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hiesPeter Ti�no Yi Sun Ian NabneyAston University, Aston Triangle, Birmingham, B4 7ETUnited KingdomAbstra
t We have re
ently developed a prin
i-pled approa
h to intera
tive non-linear hierar
hi-
al visualization [8℄ based on the Generative To-pographi
 Mapping (GTM). Hierar
hi
al plots areneeded when a single visualization plot is not suf-�
ient (e.g. when dealing with large quantities ofdata). In this paper we extend our system by givingthe user a 
hoi
e of initializing the 
hild plots ofthe 
urrent plot in either intera
tive, or automati
mode. In the intera
tive mode the user intera
tivelysele
ts \regions of interest" as in [8℄, whereas in theautomati
 mode an unsupervised minimum messagelength (MML)-driven 
onstru
tion of a mixture ofGTMs is used. The latter is parti
ularly usefulwhen the plots are 
overed with dense 
lusters ofhighly overlapping data proje
tions, making it dif-�
ult to use the intera
tive mode. Su
h a situationoften arises when visualizing large data sets. Weillustrate our approa
h on a data set of 2300 18-dimensional points and mention extension of oursystem to a

ommodate dis
rete data types.Keywords: Latent trait model, minimum messagelength, hierar
hi
al models, data visualizationI. Introdu
tionIn general, a single two-dimensional proje
-tion of high-dimensional data, even if it is non-linear, may not be suÆ
ient to 
apture all ofthe interesting aspe
ts of the data. Therefore,we have developed a prin
ipled approa
h to in-tera
tive 
onstru
tion of non-linear visualiza-tion hierar
hies [8℄, the basi
 building blo
k ofwhi
h is the Generative Topographi
 Mapping(GTM) [1℄.Sin
e GTM is a generative probabilisti
model, we were able to formulate training of

the visualization hierar
hy in a uni�ed andprin
ipled framework of maximum likelihoodparameter estimation using the expe
tation-maximization algorithm [8℄. In this study, wepresent a further development in this dire
-tion, again taking advantage of the probabilis-ti
 
hara
ter of GTM. When the user initializes
hild plots of the 
urrent plot they 
an do so ineither intera
tive or automati
 modes. In theintera
tive mode user de
ides what subsets ofthe data are interesting enough to be visualizedin a greater detail at lower level plots [8℄. Inthe automati
 mode, the number and positionof 
hildren GTMs are determined in an unsu-pervised manner using the minimum messagelength (MML) methodology. This is impor-tant, e.g. when dealing with large quantitiesof data that make visualization plots at higherlevels so 
ompli
ated that the intera
tive mode
annot be used.Using a data partitioning te
hnique (e.g. [7℄)for segmenting the data set, followed by 
on-stru
ting visualization plots in the individual
ompartments is not a good alternative { thereis no dire
t 
onne
tion between the 
riterionfor 
hoosing the quantization regions and mak-ing lo
al low-dimensional proje
tions. UsingGTM, however, su
h a 
onne
tion 
an be es-tablished. GTM is a generative probabilisti
model, whi
h enables us to use a prin
ipledminimum message length (MML)-based learn-ing of mixture models with an embedded modelsele
tion 
riterion [4℄. Hen
e, given a parentGTM, the number and position of its 
hildrenis based on the modeling properties of the 
hil-dren themselves, and not some outside ad-ho

riterion.



II. Generative Topographi
MappingThe Generative Topographi
 Mapping (GTM)is a latent spa
e model, i.e. it models prob-ability distributions in the (observable) dataspa
e by means of latent (hidden) variables. InGTM, the visualization spa
e is identi�ed withthe latent spa
e (usually a bounded subset ofa two-dimensional Eu
lidean spa
e).In general, the L-dimensional latent spa
eH � <L, in whi
h latent points x =(x1; :::; xL)T live, is 
overed by a grid of Klatent spa
e 
enters xi 2 H, i = 1; 2; :::;K.Let the data spa
e D be the D-dimensionalEu
lidean spa
e <D. We de�ne a non-lineartransformation f : H ! D as a radial basisfun
tion network by 
overing the latent spa
ewith a set of M �1 �xed non-linear basis fun
-tions �j : H ! <, j = 1; 2; :::;M � 1. As usualin the GTM literature, we work with spheri
alGaussian fun
tions of the same width �, po-sitioned on a regular grid. The bias term isin
luded via an additional 
onstant basis fun
-tion �M (�) = 1. Latent spa
e points x 2 H,are mapped into the data spa
e viaf(x) =W �(x); (1)where W is a D�M matrix of weight param-eters and �(x) = (�1(x); :::; �M (x))T .GTM forms, in the data spa
e, a 
onstrainedmixture of K spheri
al Gaussians P (tjxi) withinverse varian
e �, 
entered at the f -images,f(xi), of the latent spa
e 
enters xi 2 H,P (tj xi;W; �) =� �2��D=2 exp���2 kf(xi)� tk2� : (2)Imposing a uniform prior over xi, the densitymodel in D provided by the GTM isP (t) = 1=K KXi=1 P (tjxi): (3)Given a data set � = ft1; t2; :::; tNg of in-dependently generated points in D, the ad-justable parametersW and � of the model are

determined by maximum likelihood using anexpe
tation-maximization (EM) algorithm [1℄.For the purpose of data visualization, we useBayes' theorem to \invert" the transformationf . The posterior distribution on H, given adata point tn 2 D, is a sum of delta fun
tions
entered at 
enters xi, with 
oeÆ
ients equalto the posterior probability Rin that the i-thGaussian, 
orresponding to the latent spa
e
enter xi, generated tn [1℄. The latent spa
erepresentation of the point tn, i.e. the proje
-tion of tn, is then the mean PKi�1Rin xi ofthe posterior distribution on H.Following [8℄, we refer to the f -image of thelatent spa
e, f(H), as the proje
tion manifoldof the GTM.A. Hierar
hi
al GTMIn [8℄, we extended GTM to hierar
hies ofGTMs, organized in hierar
hi
al trees and in-tera
tively 
onstru
ted in a top down fashion,starting from a single Root plot. Let us �rst
on
entrate on simple mixtures of GTMs, i.e.on hierar
hi
al trees of depth 1, where the mix-ture 
omponents are 
hildren of the Root.Consider a mixture of A GTMs. Ea
hmixture 
omponent P (tja) has an asso
iated(non-negative) mixture 
oeÆ
ient �a satisfy-ing PAa=1 �a = 1. The mixture distribution isthen given byP (t) = AXa=1 �a P (tja): (4)The mixture is trained by an EM algorithm.In the E-step, given ea
h data point tn 2 D,we 
ompute the model responsibilities 
orre-sponding to the 
ompetition among the mix-ture 
omponentsP (ajtn) = �a P (tnja)PAb=1 �b P (tnjb) : (5)ResponsibilitiesR(a)i;n of the latent spa
e 
entersxi, i = 1; 2; :::;K, 
orresponding to the 
ompe-tition among the latent spa
e 
enters withinea
h GTM a, are 
al
ulated as in standardGTM (see [1℄).



The free parameters are estimated in theM-step using the posterior over hidden variables
omputed in the E-step. The mixture 
oeÆ-
ients are determined by�a = PNn=1 P (ajtn)N : (6)Weight matri
esW(a) are 
al
ulated by solving(�T B(a) �) (W(a))T = �T R(a) T; (7)where � is a K � M matrix with elements(�)ij = �j(xi), T is a N � D matrix stor-ing the data points t1; :::; tN as rows, R(a) is aK�N matrix 
ontaining, for ea
h latent spa
e
enter xi, and ea
h data point tn, s
aled re-sponsibilities (R(a))in = P (ajtn)R(a)i;n , and B(a)is a K �K diagonal matrix with diagonal el-ements 
orresponding to responsibilities of la-tent spa
e 
enters for the whole data sample,(B)ii =PNn=1(R(a))in.The inverse varian
es are re-estimated using1�(a) = ( NXn=1P (aj tn) KXi=1 R(a)i;nkW(a) �(xi)� tnk2)=(D NXn=1P (aj tn)): (8)Training equations for a full hierar
hy ofGTMs are more involved, but the only real
ompli
ation is that for nodes on levels > 2,we also have to 
onsider model responsibilitiesof the parent nodes, and these are re
ursivelypropagated as we in
rementally build the hier-ar
hy. We refer the interested reader to [8℄.III. MML formulation forunsupervised learning ofmixtures and hierar
hies ofGTMsGiven a set � = ft1; t2; :::; tNg of datapoints, minimum message length (MML)strategies sele
t, among the models inferredfrom �, the one whi
h minimizes length of themessage transmitting � [9℄. Given that the

data is modeled by a parametri
 probabilis-ti
 model P (�j�), the message 
onsists of twoparts { one spe
ifying the model parameters,the other spe
ifying the data given the model:Length(�; �) = Length(�) + Length(�j�):(9)By Shannon's arguments, the �rst term is noless than d� log p(�)e (based on a prior P (�)over the model spa
e), and the se
ond one isno less than d� log(P (�j�))e.Re
ently, Figueiredo and Jain [4℄ extendedthe MML framework to unsupervised learn-ing of mixture models. The parti
ular formof MML 
riterion adopted in [4℄ is of the form�̂ = argmin� L(�; �), whereL(�; �) = Q2 Xa:�a>0 log�N�a12 �+ A+2 log N12+ A+(Q+ 1)2 � logP (�j�); (10)where Q is the number of free parameters ofea
h mixture 
omponent. We only 
ode theparameters of mixture 
omponents a with pos-itive prior �a. The number of su
h 
ompo-nents is denoted by A+. For details 
on
ern-ing derivation of (10), we refer the reader to[4℄. We brie
y mention that the result followsfrom adopting a spe
i�
 form of MML, repla
-ing Fisher information matrix of the mixtureby the 
omplete-data Fisher matrix (in
ludingbinary mixture 
omponent indi
ators), and im-posing non-informative Je�reys' prior on boththe ve
tor of mixing 
oeÆ
ients f�ag and theparameters �a of individual mixture 
ompo-nents (we assume that these priors are inde-pendent).Minimization of (10), with A+ �xed, leadsto the following re-estimation of mixture 
oef-�
ients [4℄: for a = 1; 2; : : : ; A+,�̂a(t+1) = max�0; �Q2 +PNn=1 P (ajtn)�PA+b=1max�0; �Q2 +PNn=1 P (bjtn)� ;(11)where 
omponent responsibilities P (ajtn) are
omputed using (5). Free parameters �a =



(W(a); �(a)) of the individual GTMs are �ttedto the data � using the EM algorithm outlinedin se
tion II-A. Note that GTMs 
orrespond-ing to zero �̂a be
ome irrelevant and so (11) ef-fe
tively performs 
omponent annihilation [4℄.To start the training pro
ess, we 
hoose themaximum number of 
omponents Amax we arewilling to 
onsider. Then, we initiate the 
om-ponent GTMs around randomly sele
ted points
1; :::; 
Amax , from �. These \
enters" indu
ea Voronoi tessellation fVag in the data spa
e.Following [8℄, ea
h GTM a 2 f1; :::; Amaxg isinitialized to approximate the lo
al eigenspa
eE(2)a spanned by the �rst 2 eigenve
tors of thelo
al 
ovarian
e matrix of points from � be-longing to the Voronoi 
ompartment Va.As in [4℄, we adopt the 
omponent-wise EM(CEM) [3℄, i.e. rather than simultaneouslyupdating all the GTMs; we �rst update theparameters �1 of the �rst GTM (7{8), whileparameters of the remaining GTMs are �xed,then we re
ompute the model responsibilitiesfP (ajtn)gAa=1 (5) for the whole mixture. Af-ter this, we move to the se
ond 
omponent,update in the same manner �2, and re
om-pute fP (ajtn)gAa=1, et
., looping through themixture 
omponents. If one of the 
omponentGTMs dies (�̂a = 0), redistribution of its prob-ability mass to the remaining 
omponents in-
reases their 
han
e of survival. After 
onver-gen
e of CEM, we still have to 
he
k whethera shorter message length 
an be a
hieved byhaving a smaller number of mixture GTMs(down to A+ = 1). This is done by iterativelykilling o� the weakest GTM (with the small-est �̂a) and re-running CEM until 
onvergen
e.Finally, the winning mixture of GTMs is theone that leads to the shortest message lengthL(�; �) (10).Empiri
ally, we observed that \strong"GTMs that survived for longer time periodstended to be overtrained. One does not en-
ounter su
h problems when dealing with sim-ple mixtures of Gaussians, as was the 
ase in[4℄. However, GTM is a 
onstrained mixtureof Gaussians and the low-dimensional mani-fold 
ontaining 
enters of Gaussian noise mod-

els (proje
tion manifold [8℄) tended to form
ompli
ated folds. Simple introdu
tion of astronger regularization term [1℄ was not ofmu
h help, sin
e then the individual GTMswere rather sti� and did not realize the fullpotential of having a mixture of nonlinear pro-je
tions. Therefore, we adopted the followingte
hnique: after a 
omponent GTM has beeneliminated and before starting a new 
ompeti-tion of the remaining GTMs for the data ex-plained by it, we re-initialize the remainingGTMs so that they remain in their respe
tivepositions, but have a \fresh start" with less
ompli
ated proje
tion manifolds. For ea
hGTM we 
olle
t the data points for whi
h thatGTM has responsibility (eq. (5)) higher thana threshold � = 0:85. We then initialize andtrain individual GTMs for 1 epo
h in the tra-ditional way [1℄, ea
h on the 
orrespondingmodel-restri
ted set, as if they were not mem-bers of a mixture. After this re-initializationstep, the CEM algorithm is applied to the mix-ture on the whole data set.The proposed system for 
onstru
ting hier-ar
hies of non-linear visualization plots is sim-ilar to the one des
ribed in [8℄. The importantdi�eren
e is that now, given a parent plot, its
hildren are not always 
onstru
ted in the in-tera
tive way by letting the user identify \re-gions of interest" for the sub-plots. In denselypopulated higher-level plots with many over-lapping proje
tions, this may not be possi-ble. Instead, we let the user de
ide whetherhe wants the 
hildren to be 
onstru
ted in theintera
tive or unsupervised way. In the unsu-pervised 
ase, we use the MML te
hnique tode
ide the \appropriate" number and approxi-mate position of 
hildren GTMs1 and view theresulting lo
al mixture as an initialization forthe full EM algorithm for training hierar
hiesof GTMs [8℄.1We 
olle
t data points from � for whi
h the parentGTM has responsibility higher than the threshold �.We then run MML-based learning of mixtures of GTMson this redu
ed data set.



IV. Illustrative exampleAs an example we visualize in �gure 1 im-age segmentation data obtained by randomlysampling pat
hes of 3x3 pixels from a databaseof outdoor images. The pat
hes are 
hara
ter-ized by 18 
ontinuous attributes and are 
lassi-�ed into 4 
lasses: 
ement + path, bri
kfa
e +window, grass + foliage and sky. The param-eters of GTMs were as follows: latent spa
e[�1; 1℄2, K = 15 � 15 latent spa
e 
enters,M = 4 � 4 + 1 RBF spheri
al Gaussian ker-nels of width 1, \weight-de
ay" regularization
oeÆ
ient 0:1 [1℄. For a 
omplete informationon presentation of the visualization hierar
hy,we refer the reader to [8℄.We organize the plots of the hierar
hy in ahierar
hi
al tree. In non-leaf plots, providedthe 
hild models were initialized in the inter-a
tive mode, we show the latent spa
e points
i that were 
hosen to be the \
enters" of theregions of interest to be modeled in greater de-tail at lower levels. These are shown as 
ir
leslabeled by numbers. The numbers determinethe order of the 
orresponding 
hild GTM sub-plots (left-to-right).We adopt the strategy, suggested in [2℄, ofplotting all the data points on every plot,but modifying the intensity in proportion tothe responsibility (posterior model probability)P (Mj tn) whi
h ea
h plot (sub-modelM) hasfor the data point tn. Points that are not well
aptured by a parti
ular plot will appear withlow intensity.The user 
an visualize the regions 
apturedby a parti
ular 
hild GTM M, by modify-ing the plot of its parent, Parent(M), sothat instead of the parent responsibilities,P (Parent(M)j tn), the responsibilities of themodel M, P (Mj tn), are used. Alternatively,the user 
an modulate with responsibilitiesP (Mj tn) all the an
estor plots up to Root.As shown in [8℄ , su
h a modulation of an
es-tor plots is an important tool to help the userrelate 
hild plots to their parents.The Root plot 
ontains dense 
lusters ofoverlapping proje
tions. Six plots at the se
-ond level were 
onstru
ted using the unsuper-

vised MML te
hnique (Amax = 10). Note thatthe 
lasses are already fairly well-separated.We further detailed the se
ond plot in the in-tera
tive mode, by sele
ting 
enters (shown as
ir
les) of 2 regions of interest. Sin
e the �fthplot 
ontains a region of overlapping proje
-tions, we use again the MML te
hnique for
onstru
ting its 
hildren plots. The result-ing 
hildren plots are readable enough to befurther detailed in the intera
tive mode. Westress that all useful tools for understandingthe visualization hierar
hy des
ribed in [8℄,su
h as 
hildren-modulated parent plots, mag-ni�
ation fa
tor and dire
tional 
urvature plots
an also be used in the proposed system.V. Dis
rete data typesIn another line of development, we have ex-tended the basi
 hierar
hi
al GTM [8℄ to dealwith noise models from the general exponen-tial family of distributions [6℄. This is im-portant for visualizing other than 
ontinuousdata types, e.g. binary or 
ount data, whereBernoulli or multinomial noise models 
an beused.We brie
y mention, that by employing MMLte
hnique into su
h generalized hierar
hi
al vi-sualization system, we 
an perform e.g. semi-supervised hierar
hi
al do
ument mining. Thedo
uments are represented as high dimensionaldis
rete ve
tors through the key-word te
h-nique. The visualization hierar
hy is now 
om-posed of so-
alled latent trait models [5℄, whi
hare basi
ally GTMs endowed with noise modelsfrom the exponential family of distributions (inour example Bernoulli/multinomial). Othertools aimed at improving our understanding ofthe plots, like listing the most probable di
tio-nary (key) words for ea
h latent spa
e 
enterxi [5℄, are also in
orporated in the system.VI. Con
lusionWe have des
ribed a prin
ipled approa
h tosemi-supervised data visualization. The pro-posed system gives the user a 
hoi
e of initial-izing the 
hild plots of the 
urrent plot in ei-ther intera
tive, or automati
 mode. It is par-
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Fig. 1. Hierar
hi
al visualization of the image segmentation data 
onstru
ted in a semi-intera
tive way.



ti
ularly useful when user has no idea how to
hoose the area of interest due to highly over-lapping dense data proje
tions.A
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