tended to decline with check
size. However, over much of the range, the thresholds for
the “black” and “white” cheeses were fairly similar, the
separation becoming apparent only for the largest one or
two check sizes (the points toward the right of each pair of
functions). This demonstrates that our Swiss cheese
design was effective in combating the undesirable influ-
ences of retinal inhomogeneity over much but not all of
the range (see Meese & Baker, 2011; Meese & Summers,
2007 for discussion). For the larger check sizes, the
relative insensitivity to the “black” cheese stimuli meant
that the basic methodVwhere the two cheeses had the
same contrasts in the full (compound) stimulusVwould be
fairly insensitive to the effects of very long-range contrast
integration (e.g., Q32 carrier cycles), should it exist. We
attempted to compensate for this shortcoming by using the
normalization method, where the contrasts of the two
cheeses in the full stimulus were adjusted to equate their
detectability (see Methods section).
The middle and bottom rows of Figure 4 show

summation ratios measured using each of the two
experimental methods (basic and normalization). In both
cases, summation was substantial (È6 dB, or a factor of 2)
for modulators that produced e2 cycles/check, presumably
due to summation within linear filter elements (Meese,
2010; Appendix B). As check size increased, the level of
summation declined slowly. For the basic method (where
component contrasts were always the same), it reached the
low levels usually associated with probability summation
(1 or 2 dB) by È32 cycles/check. In general, slightly
more summation was evident using the normalization
method (e.g., it tended not to drop below È3 dB, even at
32 cycles/check). Presumably, this was because the
normalization method was effective in overcoming the
differences in component sensitivities for the large
modulators (see Figures 4a–4c), thus providing a cleaner
picture of the area summation process. At first glance
(Figures 4g–4i), this might suggest that the range over
which summation is more potent than probability summa-
tion extends up to 64 cycles (note that the implied

Figure 2. Summation results for three observers using the
normalization method. Summation is derived by plotting sensitivity
to the full stimuli relative to the cheese stimuli. The cyan and gray
curves show the predicted level of summation for a single sine-
phase model filter element in the center of the display (there were
negligible differences across observers for these predictions;
here, we show the average). The standard filter (cyan curve)
has an orientation bandwidth of T25- and a spatial frequency
bandwidth of 1.6 octaves. Its filter element (receptive field) has
4 lobes. The larger filter (dashed gray curve) has an orientation
bandwidth of T12.5- and a spatial frequency bandwidth of
0.8 octave. Its filter element has 8 lobes. Spatial summation occurs
within each of these single model filter elements, but neither is
sufficient to account for the empirical results.
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summation region is twice that of the check size).
However, the effects of summation within filter elements
for these stimuli means that detailed computational
analysis is needed before firm conclusions can be
attempted. We do this in the next section.
Another motivation for our study was the question of

whether the integration aperture is scale invariant. The
tendency for the summation functions in Figure 4 to
superimpose might suggest that this is so (i.e., that the
integration aperture is a fixed number of carrier cycles).
However, since retinal inhomogeneity can contribute to a
decline in summation for large apertures (see Introduction
section) and since this is scale invariant in our model
(Pointer & Hess, 1989; Robson & Graham, 1981), these
two effects need to be teased apart. We attempted to do
this in the next section.

The range of contrast integration for a scale-invariant
model

The summation curves in Figure 4 are spatially
extensive, but several factors contribute to their shape
including: retinal inhomogeneity, within-filter summation,
the size of the long-range integration aperture, probability
summation, and the psychophysical method (basic vs.
normalization). Our main aim was to establish what our
results imply for neuronal convergence (i.e., the size of

the integration aperture), but the complicating factors
above mean that this cannot be achieved by direct
interpretation of the data. To try and see more deeply
into our results, we considered several variants of the
filter-based model developed by Meese and Summers
(2007, 2009). Our general strategy was to fix what
parameters we couldVwhere there is some consensus on
their valuesVleaving us to explore the parameters for
which values are unknown (e.g., the size of the integration
aperture).
Our models take bitmaps of the stimulus as input and

involve several image processing stages in the following
sequence:

1. Retinal inhomogeneity (uneven sensitivity) across a
two-dimensional array of image pixels;

2. Spatial filtering (using log-Gabor filters) to produce
a two-dimensional array of “response” pixels;

3. Pixel-wise nonlinear transduction (squaring);
4. Zero-mean Gaussian noise added to each pixel

(conceptual);
5. Integration across pixels (details depend on the

model variant);
6. Minkowski pooling (e.g., probability summation)

across integrators (details depend on the model
variant);

7. Construction of a decision variable.

Figure 3. Area summation is more potent than predicted by probability summation. Data are for a 4 c/deg carrier for each of the three
observers (different columns) and each of the two experimental methods (the upper and lower rows are for the basic and normalization
methods, respectively). Solid curves are model predictions for two different Minkowski exponents (2 = 4; 2 = 8; see Appendix A) for the
standard size (4-lobe) filter element. The dashed curves are for the larger (8-lobe) filter element.
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The stimuli were processed at the same spatial
resolution as that used in the experiments. Estimates of
retinal inhomogeneity were derived from detailed mea-
surements across the visual field. These were performed
by Baldwin, Meese, and Baker (2010) at a spatial frequency
of 4 c/deg, using the same (or similar) equipment and

observers as in the experiments here, and are summarized
in Appendix A. For simplicity, we used a single (average)
attenuation surface for all three observers but confirmed
that the modeling results were very similar when
attenuation surfaces were tailored to individual observers
(not shown). We also assumed that the attenuation surface

Figure 4. Contrast detection thresholds and summation ratios for Swiss cheese stimuli. (a–c) Detection thresholds for “black” cheese
(filled symbols) and “white” cheese (open symbols) for a range of carrier and modulator frequencies for three observers. (d–f) Summation
results for the basic method. (g–i) Summation results for the normalization method. In panels (d–i), solid black curves indicate the average
summation across carrier frequency. All data points are averaged across four repetitions, and error bars indicate T1 SE.
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was scale invariant (Pointer & Hess, 1989; Robson &
Graham, 1981). This is to say that retinal sensitivity loss is
related to eccentricity in terms of stimulus cycles rather
than visual angle. We found that it made no meaningful
difference whether inhomogeneity (the attenuation sur-
face) was placed before or after the spatial filtering.
The log-Gabor filters had spatial frequency bandwidths

of 1.6 octaves and orientation bandwidths of T25- and
were centered on the orientation and spatial frequency of
the relevant carrier. This is the “standard” filter element in
Figure 2. For simplicity, we used only sine-phase filters in
the modeling but confirmed that almost identical results
were found when summing over a quadrature pair.
In previous models of this type (e.g., Meese &

Summers, 2007), the output of each filter element was
squared and added to a stochastic sample of noise at each
pixel location. However, since (i) the model integration
region was constant for each family of functions (see
below) and (ii) we were not interested in the details of the
absolute signal-to-noise ratios, it was not necessary to
implement the stochastic stage in the model here. Instead,
a deterministic output was constructed from the pooled
signal responses (see below for details) and compared to a
constant (k), related to the standard deviation of the
pooled noise sources across the image. Conceptually, the
stimulus was deemed to be detected with a probability of
75% when the output equaled k. In practice, rearranging
the model equations and solving for contrast analytically
allowed us to derive the contrast detection thresholds.
In what we have described so far, k was the only free

parameter in the model. Owing to the contrast sensitivity
function (Blakemore & Campbell, 1969), it varied with
carrier frequency, allowing each pair of model curves
(Figures 6a–6c) to be slid freely up and down the ordinate
to achieve the best possible fits. Thus, there were 5, 4, and
1 degrees of freedom associated with this parameter for
DHB, SAW, and TSM, respectively. However, this
sensitivity parameter was of no interest in the study here.
For example, it was irrelevant for (i) capturing the splaying
shape of the threshold functions (e.g., Figures 5a–5c) and
(ii) modeling the summation functions (e.g., Figures 5d–5i),
which are relative measures of sensitivity.
We considered several ways in which long-range

contrast integration might be performed. The simplest
was to perform linear summation (of the squared local
contrast responses) over the entire stimulus region. This
produced a reasonable description of the Swiss cheese
thresholds, though the separation of the model functions
for the “black” and “white” cheeses was less marked than it
was in the data toward the right of the plot (see Figure 5a,
which illustrates the fits for DHB). This happens in the
model because the large check size (relative to the rate of
sensitivity loss with eccentricity) means that much of the
“white” cheese stimulus benefits from the highly sensitive
central retina whereas very little of the “black” cheese
does. However, summation between the “black” and
“white” cheeses was substantially overestimated for larger

check sizes (Figures 5d and 5g). This implies that DHB
was not able to integrate contrast over the entire stimulus.
So what was the upper range for contrast integration?
To estimate this, we ran the model for a range of

different sized integration apertures. Apertures were
circular, located at the centers of the stimuli, and had
hard edges (though Gaussian pooling regions produced
similar results). All pixels inside the integration aperture
contributed to the model output, and those outside it were
discarded. As the diameters of the apertures spanned the
same number of cycles for each carrier spatial frequency,
this variant of the model is scale invariant.
Figures 6a, 6c, and 6e show the RMS errors of the

model predictions as functions of the diameter of the
integration aperture (in carrier cycles). The best model
performance (i.e., the function minima) for a single
aperture involved pooling over about 12 carrier cycles
(DHB) or more (SAW, TSM). This is confirmed in
Figures 5e and 5h, which show that the summation
predictions (no free parameters) were fairly good for
DHB with an aperture of this size. However, predictions
for the thresholds were typically rather poor (Figures 6a,
6c, and 6e, red curves), particularly for the “black” cheese
(Figure 5b, black curves), where the model was much less
sensitive than human observers at the larger check sizes.
This was because when the check size exceeded the
integration aperture, very little “black” check stimulus
contrast was available to the model and thresholds rose
dramatically. Thus, to summarize, analysis of the Swiss
cheese thresholds (Figures 4a–4c) suggested very large
integration apertures (Figures 5a, 6a, 6c, and 6e, red
curves), whereas the effects of filling the holes in the
cheese (the summation results; Figures 4d–4i) suggested
somewhat smaller integration apertures (Figures 5e, 5h,
6a, 6c, and 6e). Can this conflict be resolved?
As an alternative detection strategy, we considered an

arrangement where contrast integration took place within
multiple apertures, followed by further pooling between
them. In this model variant, the apertures overlapped such
that the center of one sat on the circumference of the next,
but the details of the tiling arrangement were not critical.
We used Minkowski pooling (2 = 4) across apertures, as
described in Appendix A, consistent with contemporary
interpretations of probability summation (Tyler & Chen,
2000). MATLAB code for this model can be found in the
Supplementary materials.
The effects of varying the integration aperture on good-

ness of fit for this model variant are shown in Figures 6b,
6d, and 6f. Although there is still a tendency for the
threshold analysis and the summation analysis to pull to
larger and smaller integration apertures, respectively, the
overall improvement in performance, particularly for the
cheese thresholds (red), is marked (compare across
columns). Unfortunately though, the functions are fairly
shallow and a little inconsistent between measures (differ-
ent solid curves in each panel) and observers (different
rows), making a firm conclusion about the size of the
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integration aperture difficult. In an attempt to improve on
this, we calculated the RMS error combined across the
three measures for each observer (dashed magenta curves
in Figure 6). These had minima at 12, 45, and 23 cycles

for DHB, SAW, and TSM, respectively. This analysis
confirmed our impression that DHB was the weakest
contrast integrator in the study (consistent with other
unpublished observations). Nevertheless, all of his results

Figure 5. (a–c) Examples of model fits for detection thresholds for “black” and “white” cheeses and (d–i) summation results from the main
experiment. Data are for observer DHB and are shown for three model variants (different columns). RMS errors of the fits are given in
each panel. Fits to the data of the other observers were qualitatively similar. In the first column, integration extends over the entire
stimulus region. In the second column, it is restricted to a circular aperture with a diameter of 12 cycles. In the third column, multiple
apertures (mechanisms) like those in the second column tile the image with spatial overlap. Minkowski summation was then performed
across the multiple integration apertures.
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were fairly well described by a model using multiple
contrast integration apertures with diameters of 12 cycles
(Figures 5c, 5f, and 5i): much greater than the one or two
cycle limit from the within-filter summation region that is
often assumed. For SAW and TSM, it seems likely that
their apertures are larger than this (Figures 6d and 6f) but
possibly not quite as large as the stimulus (note the
minima in the green curves in Figure 6).
The most successful model variantVinvolving multiple

fixed size integration aperturesVcontained two param-
eters that could vary (k and the diameter of the integration
aperture), plus the fixed parameters that set the filter
bandwidths and the Minkowski pooling (2), which also
influenced summation behavior (e.g., see Figure 3). Since
k was set separately for each carrier frequency, the model

had 6, 5, and 2 free parameters for DHB, SAW, and TSM,
respectively. However, since the k parameters were
irrelevant for summation behavior (see above), only one
of the free parameters (the diameter of the integration
aperture) influenced this independently for each observer.

The range of contrast integration for a scale-dependent
model

Inspired by the scale invariance of retinal inhomoge-
neity (Pointer & Hess, 1989; Robson & Graham, 1981)
and the approximate superposition of the summation
functions in Figure 4, we assumed scale invariance in
the modeling above. That is, the attenuation surfaces and
the summation apertures in the models were linked to the

Figure 6. RMS errors of model fitting for two-by-two factorial model variants. One factor was the different scale dependencies (left and
right blocks of panels). The other factor was the different integration strategies (different columns). All models involved scale-invariant
retinal inhomogeneity, spatial filtering, square-law contrast transduction, and contrast integration. Results are shown for each of the three
observers (different rows). In the left block of panels (a–f), integration was scale invariant, occurring over apertures defined in carrier
cycles. In the right block of panels (g–l), integration was scale dependent, occurring over apertures defined in degrees of visual angle.
Integration (linear spatial summation) occurred within hard-edged apertures with the diameters shown by the x-axis. In the left-hand
columns of each block, there was a single, centrally placed aperture. In the right-hand column of each block, there was Minkowski pooling
(using a Minkowski exponent of 2 = 4) over multiple integration apertures. Errors are shown separately for the cheese thresholds (red),
summation using the basic method (blue), and summation using the normalization method (green). The dashed magenta curves show the
combined (root mean square) error across all three measures.
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number of stimulus cycles and therefore differed in visual
angle across spatial frequency. Although the case for
scale-invariant retinal inhomogeneity is quite strong
(Pointer & Hess, 1989; Robson & Graham, 1981), it is
not clear that the integration aperture is scale invariant
(see our comments in the first part of the Main analysis
section) and it is natural to ask how well a model would
fare under different assumptions. To examine this, we
produced scale-dependent variants of the models, pooling
over either a single (Figures 6g, 6i, and 6k) or multiple
(Figures 6h, 6j, and 6l) apertures with the same visual
angles across spatial frequencies (and therefore scale-
dependent numbers of cycles). Note that for TSM, who
gathered data at a single carrier frequency, these versions
of the model are formally identical to the scale-invariant
versions (Figures 6k and 6l are simply relabeled versions
of Figures 6e and 6f). However, the model behaviors are
different for the other two observers.
This modeling shows that in spite of the approximate

superposition of the summation functions when expressed
in cycles per check (Figure 4), the scale invariance
assumption was not critical for achieving acceptable fits
to the full data sets. In fact, the RMS errors achieved in
the analysis here are comparable to those involving scale
invariance (e.g., compare the low points of the dashed
magenta curves across Figures 6b and 6h and Figures 6d
and 6j). On this alternative view, we estimated integration
apertures with diameters of 1.27, 3.25, and 5.75 deg for
DHB, SAW, and TSM, respectively.

General discussion

We measured contrast integration (area summation) for
sinusoidal gratings modulated by a raised plaid envelope
(Swiss cheese stimulus) for a range of carrier and
modulator frequencies. Integration appeared to be scale
invariant when plotted as a function of carrier cycles per
modulator check, though detailed modeling was not able
to reject an alternative interpretation in terms of a scale-
dependent integration process using apertures of constant
visual angle. Summation was strong for all observers up to
4 cycles/check and declined for larger check sizes. This
implied that integration of contrast extended over at least
8 carrier cycles. Computational modeling supported this
conclusion, with optimal summation regions having a
diameter of 12 or more cycles (varying across observer)
but probably less than 64 cycles. Alternatively, the
integration region might be 1.27 degrees or more (varying
across observers) but probably less than 10 deg (the
diameter of our stimuli).
In spite of the uncertainty about the appropriate metric

(degrees or cycles) for describing the integration region,
the overall message is clear: Contrast integration is more
spatially extensive than the receptive field of a single filter

element. This justifies the inclusion of neuronal conver-
gence of the local contrast code in hierarchical models of
visual perception beyond the primary visual cortex (where
most receptive fields are quite small). The implications of
this for suprathreshold vision have been discussed else-
where (Meese & Baker, 2011; Meese & Summers, 2007).

Criticisms and concerns

One potential concern about our stimuli is that when the
number of cycles per check was low, the Michelson
contrasts of the “black” and “white” cheeses were
attenuated a little by the curtailing effects of the
modulator. Since the Michelson contrasts for the full
stimuli were not reduced in this way, they would have
been higher relative to those of the cheese compo-
nents, and summation estimates might have been inflated.
For our stimuli, this attenuation was only appreciable
(90.5 dB) for stimuli of e1 cycle/check. Since summation
did not begin to decline until after 2 cycles/check (see
Figure 4), it is unlikely that contrast attenuation has
substantially affected our results. Furthermore, since the
modeling used bitmaps of the experimental stimuli as
input, any physical shortcomings in the stimuli were also
represented in the model.
Another potential concern is that our stimuli were not

strictly narrowband. The damping around the stimulus
boundary introduced some spectral splatter, though this
was only very minor. Perhaps of greater concern is the
quad of sidebands introduced by the plaid modulator.
Each of these had an amplitude of j12 dB (a factor of
0.25) RE the carrier and the Michelson contrast of the
stimulus was given by the sum of the amplitudes of the
four sidebands and the carrier. For most of our stimuli,
the sidebands were fairly similar to the carrier (in spatial
frequency and orientation) and fell well within the
passband of our model filter and, presumably, human
spatial filters. The exceptions to this were for the stimuli
where the modulator frequency was fairly high compared
to that of the carrier (the most extreme case is the stimulus
in the bottom left of Figure 1b). For these stimuli, the
stimulus energy was much more diffuse in the Fourier
domain than it was for the full stimuli and could result in
high levels of empirical summation for uninteresting
reasons (see Appendix B). However, these stimuli (e.g., the
leftmost points in Figure 4) were not the ones constraining
our estimates of the range of contrast integration. All this
goes to say that it is unlikely that our conclusions are
compromised by the complicating effects of sidebands in
our stimuli.
Another point about our stimuli is that the contrast

modulation means that they are second-order stimuli. This
raises the possibility that we were tapping into second-
order mechanisms rather than first. We have addressed
this several times before (Meese, 2010; Meese & Baker,
2011; Meese & Summers, 2007) but make the following
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simple point here. In all of the stimuli in this study, we
manipulated the contrast of the carrierVa first-order
signal. The amplitude of the second-order component in
the cheese stimuli covaried with this, but if it were to
contribute to detection (i.e., improve sensitivity over that
available from first-order mechanisms), this would
improve sensitivity to our cheese stimuli relative to our
full stimuli. This would mean we have underestimated the
level of summation. Therefore, even if conventional
second-order mechanisms were involved, this does not
undermine our point that contrast integration is spatially
more extensive than is often supposed. A similar defense
can be made regarding any attempts to describe detection
of our check stimuli in terms of contrast variance
detection (Morgan, Chubb, & Solomon, 2008).

Why can our cascade of pooling stages not
be replaced by a single stage?

Our model involves a three-stage hierarchy of spatial
summation (Figure 7). There is spatial summation within
local filter elements, followed by spatial summation
within contrast integrators, followed by spatial summation
by a Minkowski stage. So why can these three stages of
summation not be replaced with just one or two stages?
The answer involves the intermediate nonlinear stages
(the fillings) in our triple-decker sandwich of linear
summation. Although the filtering stage is linear (Meese,
2010) and the contrast integration is linear, a square-law
transducer is placed between the two. The transducer is
needed to help account for the shape of the area
summation curve in experiments that vary the diameter
of a grating (e.g., see Meese & Summers, 2007). It was
also needed to account for the transition between short-
range (within filter element) summation (6 dB) and long-
range (contrast integration) summation (3 dB) found by
Meese (2010). It also accounts for much of the dipper
region found in contrast discrimination experiments
(Legge & Foley, 1980) and the slope of the psychometric
function, in conjunction with area and binocular summa-
tion (Meese & Summers, 2009). Nonlinearities (here, the
transducer) are not commutative, and so this constrains
both the linear “bread” and the nonlinear “filling” in the
first deck of the sandwich.
A similar argument applies to the next deck. Although

we conceptualized Minkowski summation in terms of
nonlinear probability summation, it can be construed as a
further nonlinear transducer, in this case on the output of
each integrator, followed by linear summation across the
integrators (see Meese & Baker, 2011 for further com-
ment). The nonlinearity in the Minkowski pooling means
that this stage cannot be bundled into the preceding stage.
We can appreciate this by recognizing that very wide-
spread integration with a high (Minkowski-type) exponent
cannot account for the summation results (Figure 3) and
that a single restricted integration aperture cannot account

for the detection thresholds (Figure 5b). Hence, strong
summation (transducer exponent = 2) is needed within the
aperture to account for the summation results and weaker
summation (Minkowski exponent = 4) is needed across
them to account for the threshold results.

Contrast integration is a zero-frequency
second-order process

Following Henning, Hertz, and Broadbent (1975),
second-order vision has enjoyed a well-established history
(see Schofield, Rock, Sun, Jiang, & Georgeson, 2010, for
recent work and a review). Leaving issues of signal
rectification and other forms of transduction aside, most
models construct second-order mechanisms by pooling
across a spatial array of first-order mechanisms (linear
filters) where the spatial frequency of the second-order
modulation is derived by the pattern of weights at the
pooling stage. The contrast integration that we are
proposing here is a simple extension of this idea, where

Figure 7. Block schematic of the three stages of spatial
summation in the hierarchical pooling model. Each stage of
summation (filtering, contrast integration, and Minkowski pooling)
operates over progressively larger regions of the retina. In the
implementation here, 2 = 4, consistent with probability summation.
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the pooling weights are uniform across the array. Thus,
our contrast integration mechanisms might be viewed as
occupying the zero frequency (low-pass) channel of the
second-order module.
We also note that our triple-decker sandwich (see

previous section) is in a similar spirit to the filter–rectify–
filter models that abound studies of second-order vision.

Why is contrast integration spatially limited?

Elsewhere, we have supposed that contrast integration is
part of the network of neuronal convergence and contrast
gain control that is needed to represent spatially extensive
objects, surfaces, and textures (Meese, 2010; Meese &
Baker, 2011). However, in principle, such stimuli can
extend over the entire retina, so why should we find that
the contrast integration process is limited in spatial extent,
at least for DHB? One possibility is that more extensive
contrast integration involves pooling at higher levels of
the hierarchy. This might involve further inefficiencies,
attenuators, and nonlinearities that mean the benefits of
such pooling are not seen in psychophysical experiments
at detection threshold.

Conclusions

This study confirms our previous finding that contrast
integration over area is more substantial than widely
believed. We have generalized the result across a wide
range of carrier and modulator spatial frequencies and

have been able to describe the limit of contrast integration
in terms of the number of cycles in the stimulus, which
keys nicely with related results concerning retinal inho-
mogeneity. However, detailed analysis indicated that our
data do not reject the possibility that the integration
aperture is of fixed spatial extent (or, presumably, any-
thing in between). More generally, our model includes
spatial filtering, nonlinear contrast transduction, additive
noise, contrast integration (linear summation within an
integration aperture), and Minkowski summation (proba-
bility summation) across multiple apertures. The compu-
tation of contrast energy (within each aperture) probably
takes place over at least twelve carrier cycles in most
cases. This provides good psychophysical evidence for the
neuronal convergence that is needed to represent spatial
patterns that extend beyond the footprint of a single
receptive field in the primary visual cortex.

Appendix A

Some model details

Minkowski summation

Minkowski pooling has long been associated with
various forms of summation for reasons detailed elsewhere
(see Quick, 1974; Tyler & Chen, 2000). It is defined as

resp ¼
X
i¼1:n

A2
i

 !1=2

; ðA1Þ

Figure A1. (a) Bilinear functions of the decline in retinal sensitivity with eccentricity. (b) Attenuation surface constructed by radial
interpolation between the bilinear functions in (a).
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where n is the number of units (filter responses, apertures,
or any other appropriate scalar quantities) to be summed,
and Ai denotes the response for the ith unit. In the typical
formulation for probability summation with linear signal
transduction, 2 , 4. If square-law signal transduction is
assumed, then 2 , 8 (for our purposes here).

Retinal inhomogeneity

Previous work in this series (Meese, 2010; Meese &
Summers, 2007, 2009) has assumed a linear decline in log
sensitivity with eccentricity. The necessary model param-
eters were taken from Pointer and Hess (1989), who
measured sensitivity across the entire visual field. How-
ever, our more recent work (Baldwin et al., 2010) has
measured sensitivity in greater detail for just the central
visual field (È9 deg diameter), where much of ourVand
otherVpsychophysical work has concentrated. Based on
this work, we modeled retinal inhomogeneity using
bilinear functions (on log-linear axes) with parameters
derived from four observers, including those who partici-
pated in the present study. Figure A1a shows these
functions for the different meridians (the same function
was used for the two horizontal meridians). From these,
we constructed a two-dimensional attenuation surface
(Figure A1b) to scale the contrast of our stimuli in the
modeling. These data and analyses come from a more
detailed study to be presented elsewhere.

Appendix B

Some comments on the sidebands
in our stimuli

In general, the spatial frequencies and orientations of
the sidebands of our stimuli were not exactly matched to
the filter used in the model because that was exactly
matched to the spatial frequencies and orientations of the
carriers. In fact, this offers another way of thinking about
the within filter-element summation effects shown in
Figure 2, as we now describe. The Michelson contrast of
a check stimulus derives from the sum of the amplitudes
of the carrier and each of the four sidebands. Each
sideband amplitude is 25% of the carrier amplitude.
Therefore, the amplitude of the carrier in the full stimulus
(which has no sidebands) is exactly twice that of the
carrier in each cheese component stimulus. If the detect-
ing mechanism is a filter that sees only the carrier and not
the sidebands, then it would produce 6 dB (a factor 2) of
summation in our experiments for the trivial reason that
the relevant signal amplitude is twice as high in the full
stimulus as it is for the cheese components. Toward the
far left of Figure 2 (in the main body of the report), the
spatial frequencies of the sidebands are half an octave

either side of the carrier and differ in the carrier orientation
by at least 18-. This causes them to fall outside the
passband of the narrowly tuned 8-lobe filter, and summa-
tion is È6 dB for the trivial reason described above (gray
dashed curve).
We considered this further in Figure B1, which shows

the attenuation of Michelson contrast for our “white”
cheese stimuli after being filtered by our standard model
filter. Toward the left of the plot, the filtering causes a
drop of 6 dB relative to the original stimulus. This is
because the sidebands have been filtered out. By the time
there are È6 cycles/check (consistent with the upper range
of 12 cycles of contrast integration for DHB), the filtering
has a negligible affect on the Michelson contrast of the
image. Therefore, it is unlikely that the complicating
effects of the filtering and sidebands have misled our
interpretation of the results.
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Figure B1. Attenuating effects of our standard filter on the
Michelson contrast of our check stimuli. These are a conse-
quence of filtering out the sidebands.
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