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Abstract: We introduce a technique for quantifying and thenexploiting uncertainty in
nonlinear stochastic control systems. The approach is suboptimal though robust and relies
upon the approximation of the forward and inverse plant models by neural networks, which
also estimate the intrinsic uncertainty. Sampling from theresulting Gaussian distributions
of the inversion based neurocontroller allows us to introduce a control law which is
demonstrably more robust than traditional adaptive controllers.
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1. INTRODUCTION

In modern control theory nonlinear stochastic optimal
control is of great importance, due to its immediate ap-
plication to real world problems, where disturbances
play an important part in the performance of control
processes. In such situations, once the objective func-
tional is defined we would ideally seek a dynamic pro-
gramming solution. This however, is practically unfea-
sible, not least because of the unbounded search space
which we need to try and maintain possible solution
trajectories. The method of approximation we choose
is to try and model the conditional uncertainty of the
control signal by modelling its statistical properties,
expressed in terms of a conditional distribution func-
tion, which would be generated by the real stochastic
system under ideal circumstances. Since we are inter-
ested in nonlinear stochastic systems, a nonlinear con-
troller is required to satisfactorily control such plants.
The nonlinear controller can be viewed as a nonlinear
approximation problem.

Recently, neural network models have evolved into
favourite candidates in the field of nonlinear system
identification and control, due to their ability to ap-
proximate multi-variable nonlinear mappings. Besides
having nonlinear features, dynamic systems may have
noise events affecting their inputs and outputs, and

usually they are time-variant. Because artificial neural
networks can be adapted on line [1–3], usually they
are capable of good performances in such situations.
However for most real control problems where distur-
bances play an important part and where a relatively
big sampling interval is used, the predicted output of
the neural network is inherently uncertain.

Many researchers have considered the use of the un-
certainty measure to build a more robust controller.
Some of the recent works on the use of uncertainty
have been introduced in [4] where a systematic proce-
dure that accounts for the structured uncertainty when
a neural network model is integrated in an approxi-
mate feedback linearisation control scheme has been
developed. The use of an adaptive critic controller
when there is input uncertainty has been discussed
in [5]. The application of recently developed mini-
mal resource allocating network(MRAN) in a robust
manner under faulty conditions has been demonstrated
in [6]. A robust adaptive nonlinear control method for
controlling a class of nonlinear systems in the present
of both unknown nonlinearities and unmodelled dy-
namics has been illustrated in [7].

However neural networks now have the ability to
model general distributions rather than just producing
point estimates, and in particular can produce an esti-



mate of the uncertainty involved in its own predictions
[8–10]. But none of the recent works have considered
the possibility of using the neural network’s own es-
timate for error bars. In this paper we address the use
of this extra knowledge to approximate the conditional
distribution of the control signal for stochastic systems
of the formŷ(t) = f(y(t� 1); :::; y(t� n); u(t� d); :::; u(t�m); �v(t)) (1)

wherey(t) is the measured plant output,u(t)is the
measured plant input,�v(t) is the noise affecting the
plant output,n is maximum delay of the output,m
is the maximum delay of the input,d is the relative
degree of the plant.

After modelling the conditional distribution of the
control signal we search for the optimal control law
from the estimated control signal distribution, almost
in the same way as dynamic programming, where the
optimal control law is chosen such that to minimise a
certain utility functionuopt = Minu2U E�v J(U) (2)

but with the advantage of avoiding the computation
requirements for the dynamic programming. Further-
more, a stability analysis for the updating rule of the
control signal will be studied.

This paper begins with presenting the principle of
system model and error bar estimation. Next, we de-
velop a nonlinear controller architecture based on ap-
proximate dynamic inversion and the use of error bar
knowledge. After that we present the stability analysis
for the proposed control algorithm. This development
is then employed to control a nonlinear uncertain sim-
ulated system.

2. ADAPTIVE INVERSE CONTROL

The classical inverse adaptive control technique is
shown in figure 1. Basically the neural network is
learning to recreate the input that created the current
output of the plant. So in this case the desired response
for the adaptive controller is the plant input. The in-
verse controller contains adjustable parameters that
control its impulse response. An adaptive algorithm
is usually used to automatically adjust the controller
parameters to minimise some function of the error
(usually mean square error, other error functions can
also be used). The error is defined as the difference be-
tween the input of the plant and the actual output of the
controller. Many such algorithms are described in the
reports and textbooks by Narendra and Parthasarathy
[3] and by White and Sofge [1].
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Fig. 1. Training of an inverse controller.

3. DISTRIBUTION MODELLING OF CONTROL
SIGNAL

In classical inverse control the challenge is to build a
neural network that will take past values of the input
and output of the plantz(t) = [y(t � 1); ::::; y(t �n); u(t � 2); ::::; u(t � m)℄ and the desired output
valueyr(t) as an input, and outputs the control signalsu(t�d) (assumingd relative degree), which will move
the plant output to the desired value. For dynamical
systems it is reasonable to assume that the output of
the systemy(t) is a functionf of its inputu(t�d) and
the delayed vectorz(t). Furthermore in the case of a
one-to-one mapping, and only in this case, the inverse
of the function denoted byf�1 can be used to tell us
how to choose the control signal valueu(t � d) to
give the desired output valueyr(t). In this case a feed-
forward neural network trained using the sum of the
square error function (between the input of the system
and the actual output of the controller) can perform
well. In this work our basic goal is to model the con-
ditional uncertainty of the control signal, by modelling
its statistical properties, expressed in terms of the con-
ditional distribution functionp(u(t � d)js(t)). Heres(t) = [z(t); yr(t)℄ is the input vector to the neural
inverse model. Different methods for estimating the
uncertainty around the predicted output of a neural
network have been presented in [8–10]. In this work
the predictive error bar method will be used. It is re-
ported in [9]. This approach is based on the important
result that for a network trained on minimum square
error the optimum network output approximates the
conditional mean of the target data, orf�1opt(s(t)) =<u(t�d)js(t) >, and that the local variance of the target

data can be estimated asku(t� d)� f�1opt(s(t))k2. If
this variance is used as a target value for another neu-
ral network, then the optimum output of this second
network is again the conditional mean of that variance.
As reported in [9], in the implementation of predictive
error bars two correlated neural neural networks are
used. Each network shares the same input and hidden
nodes, but has different final layer links which are
estimated to give the approximated conditional mean
of the target data in the first network, and the approx-
imated conditional mean of the variance in the second
network. Thus the second network predicts the noise
variance of the predicted mean by the first network.
This architecture is shown in figure 2. Optimisation



of the weights is a two stage process: The first stage
determines the weightsw1 conditioning the regression
on the mapping surface. Once these weights have been
determined, the network approximations to the target
values are known, and hence so are the conditional
error values on the training examples. In the second
stage the inputs to the networks remain exactly as be-
fore, but now the target outputs of the network are the
error values. This second pass determines the weightsw2 which condition the second set of output noise to
the squared error values�2(s(t)). The distribution as-
sumption is then Gaussian with input dependent mean
given by the predicted value of the control signal from
the first network, and input dependent variance given
by the predicted value of the noise from the second
network. However, if the inverse of the functionf can
not be defined uniquely direct inverse mappingf�1
found by using the sum of the square error function be-
tween the input of the system and the actual output of
the controller can not be used to tell us how to choose
the control signalu(t � d) so as to reach the desired
responseyr(t). Therefore, assuming a Gaussian dis-
tribution can lead to a very poor representation of the
control signal. In this case a more general framework
for modelling conditional probability distributions is
required. This general framework (is not going to be
discussed in this paper), is based on the use of the
mixture density network.
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Fig. 2. The architecture of the predictive error bar
network.

4. PROBLEM FORMULATION AND SOLUTION
DEVELOPMENT

Dynamic programming is a powerful tool in stochastic
control problems [11,12]. However, it performs poorly
when the order of the system increases. The algorithm
proposed here is based on incorporating the uncer-
tainty knowledge from the neural network to avoid the
computational requirements for the dynamic program-
ming solution for stochastic control problems. We
search for an algorithmic approach yielding numerical
solutions to the minimisation problem. The proposed
method is equivalent to sampling values from the dis-
tribution of u and using the function value alone to
determine a reasonable minimisation of the objective,J(t). Using the gradient information ofJ(t), although
it would be more efficient, is not exploitable here due
to the random sampling nature of the algorithm and
the potential stochastic nature of the plant.

4.1 Neural Network Development for Incorporating
Uncertainty

Once properly trained, the inverse model can be used
to control the plant since it can create the necessary
control signals to create the desired system output. De-
spite the fact that neural networks have been accepted
as a suitable model for capturing the behaviour of non-
linear dynamical systems, it is also accepted that such
models should not be considered exact. The algorithm
proposed here circumvents the dynamic programming
scaling problem by using the predicted neural network
error bars to limit the possible control solutions to
consider. Accepting the inaccuracy of neural networks
and assuming the output of the inverse control network
can be approximated by a Gaussian distribution of
control signals, the mean and variances can be ob-
tained as discussed previously. Using just the mean
estimate of the control is typically suboptimal in non-
linear systems. Even though the Gaussian assumption
used here is an approximation, using the on-line vari-
ance estimate of the neural network determines a re-
gion around the predicted mean value where sampling
can be used to obtain a better estimate of the control
signal than the mean. The distribution assumption is
Gaussian but the predicted mean and variance are non-
linear functions of previous states, thus allowing for
good models of forward and inverse plant behaviour
provided the inverse plant is a function. If this is not
the case a similar approach, but using Gaussian mix-
tures (a mixture density network) could be employed.
Based on estimates of the mean and variance of the
distribution of control signal values, we can construct
the following algorithm incorporating the uncertainty
directly:

(1) Based on the pre-collected input-output data, an
accurate model of the process is constructed and
trained off line. It is assumed to be described by
the following neural network model:ŷ(t) = f(y(t� 1); :::; y(t� n); u(t� d); :::; u(t�m)) (3)

(2) An accurate inverse model of the plant should
also be constructed, and trained off line to ap-
proximate the conditional mean of the control
vector and the conditional variance. It is assumed
to be described by the following neural networkx(t) = f�1(y(t); y(t� 1); :::; y(t� n); u(t� d� 1); :::; u(t�m)) (4)û(t� d) = x(t)w1 (5)varu(t�d) = x(t)w2 (6)

wherex(t): is the predicted hidden variable from the
neural network at each instant of timet.w1: is the weight of the linear layer estimated
to predict the conditioned mean of the control



signal.w2: is the weight of the linear layer estimated
to predict the variance of the predicted control
signal.

(3) Define the desired response of the plant by defin-
ing a suitable reference model, which should be
chosen to have the same relative degree as that of
the plant.

(4) At each instant of timet the desired output is
calculated from the reference model output.

(5) Bring the control network on line and at each
time t estimate the appropriate control signal
from the controller and the variance of that con-
trol signal. The control signal distribution is then
assumed to be Gaussian and given byp(u(t� d) j s(t)) =1(2��2) 12 exp(� (u(t� d)� û(t� d))22�2 ) (7)

where�2: is the variance of the control signalvaru(t�d)s(t) : [yr(t); y(t� 1); :::; y(t� n); u(t� d� 1); :::; u(t� n)℄
(6) Generate a vector of samples from the control

signal distribution. That vector of samples is con-
sidered as the admissible control values at each
instant of time. The number of samples is chosen
based on the value of the predicted variance of
the control signalnumber of samples = K �varu(t�d). This equation determines the num-
ber of samples based on the confidence of the
controller about the predicted mean value of the
control signal. So more samples are generated for
larger variance.

(7) Feed these samples to the system model and
calculate the output from each sample.

(8) Based on the effect of each sample on the output
of the model, the most likely control value is
taken, which is assumed to be the value that
minimises the following cost function.J(t) =Minu2U E�v [(ŷ(t)� yr(t))2℄ (8)

whereU is a vector containing the sampled val-
ues from the control signal distribution,E is
the expected value of the cost function over the
random noise variable�v. Because we are using a
neural network to model the system, and because
the neural network predicts the mean value for
the output of the model averaged over the noise
on the data, the above function can be optimised
directly.

(9) Go to step4.

4.2 Stability Analysis

The development of the previous section was based
on updating the control signal from it’s estimated
distribution. Here we use the Lyapunov method to

determine stability and convergenceof the output error
for the proposed updating rule of the control signal.
The Lyapunov functionVk is defined asVk = e2k (9)

If Vk can be shown to be positive and decreasing when
updating the control signal from its distribution, then
we conclude that the output error converges and the
updating process is stable. By definition,Vk is posi-
tive. We now proceed to find whetherVk is decreasing
or not. The variation of Lyapunov function from itera-
tion k to iterationk + 1 is:�Vk = Vk+1 � Vk = [e2k+1 � e2k℄ (10)

Assuming that the input,z and the desired output,yr
remain the same from iterationk to iterationk + 1,
then ek+1 = yrk � f(zk; unew) (11)ek = yrk � f(zk; uold) (12)

whereuold is initially set to be equal to the predicted
mean value of the control signal̂u(t � d), unew =U(k), and whereU = [u1; u2; :::::::::::::::; uN ℄ is the
admissible control signal values sampled from the
control signal distribution withN equals to the num-
ber of the generated samples.

In order to find the minimum of the performance
measure criterion using the value of the performance
criterion function only, the updating rule is:If e2k+1 � e2k uold = unewOtherwise uold = uold (13)

Sinceek+1 � ek, �Vk is always negative and conse-
quently the error is decreasing by updating the control
signal in that way.

5. SIMULATION STUDY

5.1 Introduction

In order to illustrate the validity of the theoretical
developments, we consider the liquid-level system
described by the following second order equationy(t) = 0:9722y(t� 1) + 0:3578u(t� 1)� 0:1295u(t� 2)� 0:3103y(t� 1)u(t� 1)� 0:04228y2(t� 2) + 0:1663y(t� 2)u(t� 2)� 0:3513y2(t� 1)u(t� 2)+ 0:3084y(t� 1)y(t� 2)u(t� 2)+ 0:1087y(t� 2)u(t� 1)u(t� 2)� �vy2(t� 1)y(t� 2) (14)

This model has been used in [13] to illustrate theo-
retical development for the direct adaptive controller.
Because disturbances play an important part in real



world processes, a stochastic component,�v, has been
added to this model. This component is considered to
be a Gaussian random variable with a mean of0:03259
and a0:2 variance. The plant has been considered to
be described by equation (14). In order to identify the
plant, an input-output model described by the follow-
ing equation was chosen:ŷ(t) = f(y(t� 1); y(t� 2); u(t� 1); u(t� 2))
where f is a Gaussian radial basis function net-
work. This neural network model was trained using
the scaled conjugate gradient optimisation algorithm,
based on noisy input output data measurements taken
from the plant with sampling time of1s. The input to
the plant and the model was a sinc function followed
by a sine wave in the interval[�1; 1℄ with additive
Gaussian noise of zero mean and0:3 variance. The
single optimal structure for the neural network found
by applying the cross validation method consisted of6 Gaussian basis functions. Similarly an input output
model described by the following equation was chosen
to find the inverse model of the plant:û(t� 1) = f�1(y(t� 1); y(t� 2); y(t); u(t� 2))
wheref�1 is a Gaussian radial basis function net-
work. The training data has been the same as in the
forward model. A neural network with6 Gaussian
basis functions was found to be the best model.

5.2 Classical Inverse Control Approach

After training the inverse controller off line, the con-
trol network is brought on line and the control signal
is calculated at each instant of time from the control
neural network and by setting the output valuey(t) at
time t equal to the desired valueyr(t)u(t� 1) = f�1(y(t� 1); y(t� 2); yr(t); u(t� 2))
whereyr(t) = 0:2�r(t�1)+0:8�yr(t�1) andr is the
set point. The predicted mean value from the neural
network was forwarded to the plant. After running the
process for about600 time steps the output of the
system went unstable, and the classical inverse con-
troller was unable to force the plant output to follow
the reference output.

5.3 Proposed Control Approach

In our new approach, both the mean and the variance
of the control signal were estimated. Following the
procedure presented earlier, the best control signal was
found and forwarded to the plant. This control signal
was obtained from a small number of samples from
the Gaussian distribution, typically maximum of27
samples. The overall performance of the plant under

the proposed method is shown in figure 3, where it is
evident that the system outputs remain stable across
the whole region, and that the proposed sampling
approach managed to stabilise the plant. The control
signal is shown in figure 4, and the variance of this
control law is shown in figure 5. The error from the
absolute difference between the plant output and the
desired output of the classical inverse controller and
the proposed sampling approach is shown in figure 6.
More specifically figure 6 is the plot oferror = jy �yrjsampling � jy � yrjlassial inverse against the time.y is the actual plant output. From this figure we can
see that the sampling approach is no worse than taking
the mean in the inverse control, and in addition, the
sampling method remains stable in regions where the
classical approach diverges.
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6. CONCLUSIONS

This work focused on modelling conditional distribu-
tion of the control signal, by modelling its conditional
distribution function. The estimation of the distribu-
tion function is based on the use of neural network as
an approximation method to approximate the inverse
model of the plant.
Since the use of the predicted mean value of the con-
trol signal may not be optimal for any given perfor-
mance function, a new method that uses uncertainty
measure around the predicted mean value of the con-
trol signal was proposed. The new proposed method
allows for the control signal to be adapted from its
distribution, to obtain a better estimate of the control
signal than the mean. Convergence of the output error
from updating the control signal was verified by using
a proper Lyapunov function. The proposed control
strategy in this work choose the optimal control value
almost in the same way as in the dynamic program-
ming as mentioned in the introduction. However, the
proposed method is computationally more efficient
and dose not base on the use of the recurrence relation
as in the dynamic programming. This is because of
the fact that the estimated mean and variance being
predicted from a neural network which is supposed to
be optimised on the input output data. By predicting
the mean and the variance of the control signal from
the neural network, searching for a better value of the
control signal than the mean can be performed only in
this region in which the optimal trajectory is expected
to lie.
Simulation experiments demonstrated the successful
application of the proposed strategy to improve the
controller performance and to stablize a class of non-
linear control system with large uncertainties. Since
we are sampling our control signal from the estimated
distribution and choosing one which better fits the
model, the predicted mean value of the control signal
in the next time step should be more accurate. By feed-
ing back a better value of the control signal, another
benefit is that there should be no need to change the
controller parameters as long as we are dealing with
stationary processes.
The example given in this paper is perhaps the
simplest representative of a whole class of density-
estimating neural networks (such as the Mixture Den-

sity Network) and also points out a fruitful direction
for control research: that of sampling control signals
from estimated distribution functions which can in-
corporate even more information on the full distribu-
tion such as higher order moments beyond just the
first two, representing the mean and the uncertainty
around the mean. This more general approach is not
constrained by assumptions of invertibility and can
deal with hysteretic processes as well.
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