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Abstract

In principle it appears advantageous for single neurons to perform non-linear operations. Indeed it has been reported that
some neurons show signatures of such operations in their electrophysiological response. A particular case in point is the
Lobula Giant Movement Detector (LGMD) neuron of the locust, which is reported to locally perform a functional
multiplication. Given the wide ramifications of this suggestion with respect to our understanding of neuronal computations,
it is essential that this interpretation of the LGMD as a local multiplication unit is thoroughly tested. Here we evaluate an
alternative model that tests the hypothesis that the non-linear responses of the LGMD neuron emerge from the interactions
of many neurons in the opto-motor processing structure of the locust. We show, by exposing our model to standard LGMD
stimulation protocols, that the properties of the LGMD that were seen as a hallmark of local non-linear operations can be
explained as emerging from the dynamics of the pre-synaptic network. Moreover, we demonstrate that these properties
strongly depend on the details of the synaptic projections from the medulla to the LGMD. From these observations we
deduce a number of testable predictions. To assess the real-time properties of our model we applied it to a high-speed
robot. These robot results show that our model of the locust opto-motor system is able to reliably stabilize the movement
trajectory of the robot and can robustly support collision avoidance. In addition, these behavioural experiments suggest
that the emergent non-linear responses of the LGMD neuron enhance the system’s collision detection acuity. We show how
all reported properties of this neuron are consistently reproduced by this alternative model, and how they emerge from the
overall opto-motor processing structure of the locust. Hence, our results propose an alternative view on neuronal
computation that emphasizes the network properties as opposed to the local transformations that can be performed by
single neurons.
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Introduction

Since the introduction of the neuron doctrine about 100 years

ago, a central question has become what local operations the

primitive elements of nervous systems can perform. So far, the

only operation that has clear experimental support is the threshold

operation that converts the depolarization of the membrane into

action potentials. However, also other local non-linear operations

such as multiplications and divisions have been proposed. For

instance, the Elementary Motion Detector (EMD), a well-

established model of motion detection in the fly visual system that

relies on multiplication in order to explain the neural responses of

the Horizontal and Vertical System (HS, VS) visual interneurons

[1]. In addition, it has been proposed that attentional modulation

can result in a multiplicative gain of neuronal response to sensory

stimuli [2]. Another example is the divisive inhibition that is

assumed to underlie some of the non-linear adaptation properties

of cortical neurons [3,4], while several other studies have

investigated how neuronal noise or dendritic saturation could

contribute to divisive gain control [5,6]. Moreover, theoretical

studies on neocortical pyramidal cells have suggested that

multiplicative dendritic integration could account for non-linear

sensory processing enhancing stimulus classification [7,8]. Despite

the above examples, its computational attractiveness and the fact

that some data can be satisfactorily described in non-linear terms,

it remains unclear how the biophysics of single neurons could

implement these operations.

One particular case in point is the Lobula Giant Movement

Detector (LGMD) visual interneuron of the locust. Recently it has

been shown that the responses of this visual interneuron can be

explained in terms of a local product of two high-level features of

visual stimuli, their angular size and angular speed by means of a

non-linear transfer function of the neuron [9,10]. If correct, this is

the most explicit case reported in the experimental literature that

supports the notion of local non-linear neuronal operations and it

will have important consequences for our understanding of the

computations that the nervous system can perform, as it

significantly increases the computational power we can ascribe
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to single neurons. Hence, given the implications of this finding, it is

important to investigate whether the non-linear relationship

between the responses of the LGMD neuron and the visual

stimuli it is exposed to can be understood in alternative terms, yet

consistent with our current knowledge of the system. Here we

investigated the alternative hypothesis that the non-linear

responses of the LGMD can be explained in terms of an emergent

non-linear operation that results from the integration of distributed

computations performed by the neurons of the processing

architecture as a whole as opposed to being a multiplication

operation that is local to a single unit, i.e. the LGMD.

The LGMD neuron is a wide-field neuron that is known to

respond preferentially to looming stimuli [11,12]. Initially, it was

first thought to be an on-off neuron due to its integration of

neuronal responses generated in the afferent medulla layer that

correlate with the onset and offset of local visual features [13–15].

More recently the relationship between properties of looming

stimuli and the firing rate of the LGMD have been extensively

documented, including the non-linear relationship between firing

rate and time to collision (TTC), the constant relation between

peak firing rate and angular size, the independence of the peak

firing rate of the stimulus speed, shape and texture, and the linear

relationship between the TTC of the LGMD peak firing rate and

the apparent looming stimulus’ speed [9,16–18]. The LGMD has

been the target of a number of theoretical studies that either

investigated its collision detection capabilities [19–22], or its

putative non-linear integration properties [9,16–18]. The first

model was published in the late 90’s [22]. Rind et al. have shown

that the integration of on- and off-channels by a LGMD model

can account for aspects of its looming sensitivity and subsequently

this model has been applied to collision avoidance by roving robots

[22–26]. Recently, it has been shown that all of the known

response properties of the LGMD can be accounted for in terms of

the multiplication of the angular velocity (h9) with the angular size

(h) of a looming stimulus [9], where h and log (h9) are directly

conveyed to the LGMD via separate inhibitory and excitatory

pathways (Figure 1). The membrane potential (Vm) deflection is

subsequently assumed to be proportional to this multiplication that

is subsequently expressed in a firing rate, f2l, via an exponential

mapping:

f {1~exp log h0ð Þ{a:hð Þ~h’:exp {a:hð Þ ð1Þ

where,

a~tan{1 2

hthreshold

� �
ð2Þ

and hthreshold is an animal and species dependent parameter that

specifies the approaching object’s angular size at which the LGMD

firing rate is maximal [27]. Hence, by performing an exponential on

the summed inputs an effective multiplication occurs. This model

indeed provides for an excellent fit of the LGMD responses to

looming stimuli, and as such constitutes a useful benchmark for any

model of the LGMD [10]. Nevertheless, this local multiplicative

model makes a number of strong assumptions and overlooks the role

of the neurons pre-synaptic to the LGMD. More concretely: how

does the fan-in to the LGMD delineate an ‘‘object’’ of which h9 and

h can be assessed, given that an ‘‘object’’ has been defined, how are

log (h9) and h computed, how is this high-level information

represented by the massive fan-in to the LGMD, and how are the

parameters related to the approaching stimulus (h9 and h) extracted

and conveyed to the LGMD in the early visual system of the locust?

Moreover, this proposal assumes that the excitatory and inhibitory

inputs to the LGMD respond to high level information about the

visual stimulus (h9 and h) and that the role of the LGMD is to

compute a functional multiplication on those. By definition, the

functional multiplication attributed to the LGMD heavily depends

on having the two above mentioned features reliably computed and

delivered to distinct pathways. However, in mathematical terms,

there is not a unique combination of input signals to the LGMD that

could give rise to the above described firing rate pattern (eq. 1), and

thus, no reason to exclude this possibility. Indeed, our model

suggests that this is the case (Figure 1, layers C–D right panel).

Would the LGMD in that case still perform a functional

multiplication or just a non-linear mapping of its inputs? In fact,

the putative multiplicative properties of the LGMD have already

been a matter of debate [28–30]. In this study we approach the

above mentioned points from a system and architectural point of

view. We evaluate the alternative hypothesis that the non-linear

relationship between the responses of the LGMD neuron and the

stimuli the organism is exposed to result from the interaction of

many neurons in the sensory processing architecture, i.e. it is an

emergent non-linearity that is read-out by the LGMD. In particular,

we will assess the contribution of each processing layer in the visual

processing hierarchy of the locust, how and what information is

conveyed to the LGMD, and the resulting integration at the LGMD

level. The empirical validation of this alternative hypothesis,

however, is currently unpractical since it requires simultaneous in-

vivo measurements from large numbers of neurons under well-

controlled behavioural conditions. Hence, to assess the validity of

our alternative ‘‘emergent non-linearity’’ hypothesis we resort to a

computational approach and use a computational model that is

consistent with the anatomy and physiology of the locust visual

processing hierarchy, including the ommatidia, medulla, lobula,

LGMD and the Descending Contra-lateral Movement Detector

(DCMD). Using this model we show that all properties of the

LGMD neuron that can be described in terms of a local non-linear

operation can be explained as emerging from the structure of the

network as a whole. Above all, we show that the inputs to the

LGMD are directly driven by the stimulus dynamics rather than

resulting from a process of segmentation or computation of the

speed of the approaching objects. Despite the differences with

Gabbiani’s et al. model, the model proposed here displays identical

responses to its biological counterpart on all standard stimulation

Author Summary

The tiny brains of insects of about 1mm3 smoothly control
a flying platform while avoiding obstacles, regulating its
distance to objects and search for objects of interest. This
is largely achieved through a complex hierarchical
processing of signals from the multitude of ommatidia in
their eye to a set of highly specialized neurons that are
optimized to respond to specific properties of the visual
world. One of these neurons, the Lobula Giant Movement
Detector (LGMD) of the locust, has been recently shown to
perform a functional multiplication of its synaptic inputs. If
true, that would make the LGMD neuron a unique and
highly sophisticated neuron that raises questions about
the non-linear operations other neurons in other neuronal
systems would be able to perform. Hence it is crucial to
understand its properties, its role in behaviour and to
evaluate whether its responses can be explained in simpler
terms. Our results emphasize the role of network
architecture and distributed computation as opposed to
local complex non-linear computation. We show that our
model reliably reproduces the known properties of the
LGMD and can be used to control a high-speed robot.

Emergence of Non-Linear Neuronal Responses
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protocols reported in the literature. We demonstrate that the

emergent non-linear operations are strongly dependent on the

details of the synaptic organization of the locust’s visual system. In

addition, we apply our model to a high-speed mobile vehicle and

show that it reliably stabilizes the movement trajectory and robustly

avoids collisions. Hence, our model not only suggests that the

functional non-linear response properties of the LGMD emerge out

of the network as a whole but also shows robust and realistic real-

world properties.

Results

Model
The structure of our model consists of four layers that capture

the most relevant processes involved in the pathway to the LGMD,

and both the output of the LGMD and the population responses

for each layer are considered (Figure 1). We model the

photoreceptor layer with Linear Threshold (LT) units that are

driven by a CCD camera with automatic gain control (see

Experimental Procedures) (Figure 1A). The lamina is modelled

with a centre/surround connectivity that produces an edge

enhancement [31] (Figure 1B). Subsequently, neurons in the

medulla layer produce onset and offset sensitive responses [13–15]

(Figure 1C). The connectivity between the medulla and the lobula

layer transduces the excitatory input to the LGMD (Figure 1D).

Post-synaptic inhibition onto the LGMD is modelled through the

integration of the activity of the onset and offset sensitive neurons

in the medulla where the summed activity inhibits the excitatory

projections onto the LGMD from the second chiasma. The

LGMD is modelled as an Integrate and Fire (I&F) neuron that

Figure 1. Model of the locust LGMD system. Left column depicts the modelled anatomical organization of the pathway to the LGMD (A–E) while
the right column indicates the physiological responses to a looming stimulus in terms of the mean population activity averaged over 25 repetitions
for each layer of the model. (A) is the photoreceptor layer, (B) a centre/surround architecture in the lamina, (C) the on-off neurons of the medulla, (D)
the neurons connecting to the excitatory pathway of the LGMD, and (E) the LGMD/DCMD output. The data was fitted (dashed line) with the
instantaneous angular size of the object in (C) and (D), and with the multiplicative model of the LGMD proposed by Gabbiani et al. (1999) in (E).
doi:10.1371/journal.pcbi.1000701.g001

Emergence of Non-Linear Neuronal Responses
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integrates the above mentioned excitatory and inhibitory inputs

from the medulla and produces spikes (Figure 1E). All neurons in

our model are standard leaky I&F or leaky LT neurons [32,33]

(see Experimental Procedures for model details and dynamic

equations).

In the context of this study, we present an exhaustive analysis of

the responses of our model to a set of standard LGMD stimulation

protocols that allow us to validate our model with respect to the

biological system. Additionally, the contribution of each neural

layer of the model to the LGMD responses’ properties is assessed

experimentally (Figure 1A–E) as well as analytically, and its real-

world properties are evaluated using a fast moving robot.

In our first experiment we evaluate the model by using a

looming stimulus consisting of a solid square with 10 to 21

repetitions performed per each l/|v| pair (where l stands for the

half length of the object and v for its linear velocity) (see the

Experimental Procedures for further details). This ratio determines

the time course of the angular size (h) of the looming stimulus in an

independent fashion from the actual stimulus properties (eq. 3).

This experiment replicates the protocol used in [17].

Our model of the LGMD displays the typical response of this

neuron to an approaching stimulus (Figure 2A); as the angular size

of the retinal projection of the stimulus increases, the firing rate

increases, peaks and decays before the collision occurs. This

response closely resembles that of the biological data with the

multiplicative model (r = 0.98) (Figure 2A, middle panel). We

observe that the fit of the peak firing rate and the TTC versus the

l/|v| ratio is consistent with that observed in the biological system,

and is well captured by the multiplicative model that was derived

from LGMD recordings (eq. 1) (Figure 2B).

The response of the LGMD neuron has been shown to peak

when the angular size of the projection of the looming stimuli onto

the retina of the insect reaches a specific size, known as the angular

threshold [9,10,16,17,34,35]. Moreover, the time at which the

response of the LGMD peaks, that is, when the stimulus reaches

the angular threshold, depends linearly on the l/|v| ratio. This

reflects a robust detection of the angular threshold over a wide

range of l/|v| ratios since the time at which the response of the

LGMD peaks is proportional to l/|v|. The linear relationship

between TTC of the peak firing rate and the l/|v| ratio is a known

property of the LGMD [17,18] (eq. 2), that is reliably replicated by

our model (r.0.99) (Figure 2C).

We propose a specific connectivity for the LGMD pre-synaptic

fan-in such that the projections from the medulla to the lobula

integrate oriented contrast boundaries (see Experimental Proce-

dures). These projections are retinotopic and integrate the activity

of a set of on-off neurons of the medulla that surround its location

at distances dx and dy (surround excitation). Consequently, dx and

dy define the width and height of the region within which the

boundaries of a looming stimulus have to fall in order to achieve

maximal excitation, what defines the angular threshold. To further

test this aspect of the model, we performed a control experiment in

Figure 2. Responses of the LGMD model to a looming stimulus (solid square). (A) Upper panel: Stimulus’ angular size versus time. The
looming stimulus shape and parameters are indicated on the top-left corner of the graph. Middle panel: firing rate of our model over time (circles)
and the corresponding fit by the multiplicative model derived from LGMD recordings (dashed line). The fit parameters and the obtained correlation
values are indicated. Lower panel: Raster plot of the responses of our model over 20 trials. (B) Fit of the Peak Firing Rate of the LGMD model with eq. 1
versus the l/|v| ratio of the stimulus. (C) Time To Collision (TTC) versus the l/|v| ratio and its linear regression. The experiments were done for three
different model parameters, i.e. angular threshold values, to show how this parameter affects the peak firing rate. A total of 10 experiments per l/|v|
ratio and condition were performed (N = 300). Error bars indicate data variance.
doi:10.1371/journal.pcbi.1000701.g002

Emergence of Non-Linear Neuronal Responses
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which we varied dx and dy to define a surround receptive field of

25, 29 and 36 degrees of the camera’s field of view. The predicted

behaviour of our model is that the changes in dx and dy would

affect the angle of the peak firing rate, and therefore the TTC.

Indeed, we obtained a change of the slope of the linear regression

between the frequency peak and the l/|v| ratio which correlates

with the changes in dx and dy; the bigger dx and dy, and hence the

angular threshold. The later the LGMD response firing rate

reaches its maximum and the flatter the slope is (Figure 2C). In

conclusion, our model is consistent with the known properties of

the LGMD [9,16,17] and shows that the response peak is defined

by the topology of the projections from the medulla to the LGMD.

It was shown that the responses of the LGMD are largely

independent of the shape of the stimulus and its texture [17]. In a

series of experiments, we assessed whether our model shows

similar invariant properties (Figure 3). To do so, consistent with

previous experiments [17], we used four different shapes. For all

stimuli tested, and over the whole range of l/|v| ratios (from 5ms

to 50ms), the model’s responses show the same linear relationship

with the TTC as reported for the biological system, with a

correlation coefficient between the model’s responses and the

regression lines of r.0.99 (Figure 3C).

The response invariance to the approach angle of looming stimuli

is biologically highly relevant in a system that can serve to detect

potential predators, as is the LGMD. This reported property of the

LGMD was investigated in the last set of experiments. The

invariance was assessed by using the same experimental protocol as

previously employed, but now aligning the camera at different

angular orientations with respect to the projection screen as was

reported in [17]. In the following we refer to 0% of the visual field

when there is a complete alignment of the camera orientation and

screen, and to 100% when the centre of the screen is at the edge of

the camera’s visual field (Figure 4B, insertion).

We found that our LGMD model shows a robust response

invariant to the approach angle up to an angle that represents

approximately 75% of the visual field (Figure 4). A one-way

ANOVA analysis of the distribution of the model responses

revealed that a significant difference in the mean number of spikes

only occurs at an angle exceeding 75% of the total visual field of

the camera (approximately 30u) (p,0.05), i.e. when the stimulus

was partially lying outside of the visual field of the camera.

Although the fields of view of the locust eye and our camera are

not equivalent, yet we have designed it to have a similar angular

resolution of 2.33u per pixel [36]. Additionally, the fraction of field

of view where the response is invariant is comparable to the one of

the biological system [16] (Figure 4A).

Subsequently, we investigated the linear relationship of the

TTC of our LGMD model over a wide range of l/|v| ratios and

approach angles. Our results show that the invariance of the

response properties can be seen as well in the TTC domain

(Figure 4B). Here, the correlation coefficients of the data and its

linear regression are above 0.9 for both a perfect alignment

between the camera and the screen and in case of a misalignment

of 75% of the visual field. Thus, even though the activity of the

neural model is significantly reduced due to the loss of stimulation

by the looming stimulus at a very shallow approach angle

(Figure 4A), the intrinsic linear dependence of the TTC with

respect to the l/|v| of the LGMD is preserved (Figure 4B).

Figure 3. Analysis of shape and texture effect on the peak firing rate relative to the Time To Contact (TTC). (A) to (C): TTC versus the
l/|v| ratio is invariant to stimulus shape and texture for the entire set of l/|v| ratios; (A) concentric squares, (B) checkerboard texture, (C) solid circular
stimulus. The error bars indicate data variance; r is the correlation coefficient of the data with its linear regression.
doi:10.1371/journal.pcbi.1000701.g003
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Predictions
In order to understand better and to be more specific about the

nature of the inputs to the LGMD, we propose the use of

additional stimulation protocols that can be applied to the locust

using currently available experimental technologies. For instance,

in the multiplicative model, the firing rate of the LGMD is defined

by the product of the angular speed (h9) and a value related to the

object’s angular size (h) (eq. 1). If those two variables were indeed

the input to the LGMD, it would imply that for an object that is

approaching at a constant angular speed the LGMD should

display a completely different time response. In fact, since the

angular approaching speed of the stimulus (h9) would be constant,

the predicted output by the multiplicative model would be an

exponentially decreasing firing rate. Hence, we explicitly evaluate

the different responses between our model for each neural layer

and the multiplicative one by using objects that show a uniform

increase in size (Figure 5, layers A–E left panel). We observe that,

whereas the multiplicative model displays the expected exponen-

tial decreasing response, our emergent non-linearity model still

displays a peak at the preferred angular size. This stimulation

protocol was previously used by Hatsopoulos et al. showing a

response profile consisting of a fast increase of the firing rate, a

peak and subsequently followed by a slower decrease of the activity

[18]. Although some of the data could eventually be approximated

by an exponential function, a more quantitative analysis of the

LGMD responses is required in order to find the relationship

between stimuli and rising, peak and decay properties of the

responses of the LGMD under this protocol. Additionally, we see

that the predicted excitatory input to the LGMD with our model

differs from the constant factor predicted by the multiplicative fit

(Figure 5, layer D left panel). Thus, a further examination of the

LGMD responses under this protocol is essential to unveil what

the real input to the LGMD is, and therefore to understand

whether it computes a product of the object’s angular size (h) and

angular speed (h9) or responds to a different processing as

suggested by our results.

Next, we analyze the activity of each layer of our model to

identify the relationship between receding stimuli and the intensity

of the LGMD response (Figure 5, layers A–E right panel). The

responses are consistent with a number of experiments of stimulus

selectivity of the LGMD that showed a preference for looming

stimuli and its diminished response to receding ones [11,12,35].

Two hypothetical peaks in the TTC curve to receding stimulus

are predicted depending on the weighting of the post-synaptic

inhibition (Figure 5, right panel). We show that the specific

amplitude-time course of this response depends on the gain of the

inhibitory projections onto the LGMD.

Robot experiments
So far we have shown that we can account for all known aspects

of the responses of the LGMD neuron to looming stimuli with a

model that relies on the transformations performed in the complete

pathway from the photoreceptors to the LGMD as opposed to a

local multiplication. We now want to assess the behavioural validity

of our model by applying it to a high-speed impeller driven based

robot called ‘‘Strider’’. Given its structure, the Strider is highly

sensitive to inertia and friction forces, yet it delivers high-speeds. For

the robot to be sensitive to shallow approach angles, its camera was

equipped with a wide angle lens (190 deg. field of view). Although

the aim of the robot is to have dynamics comparable to that of a

flying insect, our robot has longer reaction times due to its increased

mass, i.e. it operates at a higher Reynolds number than a flying

insect. We therefore use a course stabilization system to guarantee

that the robot is able to follow straight trajectories. This course

stabilization system is based on the fly’s Elementary Motion

Detectors (EMD) and uses directional motion information from

the visual input to correct for drifts, and has been previously

deployed on flying vehicles [37].

The real-world behavioural task of the robot is to drive forward

on a straight course until an imminent collision is detected. The

modelled LGMD neuron will detect this upcoming collision and

induce a collision avoidance reaction that consists of two phases: first

deceleration of the robot, and then change of heading direction. To

deal with the inertia of the robot, the braking manoeuvre is realized

by driving the impellers backwards at full speed for one second. The

change in heading direction is achieved by a turn-in-place

manoeuvre of 1.25s duration. The LGMD model reports the

detection of an imminent collision when its firing rate exceeds a

specific threshold, and will trigger avoidance actions until its firing

rate decreases below the above mentioned threshold value.

The following analysis is based on 16 experiments in a confined

environment of 3.5 by 4.5 meters that lasted approximately

Figure 4. Responses of the model for different approach angles of the looming stimulus. (A) The mean number of spikes per trial is
calculated for four different approach angles. At least 20 repetitions have been performed per angle/speed pair. The l/|v| ratio was varied from 10ms
(circles), to 30ms (triangles) and 50ms (diamonds). (B) The difference of the TTC of peak firing rate with respect to the l/|v| ratio between a frontal
approaching trajectory and one at an angle representing 75% of the visual field. Error bars indicate data variance.
doi:10.1371/journal.pcbi.1000701.g004

Emergence of Non-Linear Neuronal Responses

PLoS Computational Biology | www.ploscompbiol.org 6 March 2010 | Volume 6 | Issue 3 | e1000701



3 minutes each, where both course stabilization and collision

avoidance systems were active. Additionally, we performed 5

control experiments where the LGMD neuron model was active

but the course stabilization system was disabled.

The experimental results confirm the necessity of a course

stabilization system: when the robot is solely controlled by the

LGMD model it displayed an erratic behaviour dominated by

multiple loops in either one direction or the other (Figure 6A, right

panel). When the LGMD model is combined with the EMD-based

course stabilization system, the robot exhibited longer periods of

translation exploring a larger area, and had a less variable heading

direction (Figure 6A, polar plots). The nearly uniform distribution

of the variation of the heading direction during the control

experiments (Figure 6A, right panel polar histogram) is the result

of the continuous changes that result from the complex dynamics

of the Strider robot. When both the LGMD model and the course

stabilization system were combined, this distribution was signifi-

cantly different and reduced to a few preferred heading directions

(Figure 6A, left panel polar histogram) (p,0.01, Kolmogorov-

Smirnov). To further demonstrate the effect of the course

stabilization system in the control of the behaviour of the robot,

a linear segmental fitting of the behavioural traces, consisting of

finding a sequence of linear segments that keep the Mean Square

Error (MSE) of the fit below a threshold value, was performed

(Figure 6A). This measure allows quantifying the straightness of

the trajectory. That is, the longer the segments are on average, the

straighter the overall trajectories are (Figure 6D). In order to assess

the dependency of the fit upon the threshold value, different

Figure 5. Mean population responses of the different layers of our model to a uniformly expanding or receding stimulus. The right
most panel depicts the modelled anatomical organization of the pathway to the LGMD (A–E) where (A) is the photoreceptor layer, (B) the lamina (the
centre/surround architecture), (C) the medulla (containing the on-off neurons), (D) the neurons connecting to the excitatory pathway of the LGMD,
and (E) the LGMD/DCMD output. Left panel: Average population response for each of the layers of our model (depicted in the right most diagram) to
an object that is uniformly increasing in size (10 repetitions). The curves in (E) show the different responses predicted by our model (solid line) and
generated by the model proposed by Gabbiani et al. (1999) (dashed grey line) to the same stimulus. Right panel: Population responses for each of the
layers of our model to receding stimuli (32 repetitions). The gain of the excitatory input to the LGMD was fixed to 0.2 while 4 different gains of the
inhibition were tested (0.02, 0.01, 0.005, and 0.001). (E) shows the 4 predictions for the responses of the LGMD depending on the inhibitory weight to
a receding stimulus. The input data to the LGMD was fitted with the instantaneous angular size of the object in (C) and (D) (red dashed line). The half-
length of the objects for both linearly increasing and receding stimulation experiments was fixed to 30cm. In the case of the receding experiment, the
simulated object was moving away from the camera at 10m/s.
doi:10.1371/journal.pcbi.1000701.g005
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threshold values were tested. All tested values yielded comparable

results. Although it is not the objective of this study to evaluate our

course stabilization model, these data serve to illustrate the

complex dynamics of the Strider robot. A statistical analysis of the

segment length distribution (two-sample Kolmogorov-Smirnov)

showed that in case of the combined system, the distributions of

the linear segments were significantly different (p,0.01). Longer

segments and a higher variance were obtained for the combined

system (Figure 6D); concluding that the stabilization system

contributes significantly to the straightness of the trajectory.

Therefore, the course stabilization system we included is an

essential component in order to deal with the dynamics of the

Strider, and allows us to perform and evaluate the collision

avoidance task with a high-speed robot.

To evaluate the performance of the LGMD component of the

robot system, all collision detections were classified into three

groups: correctly detected, false negatives (missed), and false

positives. These data have to be read in the context of this fast

moving robot, that on average detects a collision 0.5m away from a

wall while moving at a mean speed of 1.2m/s. Hence, if the robot

does not dramatically change its speed at the moment of detection, it

collides in less than half a second. Collisions detected 20–100cm

away from the walls were considered as correct, while all collisions

detected closer than 20cm from the wall were considered to be

detected too late, and thus missed (false negative). Conversely,

collisions detected farther than 100cm from the walls, were

considered false positives (Figure 6A, grey dashed region). In total,

87.8% of the detections were correct, 4.9% were false positives and

Figure 6. Trajectories and behavioural analysis of the ‘‘Strider’’ robot controlled by our LGMD model and a fly EMD based course
stabilization system. (A) Representative traces of the behaviour of the robot. Left panel shows the behaviour of the robot controlled by the LGMD
model in combination with an EMD-based course stabilization system, as in [37]. Right panel shows the behaviour in absence of course stabilization. The
blue traces indicate the position of the robot and the red segments indicate the detection of imminent collisions. The black dashed lines are obtained by
fitting linear segments to the robot traces, minimizing the Mean Square Error (MSE). Inserted into both panels are polar plots of the heading direction. (B)
Collision detections between 20cm and 100cm away from the wall were classified as correct, those detected closer than 20cm from the wall (solid gray
area in A) as missed, and collisions detected at a distance over 100cm as false positives (dashed area in A). (C) Detected collisions vs. distance. Bar colors
correspond to the classification of the collision detection defined in panel B. (D) Segment length: Histogram of the length of the linear segments
identified with the fitting procedure in (A). This measures the straightness of the traces of the robot in the control situation and when controlled by the
combined course stabilization and collision avoidance system. The error bars indicate data variance. The data in (B) and (C) corresponds to 16
experiments with the combined course stabilization and collision avoidance system and 5 control experiments (LGMD alone) in (D).
doi:10.1371/journal.pcbi.1000701.g006
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7.3% were missed (Figure 6B). The distribution of the number of

detections vs. the distance to the wall at the time of detection peaked

at 0.5m, and decreased exponentially further away from the wall

(Figure 6C). Thus, the behaviour of the robot directly results from

the non-linear nature of the response of the LGMD model

(Figure 2). Since the responses of the DCMD neuron feed directly

into the thoracic motor ganglia of the locust that control the wing

muscles, this seems to suggest that the amplitude-time course of the

LGMD defines a particular collision avoidance strategy that

minimizes the number of false positives as the distance to objects

increases. In conclusion, these behavioural experiments suggest that

the exponential transfer function of the LGMD neuron [9] is more

related to its role in the regulation of behaviour rather than to the

computation of object approach per se.

Discussion

The question whether neurons can perform non-linear

operations is of great relevance to answer what computations

neuronal systems can be expected to perform. It has been argued,

on the basis of the physiology of the LGMD neuron, that these

neurons can perform a multiplication of high-level features of

visual stimuli in order to detect pending collisions [9,10,16–18].

Gabbiani et al. proposed a model that provides for an excellent fit

of the LGMD responses to looming stimuli, and as such constitutes

a useful benchmark for any model of the LGMD. Using a

biologically constrained model of the locust visual system, we have

demonstrated that an alternative interpretation can not be

excluded. In this alternative view, the local non-linear transfer

function of the LGMD neuron can be accounted for in terms of

the physiological and anatomical properties of its afferent visual

processing hierarchy. We tested our model using simulated

analogues of the locust experiments reported in the literature

and assessed the real-world validity of our model using a high-

speed robot. We showed that our model is able to account for all

reported properties of the LGMD neuron without assuming any

non-linearities other than thresholding that is intrinsic to standard

leaky I&F and leaky LT neural models [32,33] (see Materials and

Methods). Consistent with our model, recent findings support the

existence of a retinotopic mapping of the LGMD pre-synaptic

network and suggest that a topographic map would be used to

magnify the dendritic sampling of the acute zone [38]. Our model

proposes an alternative view that suggests that a non-linear

transfer function between stimulus and response can emerge out of

the interaction of many distributed neuronal operations and their

specific mapping through synaptic topologies. Moreover, our

simulations show that the computation of angular speed and

angular size pre-synaptic to the LGMD is not necessary to explain

its properties. It has been reported that the LGMD shows an

exponential relationship between the membrane potential and the

firing frequency [9,17]. Such properties are standard to integrate

and fire neurons and can be explained in terms of their sigmoid

transfer function [39]. As such, we believe that the LGMD has a

similar transfer function and we have included it in our model.

Additionally, our experiments reveal that this non-linear transfer

function does not play a significant computational role in the

detection of a collision, but rather that it shapes the LGMD

response with respect to the behaviour requirements of collision

avoidance, as demonstrated with our robot experiments.

In our analysis we have presented a plausible model of how

motion selective responses can arise from the interaction between

on-set and off-set sensitive neurons. The idea of having selective

motion detection via delayed on-off interactions has been

previously used to model visual motion-selective neurons in the

mammalian neocortex [40]. The analysis of our ‘‘emergent non-

linearity’’ hypothesis shows that the non-linear responses of the

LGMD are caused mainly by the particular connectivity through

the second chiasma and the parameters of the neurons in the

network. It is the contribution of the restricted and local non-

linearities in the medulla and structures pre-synaptic to the LGMD

that give rise to the non-linear responses of our model. This

mechanism is akin to the way a multilayer perceptron can

approximate any continuous function with an arbitrary accuracy

based on a distributed set of non-linearities [41–43].

Nonetheless, ours is not the first connectionist model proposed

to explain the responses of the LGMD neuron to visual stimuli. In

fact, Rind and Bramwell proposed a model that accounts for the

looming sensitivity and selectivity when stimulated with approach-

ing, translating or receding objects over a decade ago [44].

Consistent with ours, Rind and Bramwell’s model is a feed-

forward model with transient detectors (on and off-set sensitive

neurons) and a feed-forward inhibition that brings the LGMD

activity back to baseline. Moreover, Rind and Bramwell’s model

has been successfully applied to mobile robots [23–25,45].

Although the model has been shown to provide a similar

functionality to that of its biological counterpart, there are a

number of aspects of LGMD computation that it does not account

for since this model was proposed before many of the properties of

the LGMD were unveiled. Thus, it does not address aspects such

as the emergence of the angular threshold or the non-linear

responses of the biological LGMD with respect to the specific

properties of the visual stimulus (angular size and angular velocity).

Our model goes a step beyond Rind’s model, making clear

anatomical predictions on how the specific properties of the

LGMD arise and showing that a non-linear interaction in the form

of a multiplication between stimulus’ angular size and velocity is

not required to account for the known properties of the LGMD

neuron. In our predictions, we test new stimulation protocols that

would help us to better understand the functional aspects of the

LGMD encoding of visual stimuli.

We have considered other possible, and probably simpler,

explanations of the responses of the LGMD such as the idea that

all the non-linear behaviours of this neuron could be driven

directly by the input dynamics (see Text S1 for further details).

Interestingly, as proposed by Rind and Simmons [11], the second

derivative of the size of the looming stimulus displays a very similar

time course to the actual LGMD responses. However, the second

derivative model is unable to explain the invariance of the LGMD

response since can not guarantee that the peak firing rate does

always occur at the same angular size of the object (Figure S1).

Although this stimulus dynamics based explanation cannot

account for all the known LGMD properties, it does provide an

alternative approach to explaining the LGMD response dynamics.

To understand to what extent a direct linear mapping between

input and output would suffice to explain the LGMD responses, a

multivariate Least Squares linear regression method was used to fit

our model’s responses to a sequence of raw input images of an

approaching object (Figure S1). This linear input-output mapping

is indeed able to reproduce the responses of our LGMD model, as

well as of its biological counterpart. Yet, as a linear mapping is not

able to capture directional motion information, it fails to predict

our model’s responses when it was tested against receding stimuli.

These two observations strongly suggest that the standard

stimulation protocol used to study the LGMD neuron is under-

constraint, and yields results that are insufficient to fully under-

stand the input-output transformations it performs. In fact, what is

needed are new stimulation protocols that independently manip-

ulate both angular size and speed under different conditions – as in
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the linearly increasing object case – to demonstrate that the

LGMD does compute the product of angular speed and size.

Though some steps have been undertaken to investigate new

stimulation protocols such as multiple simultaneously approaching

objects, they do not capture all functional aspects of LGMD

encoding of visual stimuli [31,32,41,42].

Some of the stimulation protocols that we propose have recently

been used in the context of the behavioral responses of the Locust

to approaching predator like objects. In particular, the behavioral

responses to looming and uniformly increasing angular size stimuli

were studied when triggering an escape response [46]. In this study

it was found that a hindleg flexion reaction (cocking) always

occurred with a fixed delay after the stimulus reached a fixed

angular size, independent of speed and type of approach of the

stimulus. Moreover, the timing of this behavioral reaction changes

in a linear fashion with the l/|v| ratio, as does the peak of the

firing rate in the LGMD (Figure 2C, Figure 3). Nonetheless, there

seems to be a discrepancy between these findings and the ones

reported by [47], where this relationship was not found. If correct,

the findings of Santer et al. would be consistent with the fact that

the LGMD fires maximally when the stimulus reaches the angular

threshold and thus with our predictions (see Results section).

However, according to Gabbiani’s model [18], the LGMD would

not show a peak in its firing rate for uniformly expanding objects

(Figure 5). Interestingly, sectioning the contralateral nerve cord

(the stimulated DCMD) did not prevent cocking from occurring,

but it just increased its variability [46]. Thus, there seem to be

other parallel mechanisms that also contribute to this visually

mediated behavioral response. These results seem to suggest that

the role of the LGMD in this context is more related to timing of

the escape action rather than the selection or execution of it.

Although there are valuable data on different stimulation

protocols, there remains the need for a more detailed quantifica-

tion if we want to pinpoint the underlying principle that gives rise

to the non-linear responses of the LGMD. Specifically, to assess

how the different parameters of different stimulation protocols

(angular size and angular velocity) do affect the shape of the

responses of the LGMD (the timing of the peak firing rate, the

slope of the rising and declining phases, etc).

We have used our model to make functional, structural and

testable predictions of the response of the LGMD. These

predictions can help to explain the sub-linear behaviour found

by Krapp and Gabbiani [48] when mapping the LGMD

sensitivity to local motion stimuli, as well as aid in explaining

the functional role of the post-synaptic inhibition. Recently,

picrotoxin, a chloride channel blocker, was used to investigate the

functional contribution of the feed-forward inhibition to the

LGMD [35]. The main conclusion of that study was that the feed-

forward inhibition contributes actively to the termination of the

LGMD response to looming objects. This post-synaptic inhibition

increases in an approximately exponential manner as the stimulus

expands, and it is followed by a fast decay. These results are

consistent and match the behaviour observed in our model. Yet,

recent research has shown that other mechanisms can not be

disregarded, such as spike frequency adaptation or synaptic

plasticity, which can further contribute to the sharpening of the

looming selectivity of the LGMD neuron [34,49].

Finally, we implemented the LGMD model in the context of a

behavioural robot experiment that demonstrates the reliability of

the system to detect imminent collisions on a high-speed and

inertial robot system. It has been shown that high frequency spikes

of the LGMD are involved in triggering escape manoeuvres to

lateral looming predators [50]. The responses of the LGMD have

been shown to be correlated with cocking behavior [46], and to be

sufficient to trigger gliding behavior [50]. Contrary to gliding,

cocking is not necessarily triggered by the LGMD responses in

isolation [46]. In fact, gliding has been shown to be triggered when

the spikes of the DCMD summate significantly in the MN84

neuron, the second tergosternal flight motor neuron [50]. In this

case the timing of the gliding responses is not directly related to the

angular size of the visual stimulus, as in the case of cocking, but to

high frequency activity (.150Hz) produced by the LGMD

neuron. The difference between relying on the angular size of

the approaching object or on high frequency activity from the

LGMD supports the notion that gliding is triggered as a ‘‘last

resort’’ when the other existing mechanisms to evade a thread fail

[51,52]. In the case of our high-speed robot experiments we have

used a very similar approach to what occurs in gliding. That is, the

robot only triggers an avoidance reaction when the responses of

the LGMD summate over a threshold in a motor neuron

responsible for the avoidance reactions (see Robot Experiments

section).

Furthermore, our experiments show that the exponential

transfer function of the LGMD could play an important role in

minimizing the probability of false positive detection at long

distances from obstacles without compromising the performance

of the system. We thus propose that the exponential Vm to firing

rate mapping of the LGMD may more be related to its role in the

regulation of behaviour than to its putative computational role in

input processing.

Materials and Methods

In the evaluation of our model we employed a twofold strategy:

On the one hand, we characterized our model using protocols

identical to those reported in the literature, i.e. approaching

stimuli with different speeds, shapes and textures, which were

displayed on a LCD screen and captured with a CCD camera.

Additionally, new stimulation protocols were used to make

predictions of the responses of the biological system. On the other

hand, we studied the behavioural implications of our model by

applying it to a high-speed robot.

Stimulation protocols
The rate of expansion of an approaching object of half length l

with velocity v was reproduced by a simulated looming stimulus.

Any object approaching at a constant speed shows a typical slow

angular speed that rapidly increases as it gets closer to the camera.

The angular size of this approaching object can be described as a

function of l and v, where l is the half-size of the object length and v

its linear velocity.

h( t)~2 :tan{1 l

v:t

� �
ð3Þ

Consistent with previous studies (Gabbiani et al., 2002; Gabbiani

et al., 1999; Gabbiani et al., 2001), looming stimuli with l/|v|

ratios that range from 5 to 50ms, with a 5ms step size, were used,

with 10 to 21 repetitions for each stimulation condition. Using

these stimuli we have assessed the relationship between the

responses of the model LGMD and stimulus properties, including

the relationship between the TTC and the l/|v| ratio and the

invariance of the angular threshold of the LGMD response over

the whole range of l/|v| ratios used. In these experiments the

stimuli are presented as a solid shape (square) and the centre of the

screen is aligned with the centre of the camera in both azimuth

and elevation. Subsequently, we performed a set of measurements

in order to establish the dependence of the LGMD response on the
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shape and texture of the stimulus using stimuli reported in the

literature: a solid square, a solid circle, a square with a

checkerboard pattern and a square with a pattern consisting of

concentric squares [17]. Finally, we investigated the invariance of

the responses of the LGMD model to the approach angle

considering presentation angles of stimuli corresponding to 0%,

33%, 55%, and 75% of the visual field of the camera, where 0%

represents the alignment of the camera with the screen, and at

100% the looming stimulus lies outside of the visual field of the

CCD camera.

A high-end CCD camera (EVI-D31, Sony Corp., Japan) placed

10cm in front of the screen was used as input to our model. The

camera was positioned such that its image covered the complete

display, resulting in a visual field size of 74.65uH656.25uV. To

present the looming stimuli, a LCD screen with a resolution of

8006600 pixels was used. The spatial resolution of the screen

(0.019cm per pixel) corresponds to an angular resolution of

0.0933u per pixel. The highest luminance (LHigh) value reported by

our video acquisition system (mean of value for the RGB color

channels) was defined as 255 and the lowest as 0 (LLow) on a 0 to

255 scale. The stimuli were generated with an ideal luminance

contrast CR~LHigh=LLow of infinity, where CR = 1 indicates no

contrast. The acquisition rate of the camera was 25Hz (PAL) and

the refresh-rate of the LCD monitor was set to 60Hz. For the

purpose of the simulations presented here, the system was not

required to run in real-time. Thus, we simulated a processing

power of 100 images per second for our model. For the

acquisition, we approximated a uniformly distributed compound

eye of 32624 ommatidia/photoreceptors. This is obtained by sub-

sampling the image that is acquired from the camera, making the

step size increase of the looming stimulus negligible. The resulting

angular resolution corresponds to 2.33u per pixel, a good match to

the real photoreceptor acceptance angle of the locust which is close

to 1.5u in light conditions and 2.5u when dark adapted [36].

Robot, arena and tracking system
We evaluated the behavioural implications of our model using a

ball caster based robot platform called ‘‘Strider’’, specifically

designed to have low frictional forces with the surface and that uses

a propulsion system that allows it to deliver high-speeds, with the

advantage of a low deployment and maintenance effort (Figure 7,

left panel). The Strider is about 16cm long and it is equipped with

three passive wheels (ball casters) (Euro Unit 15mm, AlwayseEn-

gineering Ltd, United Kingdom), and propelled by two ducted

fans (GW/EDF-50, Grand Wing Servo-tech Co., Ltd., Taiwan).

The base platform on which the wheels are mounted connects to

the upper part via a servo (Microservo FS 500 MG, Robbe

Modellsport GmbH & Co, Germany), allowing the robot to turn

in place, a task difficult to achieve with ducted fans alone. The lift-

strength of one ducted fans is 30g, allowing the robot to move at a

maximum speed of about 3m/s which corresponds to 19 body

lengths per second. Similarly, the locust displays a free flight speed

of about 4m/s [53].

Two separate lithium-polymer batteries (t-technik, Germany) are

used as independent power-supplies for controller-board and

sensors, and motors respectively. The total weight of the robot is

280g. A BluetoothH link is used to send control signals to the motors

of the robot and to read sensor states from the robot. The robot

carries a wireless camera (1.2GHz Mini Wireless Camera Kit, ZTV

Technology Co., Ltd, China) with a 190u wide-angle lens.

The robot experiments were performed in a 364m arena

(Figure 7, right panel). The walls of the arena (0.5m high) were

Figure 7. The insect robot and its test arena. Left panel: The ‘‘Strider’’ robot with its components. Right panel: Schema of the arena used to test
the LGMD model including the ‘‘AnTS’’ tracking system setup. See text for further explanation.
doi:10.1371/journal.pcbi.1000701.g007
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covered with random textures consisting of vertical and horizontal

stripes to provide the robot with visual cues. The behavioural data

was acquired in real-time with a custom-built general purpose

video tracking system called ‘‘AnTS’’ developed by the authors.

The AnTS tracking system receives its input from a B/W CCIR

camera (CSB-465C, Pacific Corporation, Japan) with a wide-angle

lens fixed on a 2.2m high tripod. To obtain an undistorted planar

view of the arena, correction algorithms for perspective and wide-

angle lens distortions were built into the AnTS tracking software.

As a compromise between sampling frequency and spatial

accuracy, a QVGA image resolution (3206240 pixels) was used;

this resulted in a spatial resolution of 1.56cm for the 364m arena

and an update frequency of 35Hz. The behavioural data recorded

with AnTS was acquired synchronously with the states of the

model of the locust visual system (see below).

Dynamics of the neuron models
Two standard neuron types are used in these simulation

experiments: Leaky Integrate & Fire (I&F) and leaky Linear

Threshold (LT) neurons [32,33]. Both neuron models are

equivalent to a circuit built from a capacitor C and a resistor R

connected in parallel to ground on one end and driven by current

on the other end [39]:

C
dV (t)

dt
z

V (t)

R
~I(t) ð4Þ

For a constant input current the voltage is defined by:

V (t)~IR: 1{ exp {t=RCð Þð ÞzV (t~0): exp {t=RCð Þ ð5Þ

The voltage at the membrane of both neural models will increase

asymptotically to V~IR. While the voltage is below the firing

threshold (VvVTh) the neuron remains silent, and once VTh is

reached the neuron’s output is equal to the membrane potential in

the case of LT, or it produces an action potential (spike) and resets

the membrane voltage V (t) to zero in the case of the I&F. The

charging time constant of the membrane potential is defined as

t~RC.

Model
Our model captures the basic processes found in the locust

visual system and can be divided into three sequential processing

steps (Figure 1). First, the centre-excitation/surround-inhibition

connectivity among the signals received from the photoreceptors

in the lamina layer that provides an edge enhancement [31].

Second, the interaction of neurons in the medulla layer yields

onset and offset sensitive responses [13–15]. Third, the lobula

layer provides a specific connectivity that contributes to the

transformation of the onset/offset signals into the response of the

LGMD. Our model is structured exclusively with leaky Integrate

and Fire (I&F) and leaky Linear Threshold (LT) neurons (see

Experimental Procedures for the dynamic equations) and imple-

ments the three layers described above.

An edge enhancement on the input image is achieved via a

centre-excitation/surround-inhibition connectivity from the pho-

toreceptors to the lamina layer, modelled as LT neurons. Our

model implements onset and offset responses of the medulla by

combining the activity of one excitatory and one inhibitory neuron

with the same visual sensitivities from the lamina onto a common

third neuron, where the inhibition is time delayed relative to the

excitation in case of onset detection, and time advanced relative to

the excitation in case of offset detection (Figure 8).

When we assume that a transition of activity in the receptive fields

of the on and off neurons is a moving edge, there exists a unique

arrangement of on and off cells with a combined response that is

maximal whenever the moving edge is being displaced in a specific

direction, i.e. neighbouring cells placed along the movement axis,

where a first offset sensitive cell and a second onset sensitive cell

synapse onto a common neuron. The post-synaptic neuron is

Figure 8. Neural connectivity that accounts for the on-off sensitive cell responses. This network makes use of the interaction of delayed
and non-delayed excitatory and inhibitory pathways.
doi:10.1371/journal.pcbi.1000701.g008
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maximally excited only when both pre-synaptic cells are active at the

same time, i.e. when an offset and an onset stimulus coincide. Hence,

the only situation that can provoke this kind of response is a moving

edge passing out of the off cell’s receptive field, generating an offset

event, to the receptive field of the on cell, generating an onset

response. Therefore, as outlined above, a pair-wise combination of on

and off transient detectors can encode for directionally selective

motion pre-synaptic to the LGMD. This neuronal processing

structure is consistent with our knowledge of the pre-synaptic

structure of the LGMD since the 1970s [13–15].

One of the most important and most studied properties of the

LGMD is related to the angular threshold (hthreshold), which is

defined as the angular size of a looming object for which the LGMD

produces the maximal firing rate. It has been shown that there is a

constant relationship between the peak firing rate of the response of

this neuron and the angular size of the looming stimulus,

independent of the approach speed and angle, object shape, texture

and contrast [9,16,17]. To account for the angular threshold

properties (hthreshold) we propose a specific connectivity between the

on-off cell ensembles onto the LGMD, referred to as the LGMD pre-

synaptic fan (Figure 9). It is central to our hypothesis that the

projections from the medulla to the lobula are such that the

excitation on the target cells is maximal when the collection of

detected oriented contrast boundaries reach a specific size. The LT

neurons connecting the medulla with the LGMD through the second

chiasma collect the activity of a set of surrounding on-off neurons in

the medulla with a particular directional selectivity at distances dx

and dy (Figure 9). These LT neurons have lateral interactions with

the neighbouring cells via a lateral excitation that spreads and

smoothes their activity over the pre-synaptic excitatory fan of the

LGMD (Figure 9A). The dx and dy define the width and height of

the connectivity where the expanding boundaries of a looming

stimulus lie to maximally excite that post-synaptic neuron. This

connectivity pattern is applied to each of the neurons that mediate

the excitatory pathway to the LGMD across the second chiasma and

receive input from the onset/offset sensitive cells. These neurons will

concentrate a spot of high activity for looming stimuli approaching

the angular threshold size whereas a sparse distribution of activity

will occur for other stimuli (receding, translating, etc) (Figure 9B).

It is now possible to define the exact values of dx and dy that

make the LGMD maximally excited for a given object angular size

and excited below maximum otherwise. The accuracy with which

we can define the angular threshold is given by the resolution of

our model, being 62 N acceptance angle of one pixel (approxi-

mately 65u).
In our implementation of the model, only four type of

ensembles of on and off neurons with different directional

sensitivities were used (Figure 9A). By means of a thresholding

mechanism, the LT neurons that cross the second chiasma

respond only when a number of the surrounding (dx and dy) pre-

synaptic motion sensitive ensembles detect expanding moving

edges. Hence, by looking at the neural activity of this layer of

neurons it is possible to extract the position of the looming stimulus

in the visual field (Figure 9B). Subsequently, the spatial integration

by the LGMD pre-synaptic fan of those responses discards the

position information, and in this way introduces the important

property of response invariance to object position and approach

angle. The structure of the feed-forward network up to this point

supports the consistency and invariance of the angular threshold

(hthreshold), i.e. the independency of the approach angle, position

inside the visual field, object shape and looming speed. In the last

processing stage, the LGMD receives a post-synaptic inhibition

from the activity of the on-off neurons in the medulla (Figure 8).

The role of this inhibition is to bring the LGMD neuron’s activity

back to baseline after the looming object reaches the angular

threshold size.

For the data analysis, a Gaussian smoothing filter with a

window size of 20ms was applied to our raw data, consistent with

previous LGMD studies [9]. The membrane potential of the

LGMD was computed in the simulation while the used Vm/F

transfer function of the LGMD neuron is consistent with the one

reported in the literature [16,17]. A one-way ANOVA analysis

was used to evaluate significant differences between the data sets

obtained during the experiments.

Simulation
The simulations were performed on a 2GHz Pentium4 personal

computer (Intel, Santa Clara, USA) under the Linux operating system.

The neural simulation software iqr, an open source simulation

software (iqr.souceforge.net), was chosen for the implementation and

evaluation of the neural model, including the robot experiments [54].

All creation of visual stimuli was performed using openCV (the Open

Figure 9. Schema of the connectivity between the medulla and the LGMD pre-synaptic fan. (A) Connectivity pattern for each of the
neurons connecting medulla and lobula that mediate the excitatory pathway to the LGMD. In the case of our model, the angular threshold is defined
by the size of the surrounding excitation (red neurons), where the edges of a looming object would sit to provide the maximum excitation (dx, dy). (B)
Example of how a looming square stimulus would excite the on-off neurons in the medulla and the pre-synaptic excitatory fan of the LGMD. The
activity is color-coded. The cells placed in the centre of the object maximally excited during the approach movement, and poorly otherwise.
doi:10.1371/journal.pcbi.1000701.g009
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Source Computer Vision library, Intel, Palo Alto, USA) while the

analysis was performed using Matlab (Mathworks, Natick, Massa-

chusetts, USA).

Supporting Information

Text S1 Model analysis and further model comparisons

Found at: doi:10.1371/journal.pcbi.1000701.s001 (0.11 MB

DOC)

Figure S1 Comparison of the observed parameter space of the

LGMD responses with two alternative models. Second derivative

of the angular size of a looming stimulus (gray solid line). A

multivariate linear regression was used to fit our model’s responses

to a raw sub-sampled sequence of images input to the system

(16614 pixels) (dashed red line). All the model responses were

normalized for the maximum firing rate for comparison purposes.

See text for further information.

Found at: doi:10.1371/journal.pcbi.1000701.s002 (1.43 MB TIF)
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