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Abstract 

 

The extracellular loop 2 (ECL2) region is the most conserved of the three ECL domains in family B G 

protein-coupled receptors (GPCRs) and has a fundamental role in ligand binding and activation across 

the receptor super-family. ECL2 is fundamental for ligand-induced activation of the calcitonin gene 

related peptide (CGRP) receptor, a family B GPCR implicated in migraine and heart disease. In this 

study we apply a comprehensive targeted non-alanine substitution analysis method and molecular 

modelling to the functionally important residues of ECL2 to reveal key molecular interactions. We 

identified an interaction network between R274/Y278/D280/W283. These amino acids had the 

biggest reduction in signalling following alanine substitution analysis and comprise a group of basic, 

acidic and aromatic residues conserved in the wider calcitonin family of class B GPCRs. This study 

identifies key and varied constraints at each locus, including diverse biochemical requirements for 

neighbouring tyrosine residues and a W283H substitution that recovered wild-type (WT) signalling, 

despite the strictly conserved nature of the central ECL2 tryptophan and the catastrophic effects on 

signalling of W283A substitution. In contrast, while the distal end of ECL2 requires strict 

conservation of hydrophobicity or polarity in each position, mutation of these residues never has a 

large effect. This approach has revealed linked networks of amino acids, consistent with structural 

models of ECL2 and likely to represent a shared structural framework at an important ligand-receptor 

interface that is present across the family B GPCRs. 
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1. Introduction 

 

The extracellular loops (ECLs) of G protein-coupled receptors (GPCRs) are direct binding points for 

orthosteric or allosteric ligands or transient contact points for ligand entry into the transmembrane 

(TM) bundle (Wheatley et al., 2012). Of the three ECLs, ECL2 is the most structurally diverse, 

reflecting its functional importance (Cherezov et al., 2007; Haga et al., 2012; Palczewski et al., 2000; 

Woolley and Conner, 2016). This has been shown through biochemical techniques and has been 

supported by the many crystal structures of GPCRs bound to both agonists and antagonists. The 

importance of ECL2 in family B GPCRs has been shown with ECL2 alanine scans of a number of 

receptors, including the calcitonin gene related peptide (CGRP) receptor, glucagon-like peptide-1 

receptor (GLP-1R) and corticotropin-releasing factor receptor 1 (CRFR1) (Gkountelias et al., 2009; 

Koole et al., 2012; Woolley et al., 2013; Wootten et al., 2016b). CGRP is a potent vasodilatory 

peptide that has been implicated in migraine, but it is also cardioprotective and is important in the 

establishment of hypertension (Woolley and Conner, 2013). The CGRP receptor is a heterodimer 

consisting of a GPCR (calcitonin receptor-like receptor; CLR) and a single TM accessory protein, 

receptor activity modifying protein 1 (RAMP1). Understanding how the CGRP ligand binds and 

activates its receptor has importance for understanding class B GPCRs in general and is relevant to 

the treatment of heart disease and migraine.  

 

In our recent alanine substitution study of the CGRP receptor ECL2 region, 14 of the 24 integral 

amino acids had a significant difference in CGRP-mediated cAMP signalling compared to wild-type 

(WT) receptor (Woolley et al., 2013). Seven of these alanine substitutions had a greater than 10-fold 

reduction in pEC50 signalling, highlighting the importance of this loop in ligand-mediated activation. 

In comparison, ECL3 only had two substitutions showing a significant reduction in signalling potency 

(Barwell et al., 2011). Mutagenesis analyses of ECL2 domains in family B GPCRs (Gkountelias et al., 

2009; Koole et al., 2012; Siu et al., 2013; Woolley et al., 2013) have often identified the importance 

of a basic residue at the start of ECL2, an acidic amino acid further into ECL2 and a conserved CW 

motif found centrally in ECL2 for signalling and/or ligand binding. 
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The data described here builds on our previous study to investigate this key structural loop (Woolley 

et al., 2013). We have used a targeted mutagenesis approach on key residues of the ECL2 region of 

the CGRP receptor to understand the precise molecular interactions that allow this receptor to 

function. Although ECL2 has been widely studied in a number of GPCRs, this tends to be limited to 

alanine-substitution data, or if this is analysed further (Siu et al., 2013), a single residue is analysed in 

greater detail. The current study is a comprehensive approach to understanding the biochemical 

requirements of a key structural domain and could provide a platform for understanding ligand-

contacts and future drug design for the CGRP-receptor and other members of the sub-family. The key 

aspect of this study is that the properties of the replacement amino acids have been carefully chosen to 

replicate a feature that is potentially relevant to the WT residue. Our results indicate that the residues 

within the loop interact to produce a small number of functionally important networks; this 

information is consistent with independent modelling studies. 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 

 

2. Materials and Methods 

 

2.1 Materials 

Human αCGRP was from Bachem (Bubendorf, Switzerland). LANCE cAMP assay kits and all 

reagents and plates were from PerkinElmer (Beaconsfield, UK). 

 

2.2 Expression constructs and mutagenesis 

Human CLR with an N-terminal hemagglutinin (HA) epitope was mutated using a method based on 

the QuikChange II site-directed mutagenesis kit (Stratagene, Cambridge, UK) and described 

previously (Conner et al., 2005). Human RAMP 1 with an N-terminal myc epitope tag (Woolley et al., 

2013) was used.  

 

2.3 Cell culture and transfection 

Culture of Cos7 cells was performed as previously described (Woolley et al., 2013). Cells were 

cultured in DMEM supplemented with 10 % FBS and kept in a 37 °C humidified 95 % air, 5 % CO2 

incubator. For cAMP assays and cell surface expression ELISAs, cells were seeded into 96-well 

plates at a density of 15 000 cells per well (determined using a Cellometer Auto T4 cell viability 

counter, Nexcelom Bioscience, Manchester, UK) 1 day before transfection. Cells were transiently 

transfected using polyethylenimine (PEI) as described previously (Woolley et al., 2013) using a 1:1 

ratio of CLR to RAMP. 

 

2.4 Cell surface expression ELISA 

Cell surface expression of all RAMP1/HA-CLR receptor complexes was assessed by measuring HA-

CLR expression in an ELISA as previously described (Bailey and Hay, 2007; Conner et al., 2005) 

with some modifications. 100 µl of 8 % paraformaldehyde in phosphate buffered saline (PBS) was 

added to each well of a 96 well plate containing transfected cells and incubated at room temperature 

with gentle shaking for 20 min. The cells were washed twice in PBS (100 µl per well). 100 µl of 1 % 

bovine serum albumin (BSA) in PBS was added to each well to block nonspecific protein interaction 
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and incubated at room temperature for 1 hour. The wells were aspirated and 50 µl of anti-HA 

monoclonal primary antibody (Sigma H-9658 diluted 1:2000 in 1 % BSA in PBS) was added to each 

well and incubated at room temperature for 1 hour. The wells were aspirated and washed once in PBS 

(100 µl per well). 50 µl anti-mouse HRP secondary antibody (Sigma A-4416 diluted 1:2000 in 1 % 

BSA in PBS) was added to each well at room temperature for 1 hour. The wells were aspirated and 

washed twice in PBS. 50 µl OPD solution was added to each well and incubated in the dark for 15 

min. 50 µl of 0.5M H2SO4 was added to stop the reaction and the plates were read at A490. The 

background was accounted for by normalising values to vector control as 0 %.    

 

2.5 cAMP assay 

Transfected cells were stimulated with agonist and lysates prepared for cAMP assay as previously 

described (Watkins et al., 2014). This protocol was modified for a LANCE cAMP assay (Hunter and 

Glass, 2015). Briefly, on the day of the assay, cells were serum-deprived in DMEM containing 1 mM 

IBMX and 0.1 % BSA for 30 min. Peptides, reconstituted to 1 mM in ultra-pure water, were diluted in 

the same medium to give a final concentration range of 1 pM to 1 µM. Peptides were added to cells 

and incubated at 37°C for 15 min. The contents of the wells were then aspirated, and 50 µL of ice-cold 

absolute ethanol was added and allowed to evaporate. cAMP was extracted by adding 50 µL of 

LANCE detection buffer (50 mM HEPES (pH7.4), 10 mM CaCl2 and 0.35 % Triton X-100), and the 

plates were gently shaken at room temperature for 15 min. 5 µL of each cell lysate was transferred to a 

384 well plate, followed by 5 µL of cAMP antibody diluted in detection buffer, and the plate was 

sealed and incubated in the dark for 30 min at room temperature. 10 µL of the detection mix was 

added to all wells; the plate was resealed and incubated in the dark for 1 h. The plates were read using 

a PHERAstar plate reader (BMG Labtech, Aylesbury, UK). The quantity of cAMP produced was 

determined from the raw data using the cAMP standard curve. 

 

2.6 Data analysis for cell surface expression ELISA 

The means of replicates from these individual experiments were combined following subtraction of 

the blank reading. Statistical significance between WT and mutants was determined using either a 
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paired t test or a one-way ANOVA followed by a post hoc Dunnett’s test (significant difference 

shown with * P<0.05) dependent on the number of means compared per plate. The experimental 

means were normalised to the overall WT mean as 100 %. 

 

2.7 Data analysis for cAMP assay 

Data analysis was performed in GraphPad Prism 6 (GraphPad Software Inc., San Diego, CA, USA). 

cAMP values were interpolated from the raw data using the cAMP standard curve. Data were fitted to 

obtain concentration–response curves using a three-parameter logistic equation. From these curves, 

basal, pEC50 and Emax values were obtained. The means of replicates from these individual 

experiments were combined. From these, basal, pEC50 and Emax values are presented as the mean ± 

SEM of values from individual data sets and were tested for statistical significance versus WT using 

an unpaired t-test. Curves are presented as the combined means of data from each unlabelled ligand 

concentration for each individual experimental repeat. For all assays, significance was accepted at P< 

0.05. 

 

2.8 Homology modelling and molecular dynamics (MD) simulations 

A hundred models of WT CLR were built using a multiple-template modelling approach (Mobarec et 

al., 2009) using  the family B crystal structures of CRFR1 and glucagon receptors simultaneously as 

structural templates. The homology models were built with Modeller (Sali and Blundell, 1993). 

Model scoring and ranking was performed with the discrete optimized protein energy (DOPE) (Shen 

and Sali, 2006) scoring function; selected models were visually inspected. The selected WT CLR was 

simulated as previously described (Wootten et al., 2016a; Wootten et al., 2016b) using all-atom 

molecular dynamics as implemented in ACEMD (Harvey et al., 2009). The receptor was embedded in 

a POPC bilayer and solvated with TIP3 water at anionic strength of 0.15 M. The whole system was 

energy minimised and followed by a 160 ps heating protocol from 0 K to 300 K in the NVT 

ensemble. Then followed a constrained simulation in the NPT ensemble, where the positional 

restraints were applied to the protein non-hydrogen atoms and the constraints were slowly released. 

The bond-length of hydrogen atoms were restrained with M-SHAKE (Kräutler et al., 2001). The 
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production simulations were performed in the NPT ensemble at 300 K and 1 atm, with a Langevin 

thermostat and a Berendsen barostat. The MD simulation was run with the Amberff14SB (Hornak et 

al., 2006) force field for the protein and lipid14 (Dickson et al., 2014) for the lipids. The production 

run was 120 ns. After the simulation was complete, the ECL2 was isolated and analysed. The initial 

coordinates and the trajectory are available from the University of Essex Research Data Repository 

(https://dx.doi.org/10.5526/ERDR-00000063). 
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3. Results  

 

Our previously published alanine-scanning mutagenesis analysis of the ECL2 region of CLR 

identified fourteen key residues required for cAMP signaling; only five amino acid residues had little 

or no involvement in CGRP-mediated cAMP accumulation (Figure 1). This study also suggested that 

C282 (ECL2) and C190 (TM3) form a largely functionally redundant disulfide bond. The remaining 

alanine substitutions were selected for further study. From these residues, 62 mutants were 

constructed to understand the biochemical constraints at each position. The substitutions selected for 

each residue were chosen to replicate a property of the WT residue. This includes charge, polarity, 

hydrophobicity and shape. The results of this study are discussed with respect to their common effects 

on CGRP-mediated cAMP accumulation. Data from the alanine substitutions has been included to 

allow for comparison; in some cases this has been updated from the published study (Woolley et al., 

2013). Four major functional themes can be attributed to the ECL2 domain: 

 

3.1. R274 and D280 form a fundamental site for CGRP-mediated signalling 

The alanine-substitution mutants R274A and D280A had large, deleterious effects on signalling (~100 

fold reductions in potency for each) as shown in Table 1 (from (Woolley et al., 2013). In this study, 

each residue was further substituted for amino acids that brought a charge, polarity or steric similarity 

to the position. For R274 these residues were acidic (D, E), basic (K), polar (Q), and aromatic (Y). 

For D280 these were acidic (E), basic (K, R), hydrophobic (L), polar (N, S and T) and aromatic (H). 

The results are shown in Table 1 and Figure 2. 

 

For R274, the conservative basic residue substitution, R274K, partially recovered signalling (~25 fold 

reduction in potency compared with ~100 fold reduction for R274A). All other mutations (D, E, Q 

and Y) had ≥ 100 fold reductions in potency (similar to R274A).  

 

Similarly, for D280, mutations to H, K, L, N and R had ~100 fold reductions in potency (not 

significantly different to that of D280A). Mutation to the conservative E residue or the polar S and T 
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residues showed improvements (~20-25 fold reductions in signalling) but these were not significantly 

different to that of D280A.  

 

To investigate possible pairings and interactions between residues within ECL2 a number of double 

mutations were created. These are shown in Table 2. Most of the double mutations were either direct 

or functionally similar reciprocal mutations with the hypothesis that signalling could be recovered by 

swapping the two residues if they interacted directly with each other. For R274, reciprocal swaps and 

other double mutants with D280 produced significant reductions in potency but these were 

considerably less than would be expected if the two single mutants were acting additively. This is 

with the exception of R274K/D280E, which had no significant difference between the expected and 

actual values. For R274E/D280H, the Emax was slightly reduced compared to WT (75.3 ± 3.5 %). 

 

3.2. Mutations to residues Y277, Y278, and N281 support the existence of this key functional region 

Table 3 and Figure 2 show the effects of mutations to Y277, Y278 and N281. A combination of acidic 

(typically E), aromatic (F, H or W), hydrophobic (L), polar (N) and basic (R/K) residues were chosen 

to represent the key biochemical restrictions for these loci. N281 was only replaced with lysine 

(N281K) to create a salt-bridge with D280 to restrict loop movement at this point. The key points 

from the data are summarised below: 

 

WT cAMP signalling of Y277 was recovered with all residues tested except for the positively charged 

arginine and polar asparagine. Y278 signalling however, was only recovered with aromatic residues 

(F, H and W) and required a single ring aromatic residue (F and H) to fully recover to WT. 

Hydrophobic (L) and basic (R) substitutions of Y278 had similar effects to A (~10-fold reduction) and 

substitution to an acidic residue (E) reduced potency by ~100 fold.  N281A had a slight increase in 

receptor potency; we suggest that this breaks a hydrogen bond observed between D280 and N281. To 

test the effect of an even more positive residue at this point, the N281 was substituted with a basic 

residue (N281K). This caused a significant reduction in receptor potency by approximately 10-fold.  
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The combined double mutants of R274 and Y278 reduced CGRP potency considerably less than 

would be expected if the two single mutants were acted additively (Table 2, Figure 3). This was not 

the case for double mutants involving R274 and Y277 where not only were the reductions in potency 

additive, but there were also reductions in Emax (R274EY277R, 37.1±7.2%; R274YY277R, 

56.8±12.9%). This suggests that R274 and Y278 alter CGRP potency by a common mechanism. 

Substitution of Y278 to R led to substantial recoveries of function for the mutants R274E and 

especially R274Y, showing the importance of a positive charge in the vicinity of these two residues. 

R274 and Y277 may have independent actions, but there is a linkage between the two positions. Our 

modelling and simulation of ECL2 shows that R274 and Y278 are close to each other in 3D space, 

forming a cation-pi interaction (Figure 4). 

 

3.3. Signalling of the highly conserved tryptophan residue in the central region of ECL2 (W283) 

requires the imidazole ring to be fully functional   

Table 4 and Figure 2 show the results of the W283 substitutions. Signalling of W283 is partially 

recovered from the W283A substitution with any of the aromatic residues substitutions (F, H or Y). 

However with the histidine specifically, signalling is WT. The hydrophobic substitution of leucine has 

a similar reduction in potency to that of alanine (~100 fold compared with ~300 fold respectively) and 

the negatively charged acidic residue (E) has a large reduction in signalling (>1000 fold reduction).  

 

In contrast to the recovery or redundancy revealed with the previously mentioned double mutants, 

swaps involving Y278 with W283 showed a significant increased deleterious effect than would be 

predicted from additivity, suggesting that these residues act independently but that the double 

mutation distorts the receptor to cause significant extra impairment to the architecture of the receptor. 

The double mutants of Y277 with W283 showed no significant difference between the predicted and 

actual pEC50 differences showing that these residues function independently from each other. Our 

model and simulation of the ECL2 predicts that Y277 and W283 are not in contact. 

 

3.4. Mutations to the distal region of ECL2 suggest a structurally important space 
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The alanine substitutions of the four residues in the distal half of ECL2 (I284, S285, D287 and T288) 

all showed small reductions in receptor signalling (≥ 10-fold reductions). These amino acids were 

substituted with a number of residues shown in Table 5. For I284, S285 and T288, signalling was 

improved but not recovered to WT with the most conservative mutations (I284L, S285T and T288S). 

Any other substitution had similar or bigger reductions than the alanine substitution. The D287E 

substitution recovered signalling to WT while the structurally similar D287L substitution (with a 

hydrophobic residue, L) showed improvements. 

 

3.5. The residues of a hydrophobic triplet of TM5 at the distal juxtaposition to ECL2 seem to be 

independently important 

Modelling of the CGRP receptor (described in section 3.8) suggested that the ECL2 region ends 

around the T288/H289 boundary. The top region of TM 5 (L290L291Y292) was included in the 

alanine-substitution data (Woolley et al., 2013). L290N and L291N substitutions were done to test the 

necessity for hydrophobicity in these positions (Table 4). L290N had similar reductions to L290A 

however L291N partially recovered signalling from the alanine substitution. Mutating these residues 

in pairs and as a group of three to alanine (bottom of Table 2) shows that the effect of each double 

mutant is more deleterious than the single residues and the triple substitution was even more 

deleterious than any of the double substitutions. The effect in each case is more deleterious than the 

multiplied effect of the constituent single mutants. 

 

3.6. Basal and Emax cAMP accumulation of the mutant cohort 

Only four of the single residue substitution mutants in this study had a significantly elevated basal 

cAMP signalling level compared with WT. In all cases, the effects were small (D280N, 21.0 ± 6.2 %; 

I284F, 13.7 ± 3.2 %; T288S, 12.8 ± 2.4 %; L291N, 17.5 ± 2.9 % of WT). The Emax values of these 

mutants were comparable to WT. Only four of these mutants had a significantly altered maximum 

cAMP signalling level compared with WT. One of these (I284Q) was very slightly increased (104.0 ± 

0.2 % of WT) and is, in our experience, not biologically significant. The remaining three (R274E, 

Y277R and W283E) had values of 71.1 ± 6.8 %, 81.8 ± 5.2 % and 65.7 ± 10.2 % WT Emax 
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respectively. For the double mutants, there were no significant differences in basal cAMP signalling 

and only R274EY277R and R274YY277R had significantly different Emax values (described in 

section 3.1). 

 

3.7. Cell surface expression (CSE) on non-alanine substitutions 

The CSE levels of all mutants were measured using the ELISA described in section 2.6 and is 

described in the second column of tables 1, 2, 3, 4 and 5. Only four of the 62 mutants analysed had a 

surface expression profile significantly different from WT. These are Y278L, D280L, D280T and 

L290N. These showed cell surface expression levels of 77.7 ± 5.7 %, 78.1 ± 2.5 %, 37.3 ± 2.1 % and 

83.7 ± 2.8 % compared with WT respectively. Reductions of this level have little effect on the 

signalling profile in this assay (Conner et al., 2006). 

 

3.8. Modelling and simulation of ECL2 

Our model and simulation of ECL2 (Figure 4A) shows the flexibility of this domain. Although 

mobile, its general location is well defined, probably because of the constraints imposed by the 

disulphide bond of C282 to TM3. Residue R274 was observed mainly forming a cation-pi interaction 

with Y278 (Figure 4B), although it was also close enough to give an electrostatic interaction with 

D280. While residue Y278 mainly interacted with W283, forming a T-shaped pi-stacking interaction, 

it was also possible for Y278 to form a hydrogen bond with D280, albeit to a lesser extent (Figure 

4B). N281, if mutated to lysine (K), could interact with D280, which would change the orientation of 

the latter. Y277 helps to stabilise the fold of the N-terminal portion of ECL2; MD shows that Y277 

can establish hydrogen bonds with R274. W283 faces down towards the interior of the TM domain 

and is part of a distinct structural unit to the R274-Y278-D280 network. 
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4. Discussion 

 

4.1 A network of residues centred around R274 and D280. 

The mutagenesis data for R274 (Tables 1-2, Figures 2-3) indicates that this position requires a 

positive charge to interact with an electronegative target located in a confined space. A negatively 

charged substitution regardless of side-chain length (D or E) has a bigger disruption (300-fold) than a 

neutral (alanine) substitution (100-fold). A shorter positive substitution (K) shows a significant (but 

not WT) gain of function compared to alanine-substitution. There are similar considerations for D280; 

this position requires a negative charge but the 100-fold D280A substitution cannot even be partially 

recovered by a longer, negatively charged residue (D280E) or by other, polar side-chains of differing 

shape (S or T). Maintaining side-chain length but not polarity (D280L) or replacing with a positive 

charge (D280R or D280K) also did not partially recover this effect but these three substitutions were 

equivalent to (not worse than) the D280A substitution. The double mutation analysis confirms that 

R274 and D280 are functionally linked and further suggests that R274 is also in a network with Y278. 

The requirements for position 278 (Tables 2-3) suggest that Y278 packs into a large space, in 

proximity to an electronegative source. 

 

R274 may be affected by the negative potential of D280, or vice versa, as these residues are too far 

from each other to form a hydrogen bond, but could still respond to their reciprocal electrostatic 

potential (less than 10Å); an alternative explanation is that R274 interacts with another negative 

charge. In this case, neutralisation of this negative charge would allow D280 to position itself so its 

negative charge can support CGRP signalling. There are arginine residues at positions 11 and 18 of 

the CGRP ligand that might interact with D280.  Individually the charges are of little consequence but 

replacement of both Arg 11 and Arg 18 of CGRP by non-polar substituents does cause a large 

reduction in potency (Howitt et al., 2003). The data suggests that Y278 stabilises a relatively 

conserved spatial position of D280 needed for CGRP signalling. D280 probably acts indirectly, to 

stabilise the N-terminal half of ECL2. Its actions can be disrupted through substitution with neutral, 

hydrophobic or cationic side-chains (A, L or R respectively). Conversely, substituting the tyrosine 
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residue with a negative charge (Y278E) may be causing a strong repulsion of D280, shown in the data 

by a significantly bigger disruption of CGRP-signalling. This is illustrated in a schematic in Figure 

4B. Interestingly, the R274Y mutant can be partially recovered by the Y278R substitution, which now 

may be interacting with R274Y to pull D280 into place. Y277 is further away from D280 and retains 

WT signalling with aromatic, hydrophobic and acidic substitutions; we suggest it acts indirectly to 

support the architecture of the CGRP binding site. None-the-less, the Y277R substitution can 

exacerbate the effect of R274Y or E replacement, indicating that interactions between these two 

positions are possible. It is also possible that this may be due to a deleterious effect of a positive 

charge at residue 277 on the actions of D280 that would normally be masked by the arginine at 

position 274. The deleterious effects of N281K may also be mediated by the extra positive charge 

attracting D280 in competition with R274. It is notable that there was a statistically significant 

reduction in surface expression of just four of more than 50 mutants described in this study and two of 

those were mutations to D280. D280L (78.1 % ± 2.5 %), Y278L (77.7% ± 5.7 %) and L290N (83.7 % 

± 2.8 %) were relatively small reductions in surface expression and D280T (37.3 % ± 2.1 %) is a 

larger effect. Whilst we have previously published that an even greater reduction in expression of the 

CLR mutant (Y226A/L227A) to just 34.64 % of WT (± 6.6 %) did not significantly effect either 

CGRP affinity or signaling compared with wild-type in the same cells (Conner et al., 2006), we 

acknowledge that we cannot discount that this may reflect stability issues effecting the functional 

values. The effects on potency seen with D280T are also very similar to those seen with D280S, 

which has WT cell surface expression. 

 

4.2 The side-chain of the highly conserved tryptophan residue of ECL2 requires only an imidazole or 

pyrrole ring for WT function 

The central ECL2 tryptophan (W283) is highly conserved within the GPCR family B. The deleterious 

effect of alanine-substitution was only partially recovered by other phenolic side-chains (W283F and 

W283Y). Interestingly, adding only an imidazole ring (W283H) fully recovered WT signalling and a 

negative charge (W283E) was less able to signal than W283A. These data combined with the 

requirement for aromaticity but not phenolic structure suggests a combined size and hydrophobic 
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element to W283 function, possibly enabling H-bonding to the 5-membered pyrolle ring of its indole. 

The W283 side-chain may need both a pi-cloud and the ability to H-bond. It is possible that these are 

separate interactions, each stabilising CGRP-mediated signalling. It seems that W283 is an important 

packing residue; predominantly working via hydrophobic interactions, but also making contact with 

an electronegative source. 

 

4.3 The distal region of ECL2 has some structural constraints. 

Despite the deleterious effects of S285A and D287A, S285 could tolerate a number of polar 

substitutions with only minor effects, D287E was WT and D287L was only slightly affected. The 

model and MD simulation show that S285 can hydrogen bond with D287. It appears that the polar 

residues distal of the disulphide bond are probably not crucial for receptor activation. The 

neighbouring hydrophobic residue I284 seems to have fairly tight steric constraints, probably packing 

into a hydrophobic pocket for structural stability. The side chain of T288 may H-bond with CGRP in 

a relatively minor way. L290, L291 and Y292 form a hydrophobic motif at the start of TM5 and these 

residues act synergistically in promoting CGRP-mediated cAMP signalling. 

  

4.4 ECL2 in other family B GPCRs 

The equivalent of position R274 (4.64b in the family B nomenclature) is conserved as R or K in all 

family B GPCRs. The equivalent of D280 is less well conserved, but in all family B ECL2 sequences 

apart from the parathyroid hormone (PTH) receptors, there is a negative charge either here (calcitonin 

receptor (CTR), CRFR1 and 2, GLP1R) or at the equivalent of Y278. The GLP-1R has negative 

charges at both of these positions (Figure 5). The three published crystal structures of family B 

GPCRs (4L6R and 5EE7 for the GCGR; 4K5Y for the CRFR1) (Hollenstein et al., 2013; Jazayeri et 

al., 2016; Siu et al., 2013) show how the N-terminus of the loop is shaped by ionic interactions 

between R/K5.60b and the acidic residues at the equivalent of Y278. This is equivalent to the π-cation 

interaction we observed in our model of CLR. 
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It is difficult to compare our model of ECL2 with that of the crystal structures of the GCGR (pdb 

codes 4L6R, 5EE7) (Jazayeri et al., 2016; Siu et al., 2013) and CRFR1 (pdb code: 4K5Y) (Hollenstein 

et al., 2013). Both 5EE7 and 4K5Y include thermostabilising mutants in ECL2; the loop is incomplete 

in the former and influenced by crystal packing in the latter. In 4L6R the side chains are not resolved. 

In 5EE7 the peptide backbone of the distal part of ECL2 is much closer to the TM6 than in any other 

structure, perhaps reflecting the influence of an E362F mutant that increases the hydrophobicity at the 

top of TM6. This observation suggests that ECL2 has intrinsic flexibility, emphasising the need for 

modelling to understand the structure of the loop.  

 

ECL2 is adjacent to a number of conserved residues. Close to the distal end of ECL2 is residue 5.60b 

(Figure 5). This is conserved as basic or Q and, at least in the GLP-1 receptor, R5.60b is part of an 

extensive hydrophilic network in all family B GPCRs that is potentially important for controlling 

receptor activation; it has been suggested that it might be a contact for bound GLP-1 (Wootten et al., 

2016a). Similarly, the basic residue at the start of ECL2 R/K4.64b is also important for ligand binding 

and signal transduction in a number of family B GPCRs (Gkountelias et al., 2009; Koole et al., 2012; 

Woolley et al., 2013). However, it is important to stress that the role of ECL2 is receptor-, ligand- and 

pathway-specific (Coin et al., 2013; Gkountelias et al., 2009; Koole et al., 2012; Siu et al., 2013; 

Woolley et al., 2013; Wootten et al., 2016b). Thus the absolutely conserved tryptophan in the centre 

of ECL2 has distinct features in CLR compared to the glucagon receptor. In this latter receptor, the W 

can be replaced by L and F with substantial recovery of activity, but it canot be replaced by histidine 

(Siu et al., 2013); this is quite unlike the situation with CLR. In each receptor, ECL2 is likely to have 

unique features. The existence of distinct ECL2 structures in the two GCGR structures (4L6R and 

5EE7) demonstrates the flexibility of ECL2 at its C-terminal end, perhaps meaning that it can adopt 

different conformations when binding distinct agonists. Interestingly, mutations in ECL2 at the GLP-1 

receptor have been suggested to differentially alter ligand bias (Wootten et al., 2016b). 

 

In summary, a comprehensive mutagenesis approach has been used to gain a deeper understanding of 

the functional nature of the ECL2 domain. We have focused primarily on the conserved basic residue 
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at the start of ECL2, the acidic residue before the conserved cysteine and the tryptophan residue in the 

family B conserved CW motif. It is likely that these residues function together, either through direct 

or indirect interactions and these might be stabilised by the aromaticity of Y278. Precise charge and 

size is particularly important for these key loci, particularly R274 and D280. The tryptophan residue 

appears to function primarily through its pyrolle ring. The second half of ECL2 requires strict 

hydrophobicity or polarity in each position, but mutation of these residues never has a large effect. 

This study shows that the amino acids of the N-terminal region of ECL2 have a particularly important 

role in CGRP receptor structure and function. Equally, a comparison of the different sequences at the 

C-terminal end of ECL2 across family B GPCRs suggests that the junction of the loop with TM5 is 

specialised in CLR, and possibly also the calcitonin receptor, to bind their unique cyclic agonists.  
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Figure legends 

 

Figure 1. Snake plot of TM residues of CLR selected for non-alanine substitution (white background). 

The five residues that had little or no involvement in cAMP accumulations are shown in grey. The 

cysteine residues, which reduced signalling when mutated alone but not together are shown with 

vertical lines. 

 

Figure 2. Concentration-response curves for mutations at R274, Y277, Y278, D280 and W283 for 

cAMP production. Each point is the mean ± s.e.m. of 4 to 6 determinations in triplicate. 

 

Figure 3. Concentration-response curves for double mutations at R274, Y277, and W283 for cAMP 

production. Each point is the mean ± s.e.m. of 4 to 6 determinations done in triplicate. 

 

Figure 4. 3D Model of the CLR ECL2. A. Dynamic fluctuation of the inactive conformation of ECL2 

during MD simulations. A schematic diagram of TM4 and TM5 is shown, along with 120 frames of 

the 120 ns MD simulation. B. Aromatic and ionic interactions detected between R274, Y278, D280 

and W283 during MD simulations. The disulphide bond between ECL2 and TM3 is shown in sticks 

and colour-coded by atom type (grey carbon, blue nitrogen, red oxygen, and yellow sulphur). 

 

Figure 5. Conservation of ECL2. A. Alignment of ECL2 across all human family B GPCRs, from 

4.64b to 5.60b. B. Pictogram (weblogo.berkeley.edu) illustrating sequence conservation in ECL2 from 

human family B GPCRs, from from 4.64b to 5.60b. 
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Table 1. Cell surface expression (C.S.E.) and pEC50 values for R274 and D280 non alanine 

substitution mutants compared with WT controls. C.S.E. was measured by comparing expression of 

WT and mutant CLR with an N-terminal HA tag using an ELISA. Statistical significance between 

WT and mutants was determined using either a paired t test or a one-way ANOVA followed by a post 

hoc Dunnett’s test (significant difference shown with * P<0.05) as described in the methods. The 

experimental means were normalised to the overall WT mean as 100 %. cAMP production was 

measured following dose-dependent stimulation with CGRP over a concentration range of 1 pM to 

1 µM. Data were fitted to obtain concentration–response curves using a three parameter logistic 

equation. The WT and mutant curves were normalised to the WT curves (using top and bottom values 

obtained from the fitted curve). From these curves, basal, pEC50 and Emax values were obtained. pEC50 

values are presented as the mean ± SEM of values from individual data sets and were tested for 

statistical significance versus WT using a paired t-test (significant difference shown with * P<0.05; ** 

P<0.01 and *** P<0.001). The non-alanine substitution pEC50 differences were compared to the 

alanine substitution pEC50 differences using a one way ANOVA and a Dunnett’s post hoc test 

(significant difference for this test shown with # P<0.05; ## P<0.01 and ### P<0.001).  

ECL2 

substitution 

C.S.E. (% WT 

CLR) pEC50 (WT CLR) pEC50 (ECL2 substitution) pEC50 

Mean ± 

S.E.M. 

N 

Mean ± S.E.M. N Mean ± S.E.M. N difference 

R274A 93.2±6.1  4 10.18 ± 0.34 3 8.00 ± 0.24 3 -2.18** 

R274D 74.6±5.6 4 10.18 ± 0.19 5 7.67 ± 0.14 5 -2.51*** 

R274E 92.6±5.0 4 10.14 ± 0.18 5 7.67 ± 0.12 5 -2.47*** 

R274K 94.4±3.1 4 10.03 ± 0.52 3 8.62 ± 0.52 3 -1.41*** ## 

R274Q 100.3±6.5 4 10.33 ± 0.14 4 8.13 ± 0.08 4 -2.20*** 

R274Y 85.9±9.1 4 10.36 ± 0.13 5 8.42 ± 0.16 5 -1.94*** 

D280A 83.5±18.6  4 9.90 ± 0.04 3 8.01 ± 0.13 3 -1.89** 

D280E 94.6±6.0 3 10.03 ± 0.42 4 8.78 ± 0.46 4 -1.25* 
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D280H 84.1±8.2 4 10.46 ± 0.07 4 8.24 ± 0.14 4 -2.22*** 

D280K 94.9±7.6 4 10.20 ± 0.19 5 8.13 ± 0.20 5 -2.07*** 

D280L 78.1±2.5* 4 10.41 ± 0.29 4 8.44 ± 0.23 4 -1.97* 

D280N 91.7±4.3 3 10.44 ± 0.30 4 8.71 ± 0.23 4 -1.73* 

D280R 81.1±9.8 4 10.40 ± 0.14 4 8.12 ± 0.17 4 -2.28* 

D280S 88.9±8.1 3 10.06 ± 0.44 4 8.66 ± 0.39 4 -1.40*** 

D280T 37.3±2.1* 3 10.20 ± 0.43 4 8.89 ± 0.35 4 -1.31** 
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Table 2. Cell surface expression (C.S.E.) and pEC50 values for ECL2 non alanine double mutants 

compared with WT controls. C.S.E. was measured by comparing expression of WT and mutant CLR 

with an N-terminal HA tag using an ELISA. Statistical significance between WT and mutants was 

determined using either a paired t test or a one-way ANOVA followed by a post hoc Dunnett’s test 

(significant difference shown with * P<0.05) depending on the set up of the plate. cAMP production 

was measured following dose-dependent stimulation with CGRP over a concentration range of 1 pM 

to 1 µM. Data were fitted to obtain concentration–response curves using a three parameter logistic 

equation. The WT and mutant curves were normalised to the WT curves (using top and bottom values 

obtained from the fitted curve). From these curves, basal, pEC50 and Emax values were obtained. pEC50 

values are presented as the mean ± SEM of values from individual data sets and were tested for 

statistical significance versus WT using a paired t-test (significant difference shown with *P<0.05; ** 

P<0.01 and *** P<0.001). The double substitution pEC50 differences were compared to the expected 

substitution pEC50 differences (the sum of the single substitution pEC50 difference) using an unpaired 

t test (significant difference for this test shown with #P<0.05; ##P<0.01 and ###P<0.001).  

ECL2 substitution 

C.S.E. (% WT 

CLR) pEC50 (WT CLR) pEC50 (ECL2 substitution) Measured pEC50 

Expected pEC50 

difference 

Mean ± 

S.E.M. 

N 

Mean ± S.E.M. N Mean ± S.E.M. N difference 

R274DD280R 85.8±11.6 4 10.24 ± 0.12 4 7.59 ± 0.19 4 -2.65*** -4.79### 

R274EY277R 75.7±6.7 4 10.25 ± 0.18 5 7.38 ± 0.10 5 -2.87*** -3.19 

R274YY277R 69.8±9.5 4 10.43 ± 0.13 5 7.49 ± 0.11 5 -2.94*** -2.66 

R274EY278R 85.4±7.4 4 10.24 ± 0.12 4 8.34 ± 0.13 4 -1.90*** -3.27### 

R274YY278R 91.8±12.0 4 10.18 ± 0.28 3 9.26 ± 0.18 3 -0.92* -2.74### 

R274ED280H 86.5±7.5 4 10.23 ± 0.09 4 7.85 ± 0.17 4 -2.38*** -4.69### 

R274ED280K 82.1±8.4 4 9.86 ± 0.22 5 7.23 ± 0.23 5 -2.63*** -4.54### 

R274ED280N 87.3±7.4 4 10.33 ± 0.13 6 7.78 ± 0.28 6 -2.55*** -4.20## 

R274KD280E 85.2±10.2 4 10.12 ± 0.24 5 7.71 ± 0.25 5 -2.41*** -2.66 

Y277FY278F 97.0±5.2 4 10.32 ± 0.08 5 10.34 ± 0.11 5 0.02 -0.26# 

Y277WW283Y 88.0±8.5 4 10.29 ± 0.24 4 8.86 ± 0.22 4 -1.43*** -1.11 

Y278WW283Y 90.1±11.6 4 10.32 ± 0.12 4 7.82 ± 0.09 4 -2.50*** -1.61### 

L290AL291AY292A 85.7±4.4 3 10.38 ± 0.43 3 6.46 ± 0.74 3 -3.92** -1.97## 

L290AL291A 91.8±3.7 3 10.58 ± 0.12 3 7.93 ± 0.13 3 -2.65** -1.51# 
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L290AY292A 80.4±5.6 3 9.47 ± 0.42 4 7.84 ± 0.31 4 -1.63*** -1.32 
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Table 3. Cell surface expression (C.S.E.) and pEC50 values for Y277, Y278 and N281 non alanine 

mutants compared with WT controls. C.S.E. was measured by comparing expression of WT and 

mutant CLR with an N-terminal HA tag using an ELISA. Statistical significance between WT and 

mutants was determined using either a paired t test or a one-way ANOVA followed by a post hoc 

Dunnett’s test (significant difference shown with * P<0.05) depending on the set up of the plate. 

cAMP production was measured following dose-dependent stimulation with CGRP over a 

concentration range of 1 pM to 1 µM. Data were fitted to obtain concentration–response curves using 

a three parameter logistic equation. The WT and mutant curves were normalised to the WT curves 

(using top and bottom values obtained from the fitted curve). From these curves, basal, pEC50 and 

Emax values were obtained. pEC50 values are presented as the mean ± SEM of values from individual 

data sets and were tested for statistical significance versus WT using a paired t-test (significant 

difference shown with *P<0.05; ** P<0.01 and *** P<0.001). The non-alanine substitution pEC50 

differences were compared to the alanine substitution pEC50 differences using a one way ANOVA and 

a Dunnett’s post hoc test (significant difference for this test shown with #P<0.05; ##P<0.01 and 

###P<0.001).  

ECL2 

substitution 

C.S.E. (% WT 

CLR) pEC50 (WT CLR) pEC50 (ECL2 substitution) pEC50 

Mean ± 

S.E.M. 

N 

Mean ± S.E.M. N Mean ± S.E.M. N difference 

Y277A 82.8±9.8  4 9.79  ± 0.38 4 8.90 ± 0.49 4 -0.89* 

Y277E 90.2±9.7 4 10.41 ± 0.19 6 10.04 ± 0.14 6 -0.37# 

Y277F 98.0±10.5 3 10.02 ± 0.45 4 9.87 ± 0.53 4 -0.15## 

Y277L 99.1±1.8 3 9.88 ± 0.42 4 9.57 ± 0.44 4 -0.31# 

Y277N 93.0±8.3 4 10.40 ± 0.10 4 10.08 ± 0.16 4 -0.32*# 

Y277R 86.5±8.9 4 10.33 ± 0.10 6 9.61 ± 0.16 6 -0.72** 

Y277W  114.2±10.8 4 10.28 ± 0.12 5 10.27 ± 0.09 5 -0.01### 

Y278A 97.7±20.6  6 9.83 ± 0.16 5 8.75 ± 0.08 5 -1.08** 
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Y278E 97.7±10.6 4 10.37 ± 0.12 5 8.45 ± 0.10 5 -1.92*** ### 

Y278F 104.5±4.4 3 9.92 ± 0.49 4 9.81 ± 0.41 4 -0.11### 

Y278H 86.6±11.8 4 10.40 ± 0.11 5 10.24 ± 0.03 5 -0.16### 

Y278L 77.7±5.7* 4 10.11 ± 0.54 3 8.98 ± 0.46 3 -1.13** 

Y278R 110.0±12.3 4 10.30 ± 0.22 4 9.50 ± 0.31 4 -0.80** 

Y278W  104.1±10.4 4 10.46 ± 0.05 5 9.95 ± 0.04 5 -0.51**# 

N281A 103.3±24.8  4 9.84 ± 0.26 5 9.93 ± 0.29 5 0.09 

N281K 101.9±3.2 3 10.04 ± 0.30 6 9.19 ± 0.31 6 -0.85*## 
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Table 4. Cell surface expression (C.S.E.) and pEC50 values for W283 non alanine mutants compared 

with WT controls. C.S.E. was measured by comparing expression of WT and mutant CLR with an N-

terminal HA tag using an ELISA. Statistical significance between WT and mutants was determined 

using either a paired t test or a one-way ANOVA followed by a post hoc Dunnett’s test (significant 

difference shown with * P<0.05) depending on the set up of the plate. cAMP production was 

measured following dose-dependent stimulation with CGRP over a concentration range of 1 pM to 

1 µM. Data were fitted to obtain concentration–response curves using a three parameter logistic 

equation. The WT and mutant curves were normalised to the WT curves (using top and bottom values 

obtained from the fitted curve). From these curves, basal, pEC50 and Emax values were obtained. pEC50 

values are presented as the mean ± SEM of values from individual data sets and were tested for 

statistical significance versus WT using a paired t-test (significant difference shown with *P<0.05; ** 

P<0.01 and *** P<0.001). The non-alanine substitution pEC50 differences were compared to the 

alanine substitution pEC50 differences using a one way ANOVA and a Dunnett’s post hoc test 

(significant difference for this test shown with #P<0.05; ##P<0.01 and ###P<0.001). 

ECL2 

substitution 

C.S.E. (% WT 

CLR) pEC50 (WT CLR) pEC50 (ECL2 substitution) pEC50 

Mean ± 

S.E.M. 

N 

Mean ± S.E.M. N Mean ± S.E.M. N difference 

W283A 69.8±1.0  3 10.71 ± 0.13 3 8.17 ± 0.04 3 -2.54** 

W283E 72.8±8.0 4 10.40 ± 0.10 6 7.22 ± 0.10 6 -3.18***  

W283F 100.4±1.7 3 10.13 ± 0.20 5 9.07 ± 0.33 5 -1.06*### 

W283H 94.4±1.9 4 10.86 ± 0.09 4 10.81 ± 0.09 4 -0.05### 

W283L 87.7±7.2 4 10.46 ± 0.12 5 8.42 ± 0.20 5 -2.04***  

W283Q 82.9±8.2 4 10.42 ± 0.14 5 8.84 ± 0.23 5 -1.58*** ## 

W283Y 76.7±7.2 4 10.36 ± 0.10 6 9.26 ± 0.18 6 -1.10*** ### 

 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

30 

 

Table 5. Cell surface expression (C.S.E.) and pEC50 values for distal ECL2 non alanine mutants 

compared with WT controls. C.S.E. was measured by comparing expression of WT and mutant CLR 

with an N-terminal HA tag using an ELISA. Statistical significance between WT and mutants was 

determined using either a paired t test or a one way ANOVA followed by a post hoc Dunnett’s test 

(significant difference shown with * P<0.05) depending on the set up of the plate. cAMP production 

was measured following dose-dependent stimulation with CGRP over a concentration range of 1 pM 

to 1 µM. Data were fitted to obtain concentration–response curves using a three parameter logistic 

equation. The WT and mutant curves were normalised to the WT curves (using top and bottom values 

obtained from the fitted curve). From these curves, basal, pEC50 and Emax values were obtained. pEC50 

values are presented as the mean ± SEM of values from individual data sets and were tested for 

statistical significance versus WT using a paired t-test (significant difference shown with *P<0.05; ** 

P<0.01 and *** P<0.001). The non-alanine substitution pEC50 differences were compared to the 

alanine substitution pEC50 differences using a one way ANOVA and a Dunnett’s post hoc test 

(significant difference for this test shown with #P<0.05; ##P<0.01 and ###P<0.001). 

 

ECL2 

substitution 

C.S.E. (% WT 

CLR) pEC50 (WT CLR) pEC50 (ECL2 substitution) pEC50 

Mean ± 

S.E.M. 

N 

Mean ± S.E.M. N Mean ± S.E.M. N difference 

I284A 62.8±8.1 * 4 8.81 ± 0.18 3 7.70 ± 0.10 3 -1.11* 

I284F 101.8±4.0 3 10.89 ± 0.22 3 9.76 ± 0.20 3 -1.13** 

I284L 109.9±3.9 4 10.73 ± 0.13 3 10.24 ± 0.10 3 -0.49**## 

I284Q 103.2±3.4 3 11.15 ± 0.11 3 9.45 ± 0.05 3 -1.70**## 

S285A 54.6±6.5 * 8 10.11 ± 0.19 5 9.41 ± 0.27 5 -0.70* 

S285D 106.0±2.2 3 10.00 ± 0.40 4 9.26 ± 0.39 4 -0.74** 

S285N 106.0±1.9 3 10.35 ± 0.28 6 9.83 ± 0.30 6 -0.52* 
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S285T 94.3±5.8 3 10.30 ± 0.35 5 9.96 ± 0.36 5 -0.34***  

S285Y 95.6±4.4 3 10.48 ± 0.22 3 9.12 ± 0.29 3 -1.36**# 

D287A 95.8±10.8  4 9.30 ± 0.42 4 8.58 ± 0.56 4 -0.72* 

D287E 104.6±2.6 3 10.90 ± 0.25 3 10.70 ± 0.18 3 -0.20 

D287L 94.1±2.7 3 10.94 ± 0.14 4 10.53 ± 0.13 4 -0.41* 

T288A 94.2±2.3  3 9.85 ± 0.35 4 8.46 ± 0.28 4 -1.39** 

T288D 94.1±2.9 3 9.66 ± 0.35 3 7.35 ± 0.30 3 -2.31**## 

T288N 97.4±0.9 3 10.15 ± 0.55 3 8.54 ± 0.48 3 -1.61** 

T288S 97.0±1.1 3 9.90 ± 0.49 4 9.56 ± 0.41 4 -0.34**## 

T288V 97.4±1.6 3 10.36 ± 0.26 3 8.52 ± 0.45 3 -1.84* 

L290A 83.2±7.4  3 10.58 ± 0.19 3 9.72 ± 0.17 3 -0.86* 

L290N 83.7±2.8* 4 10.87 ± 0.05 4 10.18 ± 0.03 4 -0.69***  

L291A 103.7±4.1  3 10.58 ± 0.19 3 9.93 ± 0.23 3 -0.65* 

L291N 100.0±2.6 3 10.88 ± 0.04 5 10.60 ± 0.10 5 -0.28*# 
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Figure 1.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5 

A. 

 

B. 
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Highlights 
 

 

1. The identification of several amino acid constraints within the second extracellular loop 

(ECL2) of the GPCR component of the CGRP receptor. 

 

2. This study provides a platform to begin to formulate some rules for Family B GPCR 

structure that regulate function. 

 

3. The study demonstrates a surprising gain of function substitution.  A W283H substitution 

mutant recovered wild-type (WT) signalling, despite the strictly conserved nature of the 

central ECL2 tryptophan and the catastrophic effects on signalling of W283A substitution.  

 

4. We have suggested a contrast between the central and the distal regions of ECL2. The 

distal region requires strict conservation of hydrophobicity or polarity in each position, 

mutation of these residues never had a large effect.  

 

5. We have shown a linked networks of amino acids, consistent with structural models of 

ECL2, likely to represent a shared structural framework at an important ligand-receptor 

interface that is present across the family B GPCRs. 

 




