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The transmission of weak signals through the visual system is limited by internal noise. Its level can be estimated by
adding external noise, which increases the variance within the detecting mechanism, causing masking. But experiments
with white noise fail to meet three predictions: (a) noise has too small an influence on the slope of the psychometric
function, (b) masking occurs even when the noise sample is identical in each two-alternative forced-choice (2AFC)
interval, and (c) double-pass consistency is too low. We show that much of the energy of 2D white noise masks extends
well beyond the pass-band of plausible detecting mechanisms and that this suppresses signal activity. These problems
are avoided by restricting the external noise energy to the target mechanisms by introducing a pedestal with a mean
contrast of 0% and independent contrast jitter in each 2AFC interval (termed zero-dimensional [0D] noise). We compared
the jitter condition to masking from 2D white noise in double-pass masking and (novel) contrast matching experiments.
Zero-dimensional noise produced the strongest masking, greatest double-pass consistency, and no suppression of
perceived contrast, consistent with a noisy ideal observer. Deviations from this behavior for 2D white noise were
explained by cross-channel suppression with no need to appeal to induced internal noise or uncertainty. We conclude that
(a) results from previous experiments using white pixel noise should be re-evaluated and (b) 0D noise provides a cleaner
method for investigating internal variability than pixel noise. Ironically then, the best external noise stimulus does not look
noisy.
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Introduction

In human vision, detection thresholds for simple
targets such as sine wave gratings increase when white
pixel noise is added to the display (Lu & Dosher, 2008;
Pelli, 1985). The classical explanation for this noise-
masking effect (the noisy ideal observer model) is that
the external pixel noise contributes to the variance of
the observer’s internal response to the target. When the
external noise approaches or exceeds the observer’s
internal (neural) noise, sensitivity to the target declines
and masking occurs.

It is therefore possible to estimate the magnitude of
internal noise in units of the external noise (Pelli &
Farell, 1999). The ‘‘equivalent input noise’’ level is the
point at which the noise mask raises the contrast
detection threshold by a factor of =2 (for a linear
observer), because the external noise has doubled the
total variance, and is usually estimated by model fitting
to contrast masking functions. This equivalent noise
paradigm has received widespread use in studies
comparing basic experimental manipulations (Allard
& Faubert, 2006; Gold, Bennett, & Sekuler, 1999;

Goris, Zaenen, & Wagemans, 2008; Henning &
Wichmann, 2007; Kersten, 1984; Lu & Dosher, 2008;
Neri, 2010; Pelli, 1981) and those investigating clinical
conditions (Huang, Tao, Zhou, & Lu, 2007; Levi,
Klein, & Chen, 2007, 2008; Pardhan, Gilchrist, Elliott,
& Beh, 1996; Xu, Lu, Qiu, & Zhou, 2006).

However, human observers are not linear systems.
For example, it is well established that there is mutual
suppression between spatiotemporally tuned channels
in primary visual cortex (Bonds, 1989; Carandini &
Heeger, 1994; Heeger, 1992; Morrone, Burr, & Maffei,
1982). These ‘‘gain control’’ effects produce threshold
elevation from (deterministic) grating masks, even
those with very different spatial properties from the
target (Brouwer & Heeger, 2011; Eckstein, Ahumada,
& Watson, 1997; Foley, 1994; Meese & Holmes, 2007).
It seems likely that noise masks will also induce this
type of suppression (which is usually modeled as a
divisive process [Foley, 1994; Heeger, 1992]), because
much of the energy of a typical noise mask will fall
outside the pass-band of the channels used to detect the
target.

We demonstrate this by filtering many samples of 2D
white pixel noise (low-pass filtered and spatially
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windowed, as described in the Methods section) with
oriented log-Gabor filters of various bandwidths. We
found that 92%–98% of the noise contrast was
excluded by the filtering (see Figure 1 and its caption
for details). This suggests that white pixel noise might
produce very little within-channel variance and that,
instead, the masking it causes might be due to
suppression from cross-channel interactions.

To better understand the processes involved in noise
masking, we first formalize the two very different
processes previously described. The models in this
section are canonical and could be implemented as
stochastic or deterministic models, operating on
numeric contrast values or full images. In the noisy
ideal observer model, the response is given by: respNIO

¼ C þ Gr, where C is the contrast response of a linear
filter sufficiently broad to respond to the target and the
external noise, and Gr is zero-mean Gaussian noise
with standard deviation, r, representing the internal
noise of the observer. In the gain control model, there
is a nonlinear contrast transducer and suppression of
the target mechanisms from adjacent channels (Foley,
1994; Hansen & Hess, 2012; Heeger, 1992) with
superimposed receptive fields. The response of this

model is given by: respGCM¼ (Cp / (ZþCqþX))þGr,
where X represents the pooled and weighted activity in
adjacent (nontarget) channels, Z is a constant (e.g., Z
¼1), and the exponents p and q typically have values of
2.4 and 2, respectively (Legge & Foley, 1980). In
realistic situations, the external noise will contribute to
the variance at the decision variable in this model, just
as it does in the noisy ideal observer model. However,
we find it most instructive to begin by excluding this
contribution to masking from the model (by setting C
to the target contrast) so that we can consider the
effects of signal suppression in isolation (we revoke
this exclusion in the Discussion). Thus, in the noisy
ideal observer model, noise masking derives entirely
from an injection of external noise into the detecting
mechanism, whereas in our stripped-down gain control
model here, it derives entirely from cross-channel
suppression.

We compare the behavior of the two models above
in four main experiments designed to reveal the relative
contributions of within-channel noise and cross-chan-
nel suppression for white noise masks. Each experiment
(described in the Results section) was performed for (a)
conventional spatially two-dimensional (2D) static
white pixel noise (Figure 2e) and (b) a novel type of
noise involving a cosine-phase pedestal matched to the
log-Gabor target (Figure 2c). The mean contrast of the
pedestal was 0%, but it was jittered on an interval-by-
interval basis (in two-interval forced-choice [2IFC])
using values drawn from a normal (Gaussian) distri-
bution. Negative contrasts were expressed by changing
the phase of the pedestal to negative cosine phase.
Because this type of noise has neither spatial nor
temporal dimensions (these parameters are defined by
the target; the noise is merely a signed level of contrast),
we refer to it as zero-dimensional (0D) noise.

The 0D noise condition fulfills the crucial require-
ment of standard noise-masking experiments; there
should be a random component of activity in the
detecting mechanisms across trials and across each
interval within each 2IFC trial. Furthermore, because
0D noise is concentrated entirely within the pass-band
of the detecting mechanism, there should be no
contamination from cross-channel suppression. (A
similar approach has been used for luminance [Cohn,
1976; Lasley & Cohn, 1981; Neri, 2010] but not
previously for contrast-defined targets.) Our results
tend toward the noisy ideal observer model for 0D
noise and the gain control model for 2D noise. By
comparing the results across the noise conditions, we
were able to demonstrate a strong contribution to
masking from suppression (contrast gain control) made
by conventional white noise masks. This influence is
probably greater than many previous studies have
credited.

Figure 1. Contrast attenuation for 2D white noise stimuli following

bandpass filtering. Results are the average of 1,000 noise

samples (created as described in the Methods section) and refer

to changes in RMS contrast. Filters were Cartesian separable log-

Gabors (Meese, 2010) with center orientation and spatial

frequency of 908 and 4.25 c/image, respectively. (Note that we

use c/image rather than c/deg because the images in these

simulations were never displayed in an experiment.) The

orientation and spatial frequency bandwidths of the example

filters (upper insets) are 6258, and 1, 2, 3, or 4 octaves,

respectively, from left to right. The simulations sampled the range

more finely than this (solid green curve) and also for an orientation

bandwidth of 612.58 (red dashed curve). The section to the right

of each example filter is the Fourier transform of that filter. The

green circular symbol indicates the log-Gabor used as the target

stimulus in later experiments.
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Methods

Apparatus and stimuli

Stimuli were presented on an Iiyama VisionMaster
Pro 510 using a BITSþþ box (Cambridge Research
Systems Ltd., Kent, UK) controlled by an Apple
Macintosh computer. We used elements of the Psycho-
physics Toolbox software (Brainard, 1997; Pelli, 1997)
to control the stimulus display. The monitor was
gamma corrected, had a mean luminance of 50 cd/m2,
and was viewed at a distance of 114 cm. At this
distance, 1 degree of visual angle occupied 60 pixels on
the monitor.

The target in all experiments was a horizontal 1 c/deg
Cartesian separable log-Gabor patch (Meese, 2010) with
bandwidths of 1.3 octaves and 6258 in polar coordinates

(see Figure 2c). The target was luminance-balanced and
always in positive cosine phase with a bright bar in the
center flanked by two dark bars. These bandwidths were
chosen so that the spatial extent of the target was
approximately equal in all directions. We then used an
isotropic 2D Gaussian of the same spatial extent (Figure
2d) to window the 2D noise mask stimuli (full-width at
half-height of 1 degree). The 2D white noise mask
(Figure 2e) was generated from Gaussian pixel noise,
which was low-pass filtered in the Fourier domain at 15
c/deg using a cosine ramp. The low-pass filtering
removed frequencies which would be largely invisible
to the observer at the displayed mask contrasts and
concentrated the mask energy within a 4-octave range of
the target frequency. All stimuli were static, having no
temporal modulation besides their onset and offset.

We report contrast throughout in decibels (dB),
defined as 20*log10(C), where C is the nominal

Figure 2. Noise-masking results (preliminary experiment) for two observers (top and bottom) and example stimuli. (a, b) Results are

plotted as functions of relative mask contrast (e.g., they are scaled by the detection thresholds for the masks). The diagonal lines have

unit slope for reference, and error bars give 95% confidence intervals obtained by bootstrap resampling. The intersections of the

horizontal and vertical dashed lines indicate the mask contrasts that produced equal levels of threshold elevation (12 dB), used in

subsequent experiments. (c) Log-Gabor target. (d) The Gaussian envelope used to window the noise (see Methods). (e) An example of

windowed 2D white noise.
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contrast in linear units. For the target stimulus, this
was the root mean square (RMS) contrast of the target
waveform (i.e., the standard deviation of luminance
over space). For the 2D noise masks, nominal contrast
was the RMS contrast over space (e.g., Moulden,
Kingdom, & Gatley, 1990; Peli, 1997). For the 0D noise
masks (contrast jitter of a pedestal with 0% mean
contrast), nominal contrast was the RMS contrast
across multiple presentations. Put another way, it was
the standard deviation of the zero-mean Gaussian noise
source that determined the discrete contrast of each
noise mask. Note that, for a single pixel in the center of
the display, the luminance variation across trials was
the same for 0D and 2D noise masks of equal nominal
contrasts. (This would not be the case had we used an
alternative metric, such as spectral density, to charac-
terize the 2D noise.)

Observers

Two observers completed all experiments. They were
the first author (DHB) and a postgraduate student
(LP). Both were emmetropic and psychophysically
experienced, but only DHB was aware of the purpose
of the experiments.

Procedure

All experiments used a temporal 2AFC design with
each interval indicated by an auditory beep. All stimuli
appeared in the center of the display inside a quad of
fixation points placed at a radius of 1 degree. The
stimulus duration was 100 ms, with a 400-ms inter-
stimulus interval. Observers responded using the
buttons of a mouse to indicate which interval they
believed contained the target. There was no feedback in
any experiment. This was because, in some conditions
(particularly the 0D noise conditions), it was possible
that the interval containing the target had a lower
physical contrast, or was of the opposite polarity, to
that in the null interval. Feedback in this situation
would be confusing to the observer, so we removed it
for all conditions.

Detection thresholds with each type of noise mask
were measured at seven mask contrasts to produce
masking functions. Each threshold was estimated using
a pair of three-down, one-up staircases, each of which
terminated after the lesser of 70 trials or 12 reversals.
Staircase pairs for each condition were collected
individually, taking around 2 to 3 minutes each, and
observers were informed of the masking condition
before each session began. The entire set of masking
conditions was repeated four times. Baseline detection
thresholds for the targets without a mask were

measured four times per repetition of the mask
conditions (i.e., 16 measurements in total). Data were
pooled across the multiple repetitions, and thresholds
were estimated (at 81.6% correct) by fitting a Weibull
function to the psychometric data (e.g., the percentage
of correct responses at each target contrast level).

The masking functions were used to estimate the
mask contrasts that would produce an equal amount of
threshold elevation (around 12 dB) for each mask
condition. These mask contrasts were used in all
subsequent experiments. To assess the slope of the
psychometric function, double-pass consistency, and
twin masking, full psychometric functions were mea-
sured at nine target contrast levels using the method of
constant stimuli (MCS). This was completed in 20
blocks of 90 trials per condition, producing psycho-
metric functions each derived from 1,800 trials. The
second halves of the MCS experiments (i.e., the final 10
blocks) were exact replications of the first halves in
terms of the noise samples used, the ordering of trials
and blocks, and the target interval in each trial. This
allowed double-pass consistency scores to be calculated
by comparing trial-by-trial responses across the first
and second halves of the experiments. The ‘‘twin’’
conditions of Experiment 3 were run in a similar
manner, except that the noise mask was the same in
both intervals of a trial (though it differed between
trials).

In the final experiment, observers compared the
perceived contrast of a masked target to a matching
stimulus without a mask. The task was to indicate
which target appeared higher in contrast. The target
and matching waveforms were identical, but the target
contrast was fixed and the matching contrast was
determined by a one-down, one-up staircase (Meese,
1995) using a step size of 1.5 dB. The staircase
converged on the 50% point of the psychometric
function (the point of subjective equality [PSE]), which
was estimated by fitting a cumulative log-Gaussian
function.

Results

Preliminary experiment: Equating the level of
masking for two different types of external
noise

We first measured contrast-masking functions for
two observers using 2D pixel noise and 0D jitter noise.
As shown in Figure 2, all functions increased mono-
tonically with mask contrast and had a slope around
unity (on log-log contrast axes) at higher mask
contrasts. Overall, 0D noise (filled blue symbols)
produced much stronger masking than 2D white noise
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(open symbols). This result held when the abscissa was
normalized to the detection threshold of each mask (as
shown here) and also when expressed as absolute
contrast (not shown). Although we do not know the
precise bandwidths of the detecting mechanisms or the
weight of suppression from the gain pool, it is not
surprising that the 0D noise is the more potent mask
because it injects more variance into the detecting
mechanism than does the more broadband 2D noise.

The main purpose of this experiment was to use the
noise-masking functions to find mask contrasts for
each type of noise that would produce approximately
equal amounts of threshold elevation (around 12 dB; a
factor of 4). These mask contrasts—given by the
intersections of the horizontal and vertical dashed lines
in Figure 2—were then used in the four main
experiments. For both observers, the contrast of the
2D noise needed to be 18 dB (eight times) higher than
that of the 0D noise to produce similar levels of
threshold elevation.

Experiment 1: Birdsall linearization

Psychometric slopes (i.e., the slope of the function
relating proportion of correct responses to target
contrast) for contrast detection are usually described
as steep in the absence of external noise, with the slope
(b) parameter of a fitted cumulative Weibull distribu-
tion having typical values of around 3–4 (Mayer &
Tyler, 1986; Meese, Georgeson, & Baker, 2006). This
steepness has been attributed to nonlinear signal
transduction (Foley & Legge, 1981; Nachmias &
Sansbury, 1974), mechanism uncertainty (Pelli, 1985),
or a mixture of the two (Meese & Summers, 2009).
Strong external noise injected into the detecting
mechanism should remove the effects of invertable
transduction nonlinearities within the system. This is
known as Birdsall linearization (Klein & Levi, 2009),
deriving from Birdsall’s theorem (Lasley & Cohn,
1981), and occurs because the ordinal values of
responses at the decision variable cannot be rearranged
by invertible nonlinear transduction after the limiting
noise. This means that external noise should neutralize
any such nonlinearities once it dominates the internal
noise. This will reduce the psychometric slope to b ;
1.3 in Weibull slope units (Klein & Levi, 2009; Lasley &
Cohn, 1981; Pelli, 1985; Tyler & Chen, 2000) (equiv-
alent to the d0 slope of unity that is characteristic of a
linear system, hence the ‘‘linearization’’ terminology).
On the other hand, a pure gain control account of
masking predicts no change in the psychometric slope
because divisive suppression does not affect the form of
contrast transduction (Meese & Baker, 2009; Meese,
Challinor, & Summers, 2008). We measured psycho-
metric slopes using the method of constant stimuli with

1,800 trials per psychometric function. For each
observer, the psychometric slope at detection threshold
(i.e., no noise) was around b ¼ 3.5, consistent with
estimates from previous studies (Dao, Lu, & Dosher,
2006; Dosher & Lu, 2000; Eckstein et al., 1997; Goris et
al., 2008; Harwerth & Smith, 2000; Henning, Bird, &
Wichmann, 2002; Henning & Wichmann, 2007; Ker-
sten, 1984; Legge, Kersten, & Burgess, 1987; Lesmes,
Jeon, Lu, & Dosher, 2006; Levi et al., 2008; Lu &
Dosher, 1999, 2008; Pelli, 1981; Smithson, Henning,
MacLeod, & Stockman, 2009; Thomas, 1985; Xu et al.,
2006) (see the distribution on the lower axis of Figure
3a) and much steeper than the linear prediction of b¼
1.3. This steep slope was effectively linearized by 0D
noise for both observers (DHB, b¼ 1.28; LP, b¼ 1.47).
For observer DHB, 2D noise also linearized the slope
(b¼1.22), whereas linearization was only partial for LP
(b ¼ 1.82).

Variability in this type of analysis has been found
before. Therefore, to draw a clearer picture of the
relation between external noise and the slope of the
psychometric function, we considered our findings in
the context of 17 other studies that provided related
information. This is summarized by the scatterplot in
Figure 3a, where the slopes of the psychometric
functions measured in the presence of the highest level
of external noise used in each study are plotted against
equivalent slopes measured at detection threshold
(without external noise). If external noise did not affect
psychometric slope, the results should be distributed
evenly about the purple diagonal line of unity. This is
not the case, with the majority of points lying below the
line, indicating that external noise did reduce the slope
of the psychometric function. The geometric means
across studies supported this observation with b¼ 3.03
at detection threshold reducing to b ¼ 2.02 in the
presence of noise. However, in most studies, lineariza-
tion was not complete because the external noise did
not cause the points to drop as low as b ¼ 1.3 (the
orange horizontal line in Figure 3a).

Figure 3b shows the same results as in Figure 3a but
replotted in terms of the dimensionality of the noise
mask used in each study (see figure caption for details),
including the results from the present study (red
circles). As the dimensionality increases, Birdsall
linearization is found less frequently (more points tend
to be higher than b ¼ 1.3). In sum, although there is
some evidence for Birdsall linearization, it is far from a
universal finding (as discussed elsewhere [Klein & Levi,
2009]) and is rarely observed for noise masks where the
variance is distributed along several dimensions. Taken
together, these results indicate that, as the dimension-
ality of the noise increases, the influence of externally
invoked variability in the detecting mechanism tends to
decrease (though the variability in Figure 3 does
suggest that other factors might also be involved).
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Thus, we might expect that the internal variability
produced by external noise becomes less relevant to
noise masking as the dimensionality of the noise
increases. We provide more direct evidence for this
with the next experiment.

Experiment 2: Response consistency

A second expectation of injecting external noise into
the detecting mechanism is that an observer’s responses
should become highly consistent when trials are
replicated using identical samples of noise. This can
be assessed using a ‘‘double-pass’’ paradigm (Burgess &
Colborne, 1988) where a precise sequence of experi-
mental trials is repeated a second time (i.e., the same
noise samples are used on each pass). Consistency of
responses across the two passes should be high in the
presence of strong external noise, even when response
accuracy is near chance (e.g., 50% correct for 2AFC).
This is the prediction of the noisy ideal observer model,
shown by the curves in Figure 4 for varying levels of
influence from the external noise (see legend). This
includes the situation where there is no influence from
the external noise (black curve), which is also the
prediction for the gain control model, and for contrast
detection in the absence of a noise mask (Klein & Levi,
2009) under either model. In these cases, the agreement
across repeated trials is purely a function of perfor-
mance.

In the experiment, the 0D noise condition (filled blue
symbols) produced very high levels of response consis-
tency, even at low levels of performance, and was close
to the predictions of the noisy ideal observer model
where external noise was two to four times higher than
the internal noise. In contrast, the 2D noise condition
(open white symbols) produced much lower consisten-
cy, implying approximately equal contributions from
internal and external noise. This difference across noise
types is remarkable as the two different masks elevated
detection thresholds by approximately the same amount
(recall the preliminary experiment). This shift of the 2D
results from the 0D results and toward the prediction by
the gain control model (black curves) is strong evidence
that the different types of external noise invoke different
processes of masking. Previous studies have also
reported low double-pass performance in 2D (or 3D)
noise (Burgess & Colborne, 1988; Hayes & Merigan,
2007; Levi et al., 2007; Lu & Dosher, 2008; Neri, 2010),
but have not compared this with 0D noise or the
predictions of a gain control model.

Experiment 3: Twin masking

In the previous experiments, a different sample of
noise was used in each 2IFC interval. In noise-masking
studies, this is known as the ‘‘random’’ configuration
(Ahumada & Beard, 1997; Watson, Borthwick, &
Taylor, 1997), and it produces strong masking in each
of our models. However, when the same sample of noise
is used in each of the 2IFC intervals (knownas the ‘‘twin’’
configuration [Watson et al., 1997]), masking should be

Figure 3. Slopes of the psychometric function (Weibull b), with
and without external noise, from 18 studies (Dao et al., 2006;

Dosher & Lu, 2000; Eckstein et al., 1997; Goris et al., 2008;

Harwerth & Smith, 2000; Henning et al., 2002; Henning &

Wichmann, 2007; Kersten, 1984; Legge et al., 1987; Lesmes et

al., 2006; Levi et al., 2008; Lu & Dosher, 1999, 2008; Pelli, 1981;

Smithson et al., 2009; Thomas, 1985; Xu et al., 2006) on noise

masking, including Experiment 1 here. Symbols indicate the

study, as shown in the legend. (In some cases, it was necessary

to extract data on proportion correct from published figures [using

computer software] and fit them with Weibull functions to derive

estimates of b ourselves.) The shaded areas in (a) are histograms

showing the distributions of b values from the 18 studies (note that

the peak of each of these is at b . 1.3). Panel (b) shows the

ordinate data replotted as a function of the number of noise

dimensions. Dynamic 2D noise, which varies in time, spatial

frequency, and orientation, can be considered to have three

dimensions. Lower dimensional noise varies in only a subset of

these dimensions. The black curve and shaded region show the

mean and 61SE. Error bars on the red symbols are 95%

confidence intervals obtained by bootstrap resampling.
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abolished for the noisy ideal observer. This is because the
external noise affects the internal responses in each 2IFC
interval equally, and so it does not contribute to the
difference in activation between intervals. In the gain
control model, the similarity of the mask shown in the
null interval is immaterial because all of the threshold
elevation is due to suppression of the target by the mask
in the target interval. Therefore, the gain control model
predicts that the level of masking should be the same for
the random and twin configurations.

We found that the random configuration produced
threshold elevation of similar strength for the 0D and
2D random masks (Figure 5; solid bars) as to be
expected for the mask levels chosen after the prelimi-
nary experiment. For the 2D noise condition (black and

white checks), masking changed very little in the twin
configuration (a mean reduction of 2.27 dB) consistent
with previous reports (Ahumada & Beard, 1997;
Watson et al., 1997). We attribute this small departure
from the gain control prediction (of no effect) to the
variability injected into the detecting mechanism by the
external 2D noise, which is not part of our stripped-
down model but is consistent with the results from
Experiment 2. For the 0D noise condition (blue and
white checks), the reduction in masking was much
greater (7.10 dB). However, even for 0D noise, masking
was not abolished. We attribute this residual effect to
the compressive contrast response function (Legge &
Foley, 1980) which derives from a within-mechanism
contribution from the contrast gain pool in contempo-
rary models of masking (Foley, 1994) and would
produce pedestal masking (Bowen, 1997; Foley & Chen,
1999; Legge & Foley, 1980) for sufficiently high samples
of noise. We have confirmed the plausibility of this in
further model simulations (not shown).

In sum, the results of Experiment 3 tended towards
the noisy ideal observer model for the 0D noise and
towards the gain control model for the 2D noise, just
like in Experiment 2. Departures from this were the
same for both observers, and were predicted by the
differences from our stripped down gain control model
that we might expect the real visual system to possess.

Figure 4. Double-pass consistency results (Experiment 2) for two

observers (different panels) for 0D (blue symbols) and 2D (white

symbols) noise masks. The curves are predictions (obtained by

stochastic simulation [Klein & Levi, 2009]) of the noisy ideal

observer model for different ratios of external:internal noise (given

by the legend in the lower panel, where rE is external noise and rI
is internal noise). The black curve (rE¼ 0) is also the prediction of

the gain control model and applies to all situations where there is

no external noise (e.g., baseline detection thresholds) (Klein &

Levi, 2009).

Figure 5. Random and twin noise configuration results (Experi-

ment 3) for two observers (left and right). Bars show threshold

elevation for 0D and 2D noise masks using each type of noise

configuration (see legend). Empirical thresholds were determined

using the method of constant stimuli with 1,800 trials per

condition. The noisy ideal observer model predicts that threshold

elevation should be 0 dB for the twin conditions (checked bars).

The gain control model predicts that the level of masking should

be the same for the random and twin conditions. Deviations from

these predictions are discussed in the main text. Error bars show

bootstrapped 95% confidence intervals.
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Experiment 4: Contrast matching

Our fourth and final experiment concerns the
perceived contrast of a grating target embedded in
noise. Over many trials, the injection of external noise
into the target mechanism should increase the variance
but not the mean of the internal response distribution,
and so the overall perceived level of contrast should not
change (orange line in Figure 6). For the contrast gain
control model, however, the effects of suppression
would reduce the mean activity, and so perceived
contrast should be attenuated (purple graded shading
in Figure 6). Note that, for this model, the level of
masking depends on the details of the suppressive
weights in the gain pool. Because we have no indepen-
dent measures of these, we show the predicted effects of
masking as graded shading (becoming more severe as
the weights increase). We tested these predictions by
adjusting the contrast of a stimulus without noise
(perceived contrast) to match that of an identical
stimulus embedded in noise (physical contrast).

The results of this experiment are clear. There was no
change in perceived contrast for targets embedded in
0D noise (blue symbols), consistent with the noisy ideal
observer model. However, substantial attenuation,
sometimes exceeding 6 dB (a factor of 2), was evident
for the 2D noise mask (white symbols) for both
observers and as predicted by the gain control model.
This is a similar result to the suppressive effects of
cross-oriented grating masks on perceived target
contrast reported previously (Meese & Hess, 2004).

Discussion

Across four experiments, 0D noise behaved exactly
as external noise is expected to behave. It produced
strong threshold elevation, a linear psychometric
function, high double-pass consistency, weak twin
masking, and no change in perceived contrast. This is
consistent with the noisy ideal observer model.
However, the results were very different when we used
2D pixel noise, which (a) produced weaker masking, (b)
did not always linearize the slope of the psychometric
function (consistent with 17 previous studies), (c) had
low double-pass consistency, (d) produced strong twin
masking, and (e) attenuated perceived contrast. All of
these behaviors are consistent with the gain control
model. However, we are not proposing that the visual
system literally switches between different processes of
masking depending on the type of noise. Rather, by
reprieving the inevitable component of variance from
external noise in the gain control model (this was
excluded in the Introduction), we propose that all of
the results are consistent with that single model. For

example, it will behave in a similar way to the noisy
ideal model for 0D noise, as all of the noise energy is
directed to the decision variable. However, for 2D
noise, spatiotemporal filtering means that much less of
the noise energy arrives at the decision variable (e.g.,
see results and discussion of Experiment 3), and the
suppressive component of masking is significant.

The implication is that suppression has contaminat-
ed previous studies of external noise. As these effects
are rarely acknowledged, this brings most previous
conclusions about equivalent noise into question. In
extreme cases, experiments might be measuring varia-
tions in the level of suppression rather than internal
noise, for example in amblyopia (Huang et al., 2007).

Figure 6. Perceived contrast in noise (Experiment 4) for two

observers (top and bottom). The physical target contrast is plotted

along the abscissa and the perceived (matching) contrast along

the ordinate. If a mask had no effect on perceived contrast, the

results should fall on the diagonal orange line. Results falling

below this line (in the purple graded shading) indicate that

perceived contrast was attenuated by the mask with darker

shading corresponding to stronger attenuation. Error bars show

95% confidence intervals obtained by bootstrap resampling.

Triangles placed on the x-axis indicate (masked) contrast

detection thresholds for each condition for the same mask

contrast as was used in the matching one.
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We propose that 0D noise offers a cleaner method for
assessing the factors limiting human performance
because an estimate using this method will be a single
number that describes the standard deviation of the
noise within the detecting mechanism(s). This avoids
the ambiguity involved from estimates using 2D (or
1D) noise which depend on the variance and the
bandwidth of the detecting mechanism, the strength of
suppression from other mechanisms, and the spectral
characteristics of the noise. For example, the equivalent
noise for 2D white noise will be very different from the
equivalent noise for 1D pink noise, and neither will
provide a direct estimate of the internal variability
within the detection mechanism(s).

It is possible that observers adopt different detection
strategies for detecting targets in 0D noise and 2D
noise. For example, the 0D noise pedestal helps to
identify the target mechanism whereas the 2D noise
pedestal does not. Nonetheless, our point is that any
change in strategy would be prompted by the activity in
the extraneous mechanisms in the 2D case. This is
consistent with our general point that contrast sensi-
tivity in 2D noise depends on processes other than the
injection of external noise into the detecting mecha-
nism. Certainly, any difference in strategy cannot be
prompted by what happens in the detecting mechanism
(which is what noise-masking studies allege to investi-
gate) because the distribution of responses is the same
zero mean Gaussian (e.g., evenly split across positive
and negative) for both noise types.

Induced noise and induced uncertainty

There are at least three alternatives to suppression
from contrast gain control that also predict steep
psychometric slopes and (in two cases) low double-pass
consistency in noise. The first of these assumes that
external noisemasks induce additional internal noise at a
late stage (Burgess & Colborne, 1988; Eckstein et al.,
1997;Lu&Dosher, 2008). This reduces the effective ratio
of external:internal noise, ameliorating the Birdsall
linearization effect (and so psychometric functions
remain steep in noise) and decreasing double-pass
consistency (Burgess & Colborne, 1988). The perceptual
template model of Lu and Dosher (1999) includes an
explicit pathway for induced noise to imbue their model
with these properties.

Alternatively, pixel noise masks might activate
additional detecting mechanisms that compete with
the target mechanisms for access to the decision
variable. This account is related to the uncertainty
model of detection (Pelli, 1985; Tyler & Chen, 2000) in
which steep psychometric functions in the absence of
external noise are due to competition amongst many
noisy mechanisms (instead of a static nonlinearity). If

adding external noise induces additional uncertainty (or
distraction [Kontsevich & Tyler, 1999]), psychometric
slopes would remain steep instead of being linearized.
However, induced uncertainty is not expected to reduce
double-pass consistency (and does not appear to do so
empirically; see Figure 2e of Neri, 2010), unless the
activities within the irrelevant mechanisms that drive
decision-making are uncorrelated across repeated
presentations of the same noise stimulus.

A related possibility suggested to us by Neri
(personal communication, August 7, 2012) is that the
observer sums local filter responses across the stimulus
in each interval, but that the small proportion of
mechanisms that are selected for summation are done
so at random on each interval. This is a form of
induced uncertainty, where the uncertainty applies to
the summation process. In this model, double-pass
consistency is expected to be less for 2D noise than 0D
noise (consistent with our results) because its compo-
nent of random selection will be influenced much more
by the spatial variation of 2D noise than 0D noise.

Thus, induced noise and both versions of induced
uncertainty can produce some effects that are similar to
those from contrast gain control, despite the large
conceptual distinctions between them. In principle, any
combination of these processes might have been a
factor in our experiments. However, induced uncer-
tainty and noise cannot influence perceived contrast
because the mean activity in the target mechanism is
not affected. As a consequence, although induced
uncertainty and noise may well be contributing factors
in noise masking, they are neither necessary nor
sufficient to explain all of the results here.

Reinterpretation of previous studies

Our finding that 2D white noise masking might
derive primarily from suppression makes sense of some
inconsistencies in the literature. As shown in Figure 3,
Birdsall linearization occurs only partially for many
studies (Klein & Levi, 2009). The group of studies that
show consistent linearization are those in which the
noise is 1D, presumably because they have the greatest
concentration of mask energy within the detecting
mechanism (i.e., they are most similar to our 0D noise).

Several studies by Lu and Dosher (Dao et al., 2006;
Dosher & Lu, 2000; Lu & Dosher, 1999, 2008) show
very little evidence of Birdsall linearization (black and
white half-filled circles and low-filled squares in Figure
3). These studies used spatially 2D noise in a rapid
temporal sequence (mask-test-mask or mask-mask-test-
mask-mask, with each frame lasting at most 33.3 ms).
Previous work (Cass & Alais, 2006; Meese & Baker,
2009; Meese & Holmes, 2007) has shown that (all else
being equal) more transient masks produce the
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strongest cross-channel effects, so this choice of
masking regime may have inadvertently favored
suppressive processes. This would also explain why
Lu and Dosher (2008) report low double-pass consis-
tency, even at high mask contrasts.

Burgess, Li, and Abbey (1997) measured noise-
masking functions for various low-pass filtered noise
masks. Whereas noise-masking functions typically have
unit slope, theirs became shallower with increasing
difference between the spatial scales of the background
and target. In the present context, this is easily explained
as a cross-channel suppressive effect for which unit slope
is not predicted (Meese & Holmes, 2002). A more recent
study (Henning & Wichmann, 2007) showed that notch
filtered noise—with little or no energy within 1.5 octaves
of the target—reduced the level of facilitation in the
dipper function for contrast discrimination. This is not
readily explained by suppressive processes alone and
remains a challenge for future models. It seems likely
that multiple mechanisms are required to explain this
effect (Goris, Wichmann, & Henning, 2009) and that
contrast integration might also be involved (Meese &
Summers, 2007).

Conclusions

We asked why masking from 2D pixel noise fails to
behave according to theory. Taken together, the
evidence from four experiments led us to conclude that
2D noise masks have a substantial suppressive influence
(Hansen & Hess, 2012) on the neural representation of
the target. This means that they might be unsuitable for
some applications of noise masking. We propose that
0D noise (contrast jitter of a 0% mean contrast
pedestal) provides a more direct method of injecting
external noise into the detecting mechanisms. It is
unaffected by suppression and behaves like ideal noise
in all of our experiments.
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