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Abstract 

Simulations of complete virus capsid at atomistic details have been performed using standard 

Molecular Dynamics as well as original hybrid Molecular Dynamics/hydrodynamics 

methodologies. The results show that the capsid is stable in water solution at room 

temperature and ions composition similar to physiological conditions. Detailed analysis of the 

flow of water molecules and ions through the capsid’s wall is performed. It demonstrates that 

ions do not cross the capsid shell, while water exhibits substantial flows in both directions. 

This behaviour can be classified as a semipermeable membrane and may play a role in 

mechanical properties of the virus particle. 

Keywords 

All-atom simulation of viruses, hybrid Molecular Dynamics/hydrodynamics, multiscale 

simulations. 
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INTRODUCTION 

Modern experimental techniques have reached resolution high enough to measure the 

structure of entire viruses at atomistic level [1–5]. This provides a unique opportunity to 

model them using classical Molecular Dynamics (MD) approaches producing very important 

biomolecular information on the details of virus functioning, which, in turn, can be used for 

designing methods of manipulating and killing viruses. 

Unfortunately, the experiments are usually restricted to detect only static and symmetric parts 

of the structure, while the dynamics of viral structures is important for representing specific 

interactions between viral parts, the solution, and cell membrane. Also, the experimental data 

is performed at low temperature and does not reflect the influence of physiological solution 

on the sample. However, it is known that water is important for the dynamics of the protein 

when molecules of water guide the protein adjustment and movements [6]. 

The solution of this problem is provided by theoretic and computational modelling that have 

been developed dramatically during recent years [5–12]. Fortunately, the development of new 

approaches coincide with the development of new powerful computer clusters, including 

specialised ones [13,14], that allow to perform very large scale simulations with millions of 

atoms for significant time. Therefore, now there is a great opportunity to investigate atomistic 

and molecular properties of the viral particles and suggest directions of further experimental 

developments. This approach will help us to understand the logic of some viral processes that 

are hidden in the dynamics, interactions with the solution that take place at short times. This 

complementary experimental and theoretical approach will help us to save time and resources 

for experimental research and suggest ways of developing effective treatment of virus 

infections.  

In this paper we present the investigation of some processes that could be detected with all-

atom Molecular Dynamics simulation. We show that MD simulation predicts experimental 

structure of the virus. In addition, it allows to investigate molecular processes currently 

undetectable by experiments. In particular, we report the analysis of water and ion flows 

through the virus capsid and arrive at interesting conclusions that may be important 

biologically. 

Atomistic MD modelling of the whole viral capsid is very resource demanding, it needs to 

contain all atoms of the system in the calculation, including all water molecules. The fact that 

the systems usually consists of millions of atoms, where most are water molecules, makes the 

simulation computationally expensive.  

For this reason, we apply our new approach, a hybrid MD/hydrodynamics method that is 

created with the idea to reduce the simulation cost. The method allows to represent the 

system at fully atomistic resolution in the parts where all atoms are necessary, and at much 

cheaper continuous resolutions in the rest of the system. We have tested our approach on 

smaller systems [15,16] and now we report its application to a virus simulation. The 

realisation of the hybrid MD/hydrodynamics method for the viral capsid will allow to 

significantly increase the simulation time. Here we show that our method can successfully 

simulate the virus preserving its atomistic structure and producing similar dynamical 

behaviour. 
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For our study we have chosen the capsid of the porcine circovirus type 2 (PCV2), because 

PCV2 is the smallest virus with the diameter of about 20 nm and with circular DNA inside 

[17]. The capsid of PCV2 is stable without the genome and its atomistic structure is defined 

from X-ray crystallography [1]. However, the N-termini of the capsid have not been detected 

in the experiment, probably, because of their flexible or disordered structure. The 

combination of these facts makes this viral capsid a convenient model for all-atom MD 

simulations.  

We have simulated two cases of the whole viral capsid at atomistic resolution: with N-termini 

(we call them “tails”) and without them. Both structures are stable in physiological 

environments and they have good agreement with experimental data. We have demonstrated 

in our previous paper [18] the small value of the RMSD for the structures compared to the X-

ray structure.  

In this report we focus on the detailed analysis of the flow of water molecules and ions in and 

out the capsid. This is an important process that defines several biological properties of the 

virus, for example, its mechanical strength under the influence of pressure changes. We show 

that water exhibits substantial rate of exchange across the capsid’s wall, while ions essentially 

do not permeate the wall. This make the capsid shell to function as a semipermeable 

membrane, the behaviour also demonstrated for other viruses [9]. 

 

MATERIALS AND METHODS 

System preparation 

All-atom MD simulation has been performed with explicit model of solution using 

GROMACS. For the simulations we used X-ray structure [1] that is deposited in Protein Data 

Bank (3R0R), and the sequence of N-terminus, which is not detected with X-ray, probably 

because of their flexible or disordered structure. Therefore, we have reconstructed the 

structure of the missing N-termini with Homology Modeling approach in MODELLER [19] 

and, then, we have assembled the 60 proteins into the whole capsid using Viperdb [20].  
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Figure 1. The initial structure of the capsid: a) the overview with the boundaries of the 

simulation box and the division of the system onto regions: 1 — pure MD region, 2 — hybrid 

region, 3 — pure hydrodynamics region; the dashed line shows the subdivision of the hybrid 

region for thermostating; b) the cross-cut showing the “tails” (system B); the individual 

proteins (a) or tails (b) are shown in different colour 

We have prepared two initial structures of the capsid: the first one was without the N-termini 

(Fig.1a) and the second one with the N-termini (Fig.1b), (we will call them “A” and “B” 

systems respectively). 

The capsid is charged highly positively (360 e), while the tails are charged negatively (-3 e 

per tail). The system is divided by the capsid in two parts: the cavity and the outer solution, 

which raises the problem of correct neutralization of the system’s charge. To solve it we 

estimated the radial distribution of the capsid’s charge by splitting the capsid into a number 

of concentric spherical layers with the centres located at the capsid centre of mass (COM). 

The incremental charge of layers was plotted depending on the radius of the largest layer, 

Fig. 2. It could be seen that the integral capsid charge increases with distance up to ≈7.8 nm 

and then decreases. This fact indicates that the capsid is highly polarized with the inner 

surface having a large positive charge, and the negatively charged outer surface. Therefore, to 

correctly neutralize the capsid we neutralized each surface separately. The number of Cl
–
 ions 

equal to the height of the peak on the charge plot, were placed inside the capsid, while to the 

outer solution, Na
+
 ions were added in the amount equal to the difference between the total 

capsid charge and the charge of the inner surface. These values are listed in Table 1. Finally, 

additional 1720 Na
+
 and Cl

–
 ions were randomly distributed across the cell, which 

corresponded to physiological solution (0.9% wt. NaCl). We stress that the total charge of 

both simulation cells was zero. 

 

Figure 2. The dependence of the integral charge of the capsid layers on the radius of the 

largest layer; the solid curve corresponds to system A, the dashed curve corresponds to 

system B; vertical lines indicate the approximate boundaries of the capsid wall 

 

Table 1. The number of ions added to the capsids for charge neutralization. 

 added ions 
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capsid inside outside 

with tails 407 Cl
–
 227 Na

+
 

without tails 606 Cl
–
 246 Na

+
 

 

Pure MD simulation has been performed using AMBER03 force field with TIP3P water 

model. The total number of atom in the system was 1 898 573 for system A and 1 897 998 for 

system B. The simulated systems had only protein capsid, water, and ions without nucleic 

acids.  

After energy minimization we fixed the capsid with position restraints and calculation was 

carried out at T = 200 K, following the increase of temperature up to 300 K. After 1 ns of this 

procedure, the position restrains were switched off and MD simulation of the system was 

performed at 300 K for 10 ns. The parameters of the simulation were the following: PME 

treatment of electrostatic forces, 1.0 nm cut-off of van der Waals interactions, velocity-

rescale thermostat with time constant of 0.1 ps. 

Calculation of the water and ion flows through the capsid 

We used the following algorithm to calculate the number of ions and water molecules located 

inside the capsid. First, the capsid was divided into 20x20 sectors with the vertices in the 

capsid COM. Then in each sector the distance of each atom to the capsid COM was 

calculated, and the conventional location of the border between the cavity and the outer 

solution was determined as an average of atom–capsid COM distances: 

𝑟𝑏𝑜𝑟𝑑𝑒𝑟 =
1

𝑁
∑ 𝑟𝑖

𝑁

𝑖=1
 

This approach makes the value of rborder robust to fluctuations in positions of individual 

atoms. The tail atoms do not form the capsid wall and thus they were not accounted for. Now, 

an atom was considered to reside inside the capsid if its distance to the capsid COM was less 

than rborder. Using this criterion, in each sector the indices of water molecules and ions located 

inside the capsid were printed, their counts were calculated, and finally summed together. 

To estimate the flows between the cavity and the outer solution we compared the indices of 

water molecules and ions located inside the capsid between two time moments. The 

molecules which are inside the capsid in the first (second) time and are not in the second 

(first) one are considered to have left (entered); and the sum of the left and entered molecules 

produce the total flow across the capsid wall in the time interval between the first and the 

second time moments. 

Hybrid methodology 

In the current work, following [15,16], we consider a hybrid multiscale model consisting of 

the continuum hydrodynamics and the molecular dynamics part for the virus simulations.  

In the region of interest, i.e. in the volume containing the virus capsid with some water shell 

atoms around, the hybrid model is used in the pure molecular dynamics mode. Away from 

that region, the bulk water properties are approximated by continuum fluid dynamics. The 

coupling is achieved in the so-called acyclic or one-way coupled scheme way [21]. The one-
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way coupling means there is no feedback from the molecular dynamics particles onto the 

fluid dynamics part of the model that is described statistically. One can say that within this 

implementation the fluid dynamics affects the molecular dynamics (MD) as an effective “heat 

bath” that preserves the correct thermal fluctuations when the hybrid multiscale model is 

switched to the continuum hydrodynamics regime away from the virus. 

For macroscopically stationary liquids in the absence of major hydrodynamic gradients and 

away from solid boundaries, thermal fluctuations are the only source of macroscopic 

fluctuations in liquids. These are described by the Landau-Lifshitz Fluctuating 

Hydrodynamics (LL-FH) equations [22]:  
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where ,u, p are the density, velocity vector and pressure variables, the bar indicates that the 

variables are referred to the continuum hydrodynamics. The Equation Of State (EOS), 
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are defined in accordance with the MD model, and where the stochastic stress tensor Π
~

 is 

described as a random Gaussian matrix with zero mean and covariance, given by the formula 
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The LL-FH equations are solved with a central finite-volume method [23] to provide the 

‘target’ cell-centre hydrodynamic variables for the modified MD particle velocity and 

acceleration, pd
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where , 0    are numerical adjustable constant parameters, which characterize the ‘diffusion 

rate’ of the difference between the continuum and the atomistic parts of the model. The latter 

parameters define how fast the two parts of the same hybrid model equilibrate to the same 

macroscopic condition, i.e. converge to the same liquid they represent. The characteristic 

relaxation time associated with these parameters  
2 2~ / ~ /diff x x    ,          (5) 

where 3 Vx  is the length scale associated with the control volume V, should be 

comparable to the time step of the particles ~diff MD   so that the relaxation process affects the 

particle trajectories over their characteristic molecular dynamics time scale. 

 

 , ,s s x y z  is a user-defined domain-decomposition function which specifies how 

smoothly the hydrodynamic and the atomistic parts of the simulation are distributed across 

the solution domain.. Following the previous work [16], a spherical function is defined so that 

    

min

max min min

max

, ;

, , , ;

, .

MD

MD
MD FH

FH MD

FH

S r R

r R
s x y z S S S R r R

R R

S r R

 



    


 

 (6) 

where      
2 2 2

2 2 2r x L y L z L      , L is the computation box size,  , , 0,x y z L , min 0S  , 

max 1S  . The function is locked to the centre of mass of the virus capsid (r = 0), hence, 

making sure that the virus always remains within the fully atomistic part of the hybrid 

multiscale model (s=0). In this simulation, RMD and RFH equals to 0.85 and 0.95 respectively 

in order to include the whole capsid and the nearest water in the pure MD region (Fig. 1a). 

Detailed derivation of equations (4) can be found in [21,16] but the following should be 

highlighted. 

1. The cell-average fields  , u , 
 )(,1 tNq

q  and 
 )(,1 tNp

qqu , which appear on the right-hand-side 

of the above equations, correspond to the centres of the cell-volumes and need to be evaluated 

for each location x of MD particle p, for example, using a trilinear interpolation in space for 

the particle location between the cell centre points, and an interpolation in time in case the 

hydrodynamics solution is advanced in time with a bigger time step in comparison with the 

MD solution. 

2. The summations on the right-hand side correspond to the volume average field gradients 

(first derivatives and second derivatives in pd

dt

x
 and ipdu

dt
 equations, respectively), e.g. using 

the divergence theorem to eliminate one derivative and assuming the implementation within a 

finite-volume framework. 

3. For the pure hydrodynamics region (s = 1), in accordance with the equations above, the 

particles become passive tracers transported in the hydrodynamics field in accordance with 

the external boundary conditions imposed by hydrodynamics (periodic boundaries in this 

case), there is no need to compute the molecular dynamics potentials in this area, where the 

most expensive part of the MD simulation can be avoided. 

Special attention should be given to the thermostating of the system. Considering the widely 

used velocity rescaling thermostats in the standard implementation, the instantaneous 

temperature is calculated using the velocities of a specified group of atoms (usually the whole 

system). Then the velocities of these atoms are uniformly rescaled according to the ratio 

between the instantaneous and the reference temperatures. However, in our hybrid 

simulations the system is divided into substantially different regions from the thermostating 
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point of view. The temperature of the pure hydrodynamics region is determined by the FH 

field only, thus, the atoms located in this region at a given time moment should not be 

accounted for when computing the instantaneous temperature for the thermostat, that is they 

should not be thermostated. On the contrary, the atoms in the hybrid zone are controlled by 

the FH field only partially, thus, they should have their velocities rescaled. Therefore, we 

implemented separate thermostating for the pure MD region, and the two halves of the hybrid 

region (s ≤ 0.5 and s > 0.5, Fig. 1a); the pure hydrodynamics region is left unaffected by 

thermostating. For each zone the instantaneous temperature and the velocity rescaling were 

calculated individually. 

RESULTS AND DISCUSSION 

Both classical MD and hybrid methods produced a stable capsid with small RMSD with 

respect to the crystal structure. This signifies that the experimentally measured atomistic 

structure at low temperature and non-physiological conditions is preserved in room 

temperature solution with cell-like environment. 

We calculated the transport of sodium ions, chloride ions, and water molecules across the 

capsid wall during 10 ns. Fig. 3a,c,e show the results for system A and Fig. 3b,d,f - for 

system B. It is important to note that the ranges of the Y axes on corresponding plots are 

equal to facilitate comparison. 

Fig. 3a,b demonstrates the changes of the dynamics of chloride (blue points) and sodium (red 

points) ions for systems A and B. The number of sodium ions and chloride ions are almost 

the same during all 10 ns. We note that the number of ions transiting through the capsid wall 

is negligible and there are no mutually compensating flows of ions in and out of the capsid.  

More interesting results are observed for water molecules flow. Fig. 3c,d demonstrates the 

dependence of the number of water molecules inside the capsid on time. This number 

fluctuates around a constant value. The fluctuations are of larger period in system A (no 

tails), Fig. 3c, and smaller in system B (with tails), Fig. 3d. Nevertheless, the water molecules 

flow is detectable during the simulated 10ns.  

Fig. 3e,f show the total number of water molecules that crossed the capsid between the initial 

configuration and the configuration at time t. It is computed as a sum of (i) the number of 

molecules, which stay inside the capsid in the initial configuration and are outside of it at 

time t, and (ii) vice versa. The average flow, obtained as a slope of linear fitting of the plots, 

is 73±3 molecules per ns for system A and 60±2 for system B. Two first points were not used 

for fitting because of residual equilibration taking place after the constraints were removed 

from the capsid atoms. 
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Figure 3. Water and ions flow in system A (a,c,e) and system B (b,d,f) during 10 ns of 

simulation; a,b) the number of Na
+
 (red) and Cl

-
 (blue) ions inside the capsid as function of 

time, c,d) the number of water molecules inside the capsid as function of time, e,f) the total 

number of water molecules that crossed the capsid wall in both directions compared to the 

initial structure (black) and its linear fit (grey), the number of entered (red) and left (blue) 

water molecules 

The capsid structure simulated using our hybrid method shows small RMSD compared to the 

crystal structure, Fig. 4. This demonstrates that our methodology preserves the atomistic 

structural properties in the atomistic zone of the system. 

 

Figure 4. Root mean square displacement of capsid backbone atoms from the initial 

configuration during hybrid MD/hydrodynamics run 

The flow of ions is also absent in the hybrid case, in agreement with the pure MD runs 

(Fig. 5a). In contrast, the flow of water amounts to 66±2 molecules per ns, which is 

somewhat (by 10%) lower than in the pure MD simulation, Fig. 5b. This shows that the 

hydrodynamics part of the simulation still distorts the dynamics of the atomistic motion, but 

the effect is of limited magnitude. A noticeable effect is the large difference between the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

10 
 

magnitudes of ingoing and outgoing flows. We are currently investigating the reasons of 

these deviations. 

 

Figure 5. a) the number of Na
+
 (red) and Cl

-
 (blue) ions inside the capsid as function of time; 

b) the total number of water molecules that crossed the capsid wall in both directions 

compared to the initial structure (black) and its linear fit (grey), the number of entered (red) 

and left (blue) water molecules during hybrid MD/hydrodynamics run 

 

CONCLUSIONS 

We performed the analysis of water molecules and ions flows across the viral capsid wall. 

The analysis has been done for the viral capsid structures obtained from the X-ray and 

simulated using all-atom molecular dynamics with explicit solvent model for 10 ns. The 

analysis demonstrates that during 10 ns the ions from the solution essentially do not cross the 

capsid shell. This is in contrast to water molecules that possess the ability of transiting across 

the capsid wall in both directions. All-atom MD simulation of poliovirus in [9] exhibits 

similar behaviour of molecular permeability of the poliovirus capsid. The authors concluded 

that the poliovirus capsid can work as semipermeable membrane. We here observe similar 

behaviour. This function of the capsid can play an important mechanical role in withstanding 

high pressures or pressure changes. The simulation of the same system in the hybrid 

MD/hydrodynamics approach produced the virus structure and the magnitudes of ions and 

water flows close to those obtained in pure MD simulation, which validates our approach. 

 

ACKNOWLEDGEMENTS 

E.T. acknowledges support from the Royal Society of Chemistry (Researcher Mobility 

Fellowship, 550074), the Great Britain Sasakawa Foundation (grant 4679), and the 5 top 100 

Russian Academic Excellence Project at the Immanuel Kant Baltic Federal University. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

11 
 

This work used the ARCHER UK National Supercomputing Service 

(http://www.archer.ac.uk) funded by the UK High-End Computing Consortium for 

Biomolecular Simulation (grant number EP/L000253/1), the RIKEN Integrated Cluster of 

Clusters (RICC) and HOKUSAI GreatWave system. I.K. gratefully acknowledges the 

financial support of European Commission under the Marie Curie Individual Fellowship 

(“HIPPOGRIFFE” project) 

The supporting data of this study are stored at the University of Aston. Details of how to 

request access to these data are provided in the documentation available from the University 

of Aston research data repository at 

http://doi.org/10.17036/researchdata.aston.ac.uk.00000213 

 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

12 
 

REFERENCES 

[1] R. Khayat, N. Brunn, J.A. Speir, J.M. Hardham, R.G. Ankenbauer, A. Schneemann, J.E. 

Johnson, The 2.3-Angstrom Structure of Porcine Circovirus 2, J. Virology 85 (2011) 7856–

7862. 

[2] S.W. Lane, C.A. Dennis, C.L. Lane, C.H. Trinh, P.J. Rizkallah, P.G. Stockley, S.E. 

Phillips, Construction and crystal structure of recombinant STNV capsids, J. Mol. Biol. 413 

(2011), 41–50. 

[3] S. Duquerroy, B. Da Costa, C. Henry, A. Vigouroux, S. Libersou, J. Lepault, J. Navaza, 

B. Delmas, F.A. Rey, The Picobirnavirus Crystal Structure Provides Functional Insights Into 

Virion Assembly and Cell Entry, EMBO J. 28 (2009), 1655–1665. 

[4] X. Wang, J. Ren, Q. Gao, Z. Hu, Y. Sun, X. Li, D.J. Rowlands, W. Yin, J. Wang, D.I. 

Stuart, Z. Rao, E.E. Fry, Hepatitis A Virus and the Origins of Picornaviruses, Nature 517 

(2015), 85–88. 

[5] G. Zhao, J.R. Perilla, E.L. Yufenyuy, X. Meng, B. Chen, J. Ning, J. Ahn, A.M. 

Gronenborn, K. Schulten, C. Aiken, P. Zhang, Mature HIV-1 capsid structure by cryo-

electron microscopy and all-atom molecular dynamics, Nature 497 (2013), 643–646.  

[6] D.S. Larsson, L. Liljas, D. van der Spoel, Virus capsid dissolution studied by 

microsecond MD simulation, PLoS Comput. Biol. 8 (2012), e1002502. 

[7] J.R. Perilla, J.A. Hadden, B.C. Goh, C.G. Mayne, K. Schulten. All-Atom Molecular 

Dynamics of Virus Capsids as Drug Targets, J. Phys. Chem. Lett. 7 (2016), 1836−1844. 

[8] P.L. Freddolino, A.S. Arkhipov, S.B. Larson, A. McPherson, K. Schulten. Molecular 

Dynamics Simulations of the Complete Satellite Tobacco Mosaic Virus, Structure 14 (2006), 

437–449. 

[9] Y. Andoh, N. Yoshii, A. Yamada, K. Fujimoto, H. Kojima, K. Mizutani, A. Nakagawa, 

A. Nomoto, S. Okazaki, All-atom molecular dynamics calculation study of entire poliovirus 

empty capsids in solution, J. Chem. Phys. 141 (2014), 165101. 

[10] Y. Miao, J.E. Johnson, P.J. Ortoleva, All-Atom Multiscale Simulation of Cowpea 

Chlorotic Mottle Virus Capsid Swelling, J. Phys. Chem. B. 114 (2010), 11181–11195. 

[11] M. Zink, H. Grubmüller, Primary changes of the mechanical properties of Southern 

Bean Mosaic Virus upon calcium removal, Biophys J. 98 (2010), 687–695. 

[12] J.R. Perilla, B.C. Goh, C.K. Cassidy, B. Liu, R.C. Bernardi, T. Rudack, H. Yu, Z. Wu, 

K. Schulten, Molecular dynamics simulations of large macromolecular complexes, Curr. 

Opin. Struct. Biol. 31 (2015), 64–74. 

[13] I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, M. Taiji, MDGRAPE-4: a special-

purpose computer system for molecular dynamics simulations, Philos. Trans. A: Math. Phys. 

Eng. Sci. 372 (2014), 20130387. 

[14] D.E. Shaw, J.P. Grossman, J.A. Bank, B. Batson, J.A. Butts, J.C. Chao, M.M. Deneroff, 

R.O. Dror, A. Even, C.H. Fenton, et al., Anton 2: Raising the bar for performance and 

programmability in a special-purpose molecular dynamics supercomputer, Proceedings of the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

13 
 

International Conference for High Performance Computing, Networking, Storage and 

Analysis (SC14), Piscataway, NJ: IEEE, 2014, 41–53. 

[15] I. Korotkin, S. Karabasov, D. Nerukh, A. Markesteijn, A. Scukins, V. Farafonov, E. 

Pavlov, A hybrid molecular dynamics/fluctuating hydrodynamics method for modelling 

liquids at multiple scales in space and time, J. Chem. Phys. 143 (2015) 014110. 

[16] I. Korotkin, D. Nerukh, E. Tarasova, V. Farafonov, S. Karabasov, Two-phase flow 

analogy as an effective boundary condition for modelling liquids at atomistic resolution. J. 

Comp. Sci. 17 (2016), 446–456.  

[17] B. Yang, H. Wang, C. Ho, P. Lester, Q. Chen, F. Neske, S. A. Baylis, J. Blumel, Porcine 

Circovirus (PCV) Removal by Q Sepharose Fast Flow Chromatography, Biotechnol. Prog. 29 

(2013), 1464–1471. 

[18] E. Tarasova, V. Farafonov, R. Khayat, N. Okimoto, T.S. Komatsu, M. Taiji, D. Nerukh, 

All-Atom Molecular Dynamics Simulations of Entire Virus Capsid Reveal the Role of Ion 

Distribution in Capsid’s Stability, J. Phys. Chem. Lett., 8 (2017), 779–784. 

[19] A. Sali, T.L. Blündell, Comparative protein modelling by satisfaction of spatial 

restraints, J. Mol. Biol. 234 (1993), 779–815. 

[20] M. Carrillo-Tripp, C.M. Shepherd, I.A. Borelli, S. Venkataraman, G. Lander, P. 

Natarajan, J.E. Johnson, C.L. Brooks, V.S. Reddy, VIPERdb2: An Enhanced and Web API 

Enabled Relational Database for Structural Virology, Nucleic Acids Res. 37 (2009), 

D436−D442. 

[21] S. Karabasov, D. Nerukh, A. Hoekstra, C. Chopard, P.V. Coveney, Multiscale 

modelling: Approaches and challenges. Philosophical Transactions of The Royal Society A: 

Mathematical, Physical and Engineering Sciences, 372 (2014), 20130390. 

[22] L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1, Elsevier, Amsterdam, 1980. 

[23] A.P. Markesteijn, S.A. Karabasov, V.Y. Glotov, V.M. Goloviznin, Comput. Methods 

Appl. Mech. Eng. 281 (2014), 29–53. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

14 
 

Highlights 

 Simulations of complete virus capsid at atomistic details. 

 Original hybrid Molecular Dynamics/hydrodynamics methodology. 

 The flow of water and ions through the capsid’s wall reveal its semipermeable 

function. 

ACCEPTED MANUSCRIPT




