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Abstract 
Following our previous work regarding the involvement of math anxiety (MA) in 

math-oriented tasks, this study tries to explore the differences in the cerebral 

networks’ topology between self-reported low math-anxious (LMA) and high 

math-anxious (HMA) individuals, during the anticipation phase prior to a 

mathematical related experiment. For this reason, multichannel EEG 

recordings were adopted, while the solution of the inverse problem was applied 

in a generic head model, in order to obtain the cortical signals. The cortical 

networks have been computed for each band separately, using the magnitude 

square coherence metric. The main graph theoretical parameters, showed 

differences in segregation and integration in almost all EEG bands of the HMAs 

in comparison to LMAs, indicative of a great influence of the anticipatory anxiety 

prior to mathematical performance. 

Keywords: Math anxiety, Functional Connectivity, Graph Theory, Cortical 

Networks.  
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1. Introduction1 
 

Learning mathematics and arithmetics seems to be challenging for many 

people (Dowker, 2005). It seems to constitute an important concern for the 

United States (Martin, Cirino, Sharp, & Barnes, 2014) as math learning disorder 

is common (approximately 6% to 7% of schoolchildren in USA) among school-

aged children (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 2005; Geary, 

1993). There is a broad consensus that poor math performance is slightly or 

moderately correlated with math anxiety (MA) (Mark H. Ashcraft & Krause, 

2007; Devine, Fawcett, Szűcs, & Dowker, 2012; Jansen et al., 2013; Zakaria, 

Zain, Ahmad, & Erlina, 2012). Additionally, children with mathematical learning 

disabilities are often characterized by disproportionally increased levels of MA 

(Carey, Hill, Devine, & Szücs, 2016; Passolunghi, 2011; Rubinsten & Tannock, 

2010).  

MA could be characterized as an uneasiness state manifested in mathematical 

related situations (Cemen, 1987), while its outcome ranges from mild to 

extreme avoidance  (Hembree, 1990) according to the severity of the 

experienced negative emotions. MA is expressed as a feeling of excessive 

apprehension, fear or dread over anticipated mathematical events. Although 

the origins of math anxiety have not been thoroughly investigated (Ashcraft, 

2002), many possible risk factors have been considered. The lower-than-

																																																													
1  Abbreviations: Mathematical Anxiety (MA), Attentional Control Theory 
(ACT), Low Math-Anxious (LMA), High Math-Anxious (HMA), Abbreviated Math 
Anxiety Scale (AMAS), Boundary Element Method (BEM), Magnitude Square 
Coherence (MSC), Density (DEN), Clustering Coefficient (CC), Characteristic 
Path Length (CPL), Small-World Index (SWN) 
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average math abilities, the insufficient working memory, the inadequate 

motivation, the susceptibility of public embarrassment, a highly demanding, 

“cold and unsupportive” teacher style might be risk factors for the development 

of math anxiety (Ashcraft & Moore, 2009; Ashcraft & Krause, 2007; Ashcraft, 

Krause, & Hopko, 2007; Turner et al., 2002). Moreover, it seems that once the 

math anxiety is established, it is maintained by a variety of cultural attitudes 

compromising math performance and leading to avoidance (Ashcraft & Moore, 

2009; Ashcraft & Krause, 2007). Furthermore, into-class learning might be 

affected when math anxiety is aroused during a math class. More precisely, 

whenever the math anxiety is aroused into the classroom the student is 

distracted from the content of the class focusing on the anxieties and internal 

worries over math (Ashcraft & Krause, 2007). In that sense, the mastery of the 

new information is slowed or degraded (Ashcraft & Krause, 2007) resulting in 

math-anxious learn less than non-anxious in the math classroom (Ashcraft & 

Moore, 2009).  

Even though many correlations between math anxiety and other factors such 

as gender (Ashcraft & Faust, 1994), intelligence (Hembree, 1990), motivation 

and self-confidence (Ashcraft, 2002) have been investigated, the negative 

correlation between math anxiety  and math achievement remains the most 

troublesome (Ashcraft & Moore, 2009). Although a negative correlation 

between math anxiety and math achievement has been revealed (Ashcraft & 

Krause, 2007; Hembree, 1990), they can perform comparable to their peers on 

whole-number arithmetic problems (Faust, 1996; Ashcraft, Kirk, & Hopko, 

1998). However, when percentages, mixed fractions, factoring, equations or 

even dual tasks appeared, their performance is markedly deteriorated (Ashcraft 
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& Kirk, 2001; Ashcraft, Kirk, & Hopko, 1998). According to Ashcraft & Moore 

(2009), the math anxiety causes an affective drop that underestimates the true 

math performance regardless of the student’s true math mastery. To address 

the	pertinent question regarding the causal linkage between math anxiety and 

math performance three different theories have been developed (for more 

information see Carey et al., 2016). The Deficit Theory claims that failure or 

poor performance in mathematics or test results in increased anxiety about that 

condition in future (Tobias, 1978). The Debilitating Anxiety Model proposes that 

anxiety negatively affects performance influencing pre-processing, processing 

and math knowledge recall (Tobias, 1978; Tobias & Deutsch, 1980; Wine, 

1971). Finally, the Reciprocal Theory supports a bidirectional link between MA 

and math performance in which math performance and MA affect one another 

in a vicious cycle (Jansen et al., 2013). 

Math anxiety seems to be strongly interrelated with test anxiety whereas the 

intercorrelations with other anxiety forms range from 0.30 to 0.50 (Ashcraft & 

Moore, 2009; Ashcraft, 2002; Hembree, 1990). Although other kinds of anxiety 

are overlapping, MA should be seen as a separate phenomenon because the 

coefficient of determination found was 0.37 indicating that only the 37% of 

variance could be predicted from the other’s variance (Hembree, 1990). To this 

direction, Faust (1992) found a distinct physiological reactivity (increased heart 

rate) in demanding mathematical tasks that was not reported in verbal tasks of 

increasing difficulty (Ashcraft & Ridley, 2005; Ashcraft, 1995).   

The cognitive consequences of MA can be described by Attentional Control 

Theory (ACT;(Eysenck, Derakshan, Santos, & Calvo, 2007)). According to 

ACT, anxiety affects the ability to allocate attentional and cognitive resources 
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prior to task performance. Indeed, there are findings supporting that MA affects 

so the simple quantity and the magnitude manipulations (Maloney, Ansari, & 

Fugelsang, 2011; Maloney, Risko, Ansari, & Fugelsang, 2010), as more 

complex arithmetic tasks (Ashcraft & Faust, 1994; Faust, 1996), like the two-

digit mental calculations, via the corruption of working memory’s performance 

(Ashcraft & Ridley, 2005). For more information about the relationship between 

MA and working memory, there is a comprehensive review by Raghubar and 

his colleagues (Raghubar, Barnes, & Hecht, 2010), who reviewed this 

relationship in the behavioral level, using four different approaches.  

Neuroscientific literature concerning MA is very limited, since the underlying 

neural mechanisms of MA have recently begun to draw the neuroscientists’ 

attention. One of the milestone studies (Lyons & Beilock, 2012b) in MA 

research found that math anxious individuals activate more regions related to 

pain perception during the anticipation of mathematical processing, like the 

dorsal part of the posterior insula and mid-cingulate cortex. Moreover, Young, 

Wu, & Menon (2012) reported that MA activates regions (right amygdala) that 

regulate negative emotions, while they have also reported that MA inhibits 

activation in brain regions associated with mathematical reasoning, such as the 

posterior parietal and dorsolateral prefrontal cortex. Regarding the impact of 

MA in the brain’s electrophysiology, Suárez-Pellicioni, Núñez-Peña, & Colomé 

(2013) revealed the relationship between the arithmetic split effect (Ashcraft & 

Battaglia, 1978) and the P600/P3b component which was more enhanced and 

delayed during MA state. In addition, P3 seems also to be affected by MA 

(Jones, Childers, & Jiang, 2012) and more specifically by the buying decisions 

of individuals suffering from MA. One of our recent electroencephalographic 
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studies (Klados, Simos, Micheloyannis, Margulies, & Bamidis, 2015) revealed 

that MA demonstrated so reduced ERPs at frontocentral and centroparietal 

locations (between 380-420 ms) during tasks related to working memory and 

mathematical processing. Our findings were independent of task 

difficulty/complexity, individual performance, and general state/trait anxiety 

levels. Following our previous work regarding the involvement of MA in math-

oriented tasks, and inspired by the findings of Lyons & Beilock(2012b), we 

would like to study how cerebral functional networks are altered by MA, invoked 

during the anticipation phase prior to a mathematical related experiment. From 

a phenomenological perspective, it is assumed that during this anticipation 

phase, the math-anxious individuals will have negative expectations about their 

ability to cope with the experiment’s upcoming mathematical tasks (Barlow, 

2004; Barlow, 1991). Anticipatory anxiety is conceptually and biologically 

distinct from arousal anxiety that is triggered mainly in panic attacks (Heller, 

Nitschke, Etienne, & Miller, 1997; Nitschke, Heller, Palmieri, & Miller, 1999). 

Although the functional neuroanatomy of anticipatory anxiety is known ( 

Nitschke et al., 2009; Nitschke, Sarinopoulos, MacKiewicz, Schaefer, & 

Davidson, 2006) and it comes in line with the findings of Lyons & 

Beilock(2012b), the present study tries to explore the differences in the cerebral 

networks’ topology between self-reported low math-anxious (LMA) and high 

math-anxious (HMA) individuals. For this reason, multichannel EEG recordings 

were used in order to compute the cortical networks by employing the 

methodology proposed by De Vico Fallani et al.(2010). We assume that the 

aforementioned difference would be apparent in various graph metrics such as 

clustering coefficient, characteristic path length, small worldness and density, 
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while due to the limited neuroscientific literature, and based on similar studies 

regarding social and general anxiety disorders (Ionescu, Niciu, Mathews, 

Richards, & Zarate, 2013; Knyazev, 2011; Liao et al., 2011; Liu et al., 2015; 

Pannekoek et al., 2013; Roy et al., 2013; Sylvester et al., 2012), we expect to 

see differences in segregation and integration and increased connectivity in 

individuals suffering from MA. The novelty of this study lies with the fact that 

this is the first EEG study that explores the effects of self-reported MA, during 

a resting state condition anticipating a math-related experiment, in cortical 

networks’ organization.   

2. Materials and Methods 

2.1. Participants 
One thousand students of the Aristotle University of Thessaloniki were 

administered the Greek adaptation of the Abbreviated Math Anxiety Scale 

(AMAS;(Hopko, Mahadevan, Bare, & Hunt, 2003)). Sixteen students out of sixty 

three (eight men and eight women) who scored in the upper 15th percentile of 

the sample distribution (≥28 points) and did not meet other exclusionary criteria 

(non-right handedness, history of neurological or psychiatric disorder) were 

randomly chosen to form the HMA Group. From the pool of students who 

scored in the lower 15th% tile on AMAS (≤14 points) we selected 16 who were 

individually matched with HMA students on gender and age to form the LMA 

Group. The two groups did not differ on age (HMA: mean age = 22.21 ± 2.43 

years, LMA: 22.5 ± 2.3 years; p =0.73) or gender distribution (8 men and 8 

women in each), and they were all right handed adults. All participants had 

normal (10/10) or corrected to normal vision. Participants were asked to avoid 

alcohol intake on the day before and caffeine consumption on the day of the 



	 9

experiment; they were also asked to sleep as adequately and comfortably as 

possible on the night before. All participants were informed about the 

experiment and signed an informed consent form, while the experimental 

protocol was approved by the Bioethics Committee of the Medical School of 

Aristotle University of Thessaloniki (in agreement with the Declaration of 

Helsinki).  

2.2. Anxiety measures 

AMAS consists of nine items representing common situations faced by 

students. Participants were asked to rate the level of anxiety associated with 

each situation on a 5-pint Likert scale (maximum score is 45 points). Despite 

its brevity, it compares favorably with more extensive self-report measures of 

math anxiety such as the 98-item Math Anxiety Rating Scale with correlations 

reaching 0.85 (Ashcraft & Moore, 2009). The internal consistency of the scale 

was α = 0.90.  

The Spielberger State-Trait Anxiety Inventory (STAI A-B;(C. Spielberger, 

Gorsuch, & Lushene, 1970)) was administered to all participants during 

electrode preparation to measure situational and trait anxiety levels. The Greek 

version of this scale has adequate internal consistency (α = 0.92;(Fountoulakis 

et al., 2006)). 

In addition to AMAS scores on which the two groups differed by design, higher 

levels of situational anxiety were reported by participants in the HMA as 

compared to the LMA group, t(30) = 3.94, p = 0.0001, yet the two groups 

showed comparable levels of trait anxiety (p > 0.10; for more details see (M. A. 

Klados et al., 2015)). The Pearson correlation between AMAS and state anxiety 

was moderate (r = 0.575, p = 0.001) and much lower between AMAS and trait 
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anxiety (r = 0.274, p = 0.129). The second one comes in line in with the original 

standardization study of AMAS (Hopko, Mahadevan, Bare, & Hunt, 2003). 

Although test anxiety invetory (Spielberger, 2010) wasn’t administered, at the 

end of our protocol, the participants were asked to rate the pressure they felt in 

order to achieve high performance, where there is not any statistically 

significant difference between our groups (F(1,30)=3.35, p=0.07). 

2.3. Experimental protocol 

Our protocol includes three phases:  

a) A resting-state session with eyes opened prior to a mathematical 

oriented experiment. 

b) The experiment, where all participants were administered three working 

memory tasks (N-back with three levels of load/difficulty) and four 

arithmetic tasks (addition and multiplication of single or double digit 

numbers). The order of the tasks was 1-Back, 2-Back, 3- Back, Single 

Digit Addition, Double-Digit Addition, Single Digit Multiplication, and 

Double-Digit Multiplication, while each task consisted of 40 trials, except 

Double-Digit Multiplications involving 20 trials in order to avoid frustration 

of both groups due to their difficulty, presented in a randomized order 

across participants (for more information about the tasks please refer to 

(Klados, Simos, Micheloyannis, Margulies, & Bamidis, 2015)). 

c) c) a resting-state session after the aforementioned experiment.  

In order to observe the impact of MA during the anticipation phase of performing 

mathematical tasks, the resting-state session before the experiment was 

chosen, since all the participants knew (in accordance with the Declaration of 
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Helsinki), prior to the experiment, that they would be asked to solve simple 

mathematical problems.   

 

2.4. Electroencephalographic recordings 
Multichannel EEG recordings were recorded in a dark and sound attenuated 

room, while participants were seated in a comfortable chair and the stimuli were 

presented on a monitor located about 80 cm in front of the participant. EEG 

were recorded from 57 electrode sites according to a modified international 

10/10 system using an Electrocap (Fp1, Fp2, F3, F4, C3, C4, P4, O1, O2, F7, 

F8, T7, T8, P7, P8, Fz, Cz, Pz, TP8, Afz, FCz, CPz, FC1, FC2, CP1, CP2, FC5, 

FC6, CP5, CP6, Fpz, Oz, F1, POz, F2, C1, C2, P1, P2, AF3, AF4, FC3, FC4, 

CP3, CP4, PO3, PO4, F5, F6, C5, C6, P5, P6, FT7, FT8, TP7, referred offline 

to linked mastoids (Klados et al., 2009)). Vertical and horizontal eye movements 

were recorded through EOG from left/right canthi, supra- and infra-orbital 

electrodes. All electrode impedances were kept below 2 kΩ. High- and low-

pass signals were filtered offline between 0.5 and 45 Hz (with a notch filter at 

47-53Hz) and submitted to an ICA procedure (extended-ICA; (Bell & Sejnowski, 

1995)) in order to identify components reflecting ocular artifacts, which were 

then filtered using the REGICA methodology (Klados, Papadelis, Braun, & 

Bamidis, 2011; Klados, Papadelis, & Bamidis, 2009) employing the algorithm 

proposed by Schlolg (Schlögl et al., 2007). Resulting waveforms were visually 

inspected choosing 20 sec artifact free segments for both sessions. All 

recordings were performed in mid-morning sessions. 
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2.5. Cortical Activity  
EEG records the activity of the tangential or radial cortical dipoles regarding to 

the scalp surface. The variation of electrical conductivity among the different 

head compartments generates the well-known volume conduction problem 

which seriously affects the functional connectivity analysis (Nolte et al., 2004). 

To overcome this problem, the cortical activity was obtained from the 57 EEG 

signals, by employing a realistic head model, a cortical dipole model and the 

inverse solutions (He, Wang, & Wu, 1999; M. A. Klados et al., 2013; Mattia et 

al., 2009). In the current study a generic head model from the reconstruction of 

152 normal MRI scans (MNI template http://www.loni.ucla.edu/ICBM/) has 

been used, while the four different compartments of the head model (scalp, 

outer and inner skull, cortex) were extracted using the Boundary Element 

Method (BEM). BEM is implemented in the Brainstorm toolbox (Tadel, Baillet, 

Mosher, Pantazis, & Leahy, 2011) which is freely available in 

http://www.neuroimage.usc.edu/brainstorm. BEM computes the 

aforementioned compartments by closed triangle meshes with limited number 

of nodes (in our case we have used 302 nodes). Regarding the regularized 

solution of the linear inverse problem, we have used the sLORETA algorithm 

(Pascual-Marqui, 2002), resulting to a transition kernel from our 57 scalp 

signals to 302 cortical signals.  

2.6. Functional Connectivity and Graph Analysis 
Functional networks were obtained using the magnitude square coherence 

(MSC; implemented in MATLAB v. 7.10, The MathWorks Inc.). MSC was used 

because, compared to other metrics, it produces networks closer to the brain’s 

topology (Lithari et al., 2012). In the herein setup we have used 2 sec-long 

sliding windows with 50% overlap (for the mathematical formulation of MSC see 
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(Klados et al., 2013)). For each participant, MSC produced six weighted and 

undirected graphs, one for each of six frequency bands: delta [0.5-4Hz], theta 

[4-8Hz], alpha1 [8-10Hz], alpha2 [10-12Hz], beta [12-30Hz], gamma [30-45Hz].   

To investigate the impact of MA into the intrinsic networks’ structure the 

following parameters were employed:  

 Density (DEN): graph density indicates how many edges are inside the 

graph divided by the maximum possible number of edges between the 

vertices of the graph. This definition is only used for binary graphs, while 

for weighted graphs we define the density as the sum of all weights 

divided by the maximum possible number of edges between the vertices 

multiplied by the maximum value of the current connectivity metric (MSC 

in this case). 

 Clustering Coefficient (CC): CC denotes the fraction of triangles 

around a node is equivalent to the fraction of node neighbors that are 

neighbors of each other. For the computation of CC in weighted 

networks there are at least four different definitions (Saramäki, Kivelä, 

Onnela, Kaski, & Kertész, 2007). However, in the presented work we 

have used the one proposed by (Onnela, Saramäki, Kertész, & Kaski, 

2005) because it takes into account the weights of all edges in a triangle 

and it is invariant to the weights permutation in a single triangle.  

 Characteristic Path Length (CPL): The characteristic path length is the 

average shortest path length in the network. It’s a measure of the 

network’s integration, meaning that the smaller the CPL gets, the higher 

the integration of the network is.  
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 Small-World Index (SWN): A network small-world topology is a graph 

in which most nodes are not neighbors, but most of them can be reached 

from every other in a small number of steps. Humphries and Gurney 

(Humphries & Gurney, 2008) have defined the SWN of a network as: 	

ܹܵܰ ൌ
ܥܥ

ௗൗܥܥ

ܮܲܥ
ௗൗܮܲܥ

	

where ܥܥ is the cluster coefficient and ܮܲܥ is the shortest path. Random 

indices ( ,ௗܥܥ ௗܮܲܥ ) define the mean values of ܥܥ  and ܮܲܥ 

respectively, extracted by fifty surrogate random networks. Each random 

network was produced by a random rewiring of the observed network 

(Zalesky, Fornito, & Bullmore, 2012).  

2.7. Statistical Analysis 
For the graph metrics we followed a multivariate ANOVA design using the 

values of each graph metric as dependent variables and Anxiety group as a 

fixed factor. In our analysis, Bonferroni correction has been used to counteract 

the problem of Type I errors from multiple comparisons. We have also 

performed a correlational analysis between each one of the graph metrics with 

the AMAS scores. All the analyses carried out in SPSS v20.  

3. Results 
All the descriptive statistics of the global graph properties, alongside with their 

corrected p-values are summarized in Table 1. In the results’ report below the 

mean and standard deviation (std) values are excluded since they are 

summarized in the aforementioned table.   
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Table	1	–	This	table	summarizes	the	descriptive	statistics	of	our	five	graph	properties	and	for	all	
brainwaves.	

Graph	
Parameters	

Brain	
Wave	

Low Math Anxious	 High Math Anxious	 p‐

value	mean	 std	 mean	 std	

CC 

Delta  0.035577511 0.010239979 0.053275096 0.016125509  0.001

Theta  0.039259502 0.013986454 0.054137382 0.017015467  0.013

Alpha1 0.043096312 0.018287829 0.055184325 0.019009352  0.083

Alpha2 0.046183139 0.021101631 0.057154598 0.021297797  0.162

Beta  0.043497315 0.0161073 0.05675501 0.018778671  0.043

Gamma 0.036725487 0.010403123 0.052041466 0.016331732  0.004

CPL	

Delta	 7.12326	 0.814941	 5.96913	 0.752657	 0.0001

Theta	 7.03262	 0.886635	 6.04078	 0.756806	 0.002

Alpha1	 6.8608	 0.958785	 6.06692	 0.765101	 0.025

Alpha2	 6.71525	 1.001151	 6.04438	 0.778588	 0.043

Beta	 7.06855	 0.96553	 6.32053	 0.715886	 0.019

Gamma 7.43966	 0.735038	 6.44811	 0.86949	 0.001

DEN	

Delta	 0.067556865 0.013509395 0.094312916 0.022857824	 0.0001

Theta	 0.070125316 0.017249896 0.093281336 0.023232371	 0.004

Alpha1	 0.074360791 0.021971801 0.093503265 0.024773482	 0.031

Alpha2	 0.078014225 0.025075851 0.09506661	 0.026811623	 0.08

Beta	 0.072201808 0.019577672 0.089980643 0.022699289	 0.027

Gamma 0.066495625 0.014415445 0.086352727 0.020491144	 0.004

SWN	

Delta	 77.96385338 28.64833869 63.36372088 18.01285164	 0.103

Theta	 30.36471294 11.31799444 23.59127425 7.981971657	 0.067

Alpha1	 42.22120338 20.27508853 31.57757706 10.97433219	 0.081

Alpha2	 37.65469908 17.3927314	 29.3259635	 10.82371629	 0.122

Beta	 5.933849863 1.931405496 4.557622781 1.408158636	 0.032

Gamma 9.925074738 2.279506391 7.895594169 1.756747333	 0.009

	

3.1. Mean Clustering Coefficient 

Both groups showed significant differences in the mean CC not only in slow 

frequency bands such as delta (F(1;0.731)=13.326; p=0.001) and theta 

(F(1;0.862)=7; p=0.013)  but also in fast frequency bands such as beta 

(F(1;0.912)=4.516; p=0.043) and gamma(F(1;0.806)=9.620; p=0.004). HMA 

group seems to have greater CC compared to LMA in all frequency bands. The 

correlational analysis revealed that there is a positive correlation between 
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AMAS scores and CC for all frequency bands, while it is significant only for 

Delta (r=0.572;p<0.001), Theta (r=0,45;p<0,01), Beta (r=0.354;p<0.047) and 

Gamma (r=0.518;p<0.002) bands. 

3.2. Characteristic Path Length 
The main effect of anxiety has found to affect significantly the CPL in all brain 

band, with delta (F(1;0.690)=15.457; p<0.0001) , theta (F(1;0.615)=17.315; 

p=0.02) , alpha1 (F(1;0.893)=5.495; p=0.025), alpha2 (F(1;0.912)=4.516; 

p=0.043), beta (F(1;0.862)=6.394; p=0.019)  and gamma (F(1;0.731)=13.326; 

p=0.001). HMA’s CPL is smaller for each band in contrast to LMA.  CPL seems 

to be also positively correlated with AMAS scores for all brainwaves, while it 

reaches a significant level for Delta (r=0.604;p<0.0001), Theta 

(r=0.511;p<0.003), Alpha1 (r=0.387;p<0.028), Beta (r=0.383;p<0.03) and 

Gamma (r=0.525;p<0.002) rhythms. 

	

Figure	1	–	 In	 this	 figure	we	 can	 see	 the	distribution	of	both	group’s	observations,	 for	each	graph	
parameter	 used	 in	 the	 current	 analysis.	 The	 grey	 lines	 inside	 the	 violin	 plots	 stand	 for	 each	
observation	separately.	The	p‐values’	square	depicts	the	significance	level	of	each	difference,	where	
darker	blue	means	higher	 significance	 level.	So	our	 results	 support	 that	Delta,	Theta	and	Gamma	
brainwaves’	networks	seem	to	be	modulated	by	MA	in	a	greater	manner	compared	to	Alpha1	and	Beta.	
The	networks	formed	in	higher	Alpha	band	seems	to	be	unaltered	by	MA,	while	differences	in	SWN	
seem	to	reach	significant	 level	only	 in	the	higher	 frequencies	(Beta	and	Gamma	bands),	where	the	
violins	are	zoomed	because	of	their	great	difference	with	the	rest	SWN	violins.			

Preference	for	color:	only	online.	
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In the next table (Table 2) we can see the results from the correlational analysis. 

Statistical significant correlations are emphasized with bold scripting.  

Table	2	‐	Correlational	analysis	between	the	graph	properties	and	the	AMAS	scores.	

    R p‐value

CC 

DELTA 0.572 0.001

THETA 0.45 0.01

ALPHA1 0.317 0.077

ALPHA2 0.251 0.165

BETA 0.354 0.047

GAMMA 0.518 0.002

CPL 

DELTA ‐0.622 0.0001

THETA ‐0.543 0.001

ALPHA1 ‐0.437 0.012

ALPHA2 ‐0.365 0.04

BETA ‐0.409 0.02

GAMMA ‐0.591 0.0001

DEN 

DELTA 0.604 0.0001

THETA 0.511 0.003

ALPHA1 0.387 0.028

ALPHA2 0.313 0.082

BETA 0.383 0.03

GAMMA 0.525 0.002

SW 

DELTA ‐0.32 0.074

THETA ‐0.355 0.046

ALPHA1 ‐0.335 0.061

ALPHA2 ‐0.303 0.092

BETA ‐0.411 0.02

GAMMA ‐0.458 0.008

GAMMA 0.544 0.001

3.3. Density 
The density of LMA and HMA groups has found to be significantly altered in 

delta (F(1;0.690)=15.782; p<0.0001), theta (F(1;0.798)=9.895; p=0.004), 

alpha1 (F(1;0.914)=5.132; p=0.031), beta (F(1;0.893)=5.481; p=0.027) as well 

as in gamma  (F(1;0.803)=9.687; p=0.004) band. More precisely, LMA group’s 
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networks showed lower density than HMA group. DEN is positively correlated 

with AMAS scores, while these correlations are significant for Delta 

(r=0.604;p<0.0001), Theta (r=0.511;p<0,003), Alpha1 (r=0.387;p<0.028), Beta 

(r=0.383;p<0.03) and Gamma (r=0.525;p<0.002) brainwaves. 

3.4. Small World Metric 

The main effect of anxiety was evident in SWN of the research groups’ networks 

highlighting significant deviation between LMA and HMA in high frequencies, 

like the beta (F(1;0.920)=5.064; p=0.032) and gamma (F(1;0.817)=7.953; 

p=0.009) bands. The aforementioned results indicate that HMA group showed 

lower optimal organization compared to LMA group. In contrast to the rest 

metrics, SWN is negatively correlated with AMAS scores, while these negative 

correlations are significant only for Theta (r=-0.335;p<0.046), Beta (r=-

0.411;p<0.02) and Gamma (r=-0.458;p<0.001) brainwaves. 

	

Figure	 2	 –	 This	 grid	 contains	 the	 scatter	 plots,	 with	 the	 linear	 regression	 line,	 for	 each	 graph	
parameter	and	each	brainwave.	The	x‐axis	represents	the	AMAS	scores,	while	the	y‐axis	stands	for	
each	metric	separately.	Outside	of	each	scatter	plot	we	can	see	the	distributions	of	AMAS	scores	(up)	
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and	each	metric’s	values	(right).	The	distributions	of	AMAS	scores	are	constant	while	the	distributions	
right	from	the	scatter	plots	change	according	to	each	metric.		For	the	correlation	values	alongside	with	
the	significant	level	you	can	refer	to	Table	2.		

Preference	for	color:	only	online.	

	

4. Discussion 
We analyzed the brain networks in healthy individuals with MA in the 

anticipation of an upcoming mathematical task. For network analyses we used 

tools from modern network theory i.e. graph theory. Individuals with HMA, 

showed more effective functional organization, in contrast to their LMA peers, 

because their networks showed more reactivity since the upcoming math task 

was accompanied with the feeling of anxiety, influencing the brain networks in 

their try to regulate negative emotions. The major difference between this study 

and our previous one (Klados, Simos, Micheloyannis, Margulies, & Bamidis, 

2015) is that this study investigates the impact of MA in  resting-state cortical 

networks obtained before the whole experiment, where the participants knew 

that they are going to participate in a mathematical related experiment, while 

the previous one examined the impact of MA in the sensor level evoked 

potentials during mathematical and working memory tasks. The innovation of 

this study lies with the fact that this is the first EEG study that explores the 

effects of self-reported MA, during a resting state condition anticipating a math-

related experiment, in cortical networks’ organization.  

 Small-world network organization is the optimum network organization 

balancing between local activation and widespread effective information 

transfer. In our study, networks of both groups showed small world network 

properties with significant differences in high frequencies (beta and gamma 



	 20

bands) with lower values for the HMA group.  Beta and gamma bands express 

mainly local activations (Bidelman, 2015; Herrmann, Strüber, Helfrich, & Engel, 

2015; Lewis, Wang, & Bastiaansen, 2015), while the lower SWN index is 

explained as the result of local activation and expression of the local 

desynchronization during the anxiety reactivity. Moreover, the CC shows higher 

values in HMA in the same bands as a sign of higher local segregation. 

Simultaneously, for these bands, CPL is lower as an expression of more 

efficient organization of the segregated region.  

Although indicative findings of local activations exist in other fMRI 

studies, there are only a few fMRI related to math anxiety. Two of them (Lyons 

& Beilock, 2012a, 2012b) examined the brain reactivity during the anticipation 

phase of doing math and showed local activations in math anxious individuals. 

It was found that while anticipating an upcoming math task, regions associated 

with pain were activated in bilateral dorso-posterior insula. This local activation 

explains our findings related to beta and gamma bands i.e. lower Small World 

Index (more desynchronization), the higher CC (increased nodal activity, higher 

segregation), and the shorter CPL (shorter path length as a result of more 

efficient remote connections). 

Delta as well as theta band shows higher CC and shorter CPL in HMA 

group i.e. increased nodal activity and more efficient remote connections. Both 

show SWN properties without any significant differences between LMA and 

HMA groups. HMA individuals need more effort in order to regulate their 

negative emotional response and reach comparable performance to LMA 

individuals (Pletzer, Kronbichler, Nuerk, & Kerschbaum, 2015). The higher 

delta band efficiency could be the result of the inhibition of other processes that 
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interfere with the resolution of the anticipating reactivity to math tasks 

(Harmony, 2013). Additionally, the cognitive processes, such as those during 

the math anxiety in HMAs, are assumed to be related to some suppression of 

the default mode network and this is accompanied with increased delta band 

activation (Chen, Feng, Zhao, Yin, & Wang, 2008; Greicius, Krasnow, Reiss, & 

Menon, 2003). 

Theta band, which seems more effective in HMAs, can be explained as 

a strong emotional expression in the anticipation of taking part in a math-related 

experiment. Theta band activity has been found to be enhanced as response 

to emotional expressions (Luo et al., 2013).  An additional reason for higher 

theta band activation may be the a high proportion of working memory 

resources needed to control negative emotions in contrast to LMAs where the 

working memory is more efficient (Derakshan & Eysenck, 2009; Klimesch, 

1999; Pletzer et al., 2015).   

Alpha1 and Alpha2 bands have different functional roles, and they 

correspond to different cognitive sub-domains related to local activities, 

information transfer or working memory (Dunst et al., 2014; Klimesch, 1999). 

Although our findings show both alphas have more efficient remote connections 

in HMAs, we haven’t found any differences in segregation. Moreover, our two 

groups also differ in their networks’ density, while HMA group seems to have 

more dense networks for all frequency bands, which is assumed as a sign of 

more intense brain network organization in HMAs. 

In our last analysis, the self-reported scores of math anxiety were 

correlated with the graph properties. There was a positive correlation between 
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CC (segregation) and density and a negative correlation between CPL 

(integration) and SWN indexes, while the correlation trend was constant across 

frequency bands for each parameter separately. These findings intonate the 

differences of the graph parameters of the different bands between HMAs and 

LMAs. It shows that the graph parameters values i.e. the network reactivities 

are analog to the (anticipating) cognitive math brain functions. 

The aforementioned findings should be considered in the light of some 

limitations. The first limitation considers the sample size, where our sample size 

of 16 participants per group is supposed to be the minimum sample size for a 

2-sided test (Allen, 2011) (parameters:, effect size=1, α=0.05 and the β=0.2), 

according to the statistical rule of thumb (Van Belle, 2008). However, an 

increased sample size could provide us with more confidence about the 

generalization of the presented conclusions. Although our groups didn’t have a 

statistically significant difference regarding the pressure felt in order to have 

high performance, the lack of a test anxiety assessment, which may interfere 

with the observed differences is another one limitation of the current study. This 

probably could be solved if the anticipation phase prior to a mathematical task 

could be compared with the anticipation phase before a verbal task. Although 

this is not feasible with the current design, the interference of test anxiety in the 

neural basis of MA should be addressed in a future study.   

5. Conclusions 
In summary, brain network changes in HMA individuals during the 

anticipation phase of participating in a math related experiment, were studied 

using EEG signals. The main network parameters, using graph analysis, 
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showed differences in segregation and integration in almost all EEG bands of 

the HMAs in comparison to LMAs, indicative of a great influence of the 

anticipatory anxiety prior to mathematical performance. 

6. References 
	

Allen,	J.	C.	(2011).	Sample	Size	Calculation	for	Two	Independent	Groups:	A	Useful	Rule	of	
Thumb.	Proceedings	of	Singapore	Healthcare,	20(2),	138–140.	
http://doi.org/10.1177/201010581102000213	

Ashcraft,	M.	H.	(1995).	Cognitive	Psychology	and	Simple	Arithmetic:	A	Review	and	
Summary	of	New	Directions.	Mathematical	Cognition.	

Ashcraft,	M.	H.	(2002).	Math	Anxiety:	Personal,	Educational,	and	Cognitive	
Consequences.	Current	Directions	in	Psychological	Science,	11(5),	181–185.	
http://doi.org/10.1111/1467‐8721.00196	

Ashcraft,	M.	H.,	&	Battaglia,	J.	(1978).	Cognitive	arithmetic:	Evidence	for	retrieval	and	
decision	processes	in	mental	addition.	Journal	of	Experimental	Psychology:	Human	
Learning	&	Memory,	4(5),	527–538.	http://doi.org/10.1037/0278‐7393.4.5.527	

Ashcraft,	M.	H.,	&	Faust,	M.	W.	(1994).	Mathematics	anxiety	and	mental	arithmetic	
performance:	An	exploratory	investigation.	Cognition	&	Emotion,	8(2),	97–125.	
http://doi.org/10.1080/02699939408408931	

Ashcraft,	M.	H.,	&	Kirk,	E.	P.	(2001).	The	relationships	among	working	memory,	math	
anxiety,	and	performance.	Journal	of	Experimental	Psychology:	General,	130(2),	
224–237.	http://doi.org/10.1037/0096‐3445.130.2.224	

Ashcraft,	M.	H.,	&	Krause,	J.	A.	(2007).	Working	memory,	math	performance,	and	math	
anxiety.	Psychonomic	Bulletin	&	Review,	14(2),	243–248.	
http://doi.org/10.3758/BF03194059	

Ashcraft,	M.	H.,	Krause,	J.	A.,	&	Hopko,	D.	R.	(2007).	Is	math	anxiety	a	mathematical	
learning	disability.	Why	Is	Math	so	Hard	for	Some	Children,	(January	2007),	329–
348.	

Ashcraft,	M.	H.,	&	Moore,	A.	M.	(2009).	Mathematics	Anxiety	and	the	Affective	Drop	in	
Performance.	Journal	of	Psychoeducational	Assessment,	27(3),	197–205.	
http://doi.org/10.1177/0734282908330580	

Ashcraft,	M.	H.,	&	Ridley,	K.	S.	(2005).	Math	Anxiety	and	Its	Cognitive	Consequences.	In	
Jamie	I.	D.	Campbell	(Ed.),	Handbook	of	mathematical	cognition	(pp.	315–327).	New	
York,	NY:	Psychology	Press	Ltd.	

Barbaresi,	W.	J.,	Katusic,	S.	K.,	Colligan,	R.	C.,	Weaver,	A.	L.,	&	Jacobsen,	S.	J.	(2005).	Math	
Learning	Disorder:	Incidence	in	a	Population‐Based	Birth	Cohort,	1976–82,	
Rochester,	Minn.	Ambulatory	Pediatrics,	5(5),	281.	http://doi.org/10.1367/A04‐
209R.1	

Barlow,	D.	H.	(1991).	Disorders	of	Emotion.	Psychological	Inquiry,	2(1),	58–71.	
http://doi.org/10.1207/s15327965pli0201_15	

Barlow,	D.	H.	(2004).	Anxiety	and	its	disorders:	The	nature	and	treatment	of	anxiety	and	
panic.	Guilford	press.	



	 24

Bell,	A.	J.,	&	Sejnowski,	T.	J.	(1995).	An	Information‐Maximization	Approach	to	Blind	
Separation	and	Blind	Deconvolution.	Neural	Computation,	7(6),	1129–1159.	
http://doi.org/10.1162/neco.1995.7.6.1129	

Bidelman,	G.	M.	(2015).	Induced	neural	beta	oscillations	predict	categorical	speech	
perception	abilities.	Brain	and	Language,	141,	62–9.	
http://doi.org/10.1016/j.bandl.2014.11.003	

Carey,	E.,	Hill,	F.,	Devine,	A.,	&	Szücs,	D.	(2016).	The	chicken	or	the	egg?	The	direction	of	
the	relationship	between	mathematics	anxiety	and	mathematics	performance.	
Frontiers	in	Psychology,	6(JAN),	1–6.	http://doi.org/10.3389/fpsyg.2015.01987	

Cemen,	P.	B.	(1987).	The	Nature	of	Mathematics	Anxiety.	ERIC.	

Chen,	A.	C.	N.,	Feng,	W.,	Zhao,	H.,	Yin,	Y.,	&	Wang,	P.	(2008).	EEG	default	mode	network	in	
the	human	brain:	Spectral	regional	field	powers.	NeuroImage,	41(2),	561–574.	
http://doi.org/10.1016/j.neuroimage.2007.12.064	

De	Vico	Fallani,	F.,	Maglione,	A.,	Babiloni,	F.,	Mattia,	D.,	Astolfi,	L.,	Vecchiato,	G.,	…	
Micheloyannis,	S.	(2010).	Cortical	network	analysis	in	patients	affected	by	
schizophrenia.	Brain	Topography,	23(2),	214–20.	http://doi.org/10.1007/s10548‐
010‐0133‐2	

Derakshan,	N.,	&	Eysenck,	M.	W.	(2009).	Anxiety,	processing	efficiency,	and	cognitive	
performance:	New	developments	from	attentional	control	theory.	European	
Psychologist,	14(2),	168–176.	http://doi.org/10.1027/1016‐9040.14.2.168	

Devine,	A.,	Fawcett,	K.,	Szűcs,	D.,	&	Dowker,	A.	(2012).	Gender	differences	in	
mathematics	anxiety	and	the	relation	to	mathematics	performance	while	
controlling	for	test	anxiety.	Behavioral	and	Brain	Functions,	8(1),	33.	
http://doi.org/10.1186/1744‐9081‐8‐33	

Dowker,	A.	(2005).	Individual	Differences	in	Arithmetic.	Individual	differences	in	
arithmetic:	Implications	for	psychology,	neuroscience	and	education.	
http://doi.org/10.4324/9780203324899	

Dunst,	B.,	Benedek,	M.,	Jauk,	E.,	Bergner,	S.,	Koschutnig,	K.,	Sommer,	M.,	…	Neubauer,	A.	C.	
(2014).	Neural	efficiency	as	a	function	of	task	demands.	Intelligence,	42,	22–30.	
http://doi.org/10.1016/j.intell.2013.09.005	

Eysenck,	M.	W.,	Derakshan,	N.,	Santos,	R.,	&	Calvo,	M.	G.	(2007).	Anxiety	and	cognitive	
performance:	attentional	control	theory.	Emotion	(Washington,	D.C.),	7(2),	336–53.	
http://doi.org/10.1037/1528‐3542.7.2.336	

Faust,	M.	W.	(1992).	Analysis	of	physiological	reactivity	in	mathematics	anxiety.	Bowling	
Green	University.	

Faust,	M.	W.	(1996).	Mathematics	Anxiety	Effects	in	Simple	and	Complex	Addition.	
Mathematical	Cognition,	2(1),	25–62.	http://doi.org/10.1080/135467996387534	

Fountoulakis,	K.	N.,	Papadopoulou,	M.,	Kleanthous,	S.,	Papadopoulou,	A.,	Bizeli,	V.,	
Nimatoudis,	I.,	…	Kaprinis,	G.	S.	(2006).	Reliability	and	psychometric	properties	of	
the	Greek	translation	of	the	State‐Trait	Anxiety	Inventory	form	Y:	preliminary	data.	
Annals	of	General	Psychiatry,	5,	2.	http://doi.org/10.1186/1744‐859X‐5‐2	

Geary,	D.	C.	(1993).	Mathematical	Disabilities.	Children’s	Mathematical	Development:	
Research	and	Practical	Applications,	(September),	155–187.	
http://doi.org/10.1037/10163‐001	

Greicius,	M.	D.,	Krasnow,	B.,	Reiss,	A.	L.,	&	Menon,	V.	(2003).	Functional	connectivity	in	
the	resting	brain:	a	network	analysis	of	the	default	mode	hypothesis.	Proceedings	of	
the	National	Academy	of	Sciences	of	the	United	States	of	America,	100(1),	253–258.	
http://doi.org/10.1073/pnas.0135058100	



	 25

H.,	M.,	Ashcraft,	P.,	E.,	Kirk,	&	Hopko,	D.	(1998).	On	the	cognitive	consequences	of	
mathematics	anxiety.	In	C.	Donlan	(Ed.),	The	development	of	mathematical	skills.	
Studies	in	developmental	psychology.	(pp.	175–196).	Hove,	England:	Psychology	
Press/Taylor	&	Francis	(UK).	

Harmony,	T.	(2013).	The	functional	significance	of	delta	oscillations	in	cognitive	
processing.	Frontiers	in	Integrative	Neuroscience,	7,	83.	
http://doi.org/10.3389/fnint.2013.00083	

He,	B.,	Wang,	Y.,	&	Wu,	D.	(1999).	Estimating	cortical	potentials	from	scalp	EEG’s	in	a	
realistically	shaped	inhomogeneous	head	model	by	means	of	the	boundary	element	
method.	IEEE	Transactions	on	Bio‐Medical	Engineering,	46(10),	1264–8.	Retrieved	
from	http://www.ncbi.nlm.nih.gov/pubmed/10513133	

Heller,	W.,	Nitschke,	J.	B.,	Etienne,	M.	A.,	&	Miller,	G.	A.	(1997).	Patterns	of	regional	brain	
activity	differentiate	types	of	anxiety.	Journal	of	Abnormal	Psychology,	106(3),	376–
385.	http://doi.org/10.1037/0021‐843X.106.3.376	

Hembree,	R.	(1990).	The	Nature,	Effects,	and	Relief	of	Mathematics	Anxiety.	Journal	for	
Research	in	Mathematics	Education,	21(1),	33.	http://doi.org/10.2307/749455	

Herrmann,	C.	S.,	Strüber,	D.,	Helfrich,	R.	F.,	&	Engel,	A.	K.	(2015).	EEG	oscillations:	From	
correlation	to	causality.	International	Journal	of	Psychophysiology :	Official	Journal	
of	the	International	Organization	of	Psychophysiology.	
http://doi.org/10.1016/j.ijpsycho.2015.02.003	

Hopko,	D.	R.,	Mahadevan,	R.,	Bare,	R.	L.,	&	Hunt,	M.	K.	(2003).	The	Abbreviated	Math	
Anxiety	Scale	(AMAS):	construction,	validity,	and	reliability.	Assessment,	10(2),	
178–82.	Retrieved	from	http://www.ncbi.nlm.nih.gov/pubmed/12801189	

Humphries,	M.	D.,	&	Gurney,	K.	(2008).	Network	“small‐world‐ness”:	a	quantitative	
method	for	determining	canonical	network	equivalence.	PloS	One,	3(4),	e0002051.	
http://doi.org/10.1371/journal.pone.0002051	

Ionescu,	D.	F.,	Niciu,	M.	J.,	Mathews,	D.	C.,	Richards,	E.	M.,	&	Zarate,	C.	A.	(2013).	
NEUROBIOLOGY	OF	ANXIOUS	DEPRESSION:	A	REVIEW.	Depression	and	Anxiety,	
30(4),	374–385.	http://doi.org/10.1002/da.22095	

Jansen,	B.	R.	J.,	Louwerse,	J.,	Straatemeier,	M.,	Van	der	Ven,	S.	H.	G.,	Klinkenberg,	S.,	&	Van	
der	Maas,	H.	L.	J.	(2013).	The	influence	of	experiencing	success	in	math	on	math	
anxiety,	perceived	math	competence,	and	math	performance.	Learning	and	
Individual	Differences,	24,	190–197.	http://doi.org/10.1016/j.lindif.2012.12.014	

Jones,	W.	J.,	Childers,	T.	L.,	&	Jiang,	Y.	(2012).	The	shopping	brain:	Math	anxiety	
modulates	brain	responses	to	buying	decisions.	Biological	Psychology,	89(1),	201–
213.	http://doi.org/10.1016/j.biopsycho.2011.10.011	

Klados,	M.	A.,	Frantzidis,	C.,	Vivas,	A.	B.,	Papadelis,	C.,	Lithari,	C.,	Pappas,	C.,	&	Bamidis,	P.	
D.	(2009).	A	Framework	Combining	Delta	Event‐Related	Oscillations	(EROs)	and	
Synchronisation	Effects	(ERD/ERS)	to	Study	Emotional	Processing.	Computational	
Intelligence	and	Neuroscience,	2009,	1–16.	http://doi.org/10.1155/2009/549419	

Klados,	M.	A.,	Kanatsouli,	K.,	Antoniou,	I.,	Babiloni,	F.,	Tsirka,	V.,	Bamidis,	P.	D.,	&	
Micheloyannis,	S.	(2013).	A	Graph	theoretical	approach	to	study	the	organization	of	
the	cortical	networks	during	different	mathematical	tasks.	PloS	One,	8(8),	e71800.	
http://doi.org/10.1371/journal.pone.0071800	

Klados,	M.	A.,	Papadelis,	C.,	Braun,	C.,	&	Bamidis,	P.	D.	(2011).	REG‐ICA:	A	hybrid	
methodology	combining	Blind	Source	Separation	and	regression	techniques	for	the	
rejection	of	ocular	artifacts.	Biomedical	Signal	Processing	and	Control,	6(3),	291–
300.	http://doi.org/10.1016/j.bspc.2011.02.001	



	 26

Klados,	M.	a.,	Papadelis,	C.	L.,	&	Bamidis,	P.	D.	(2009).	REG‐ICA:	A	new	hybrid	method	for	
EOG	Artifact	Rejection.	2009	9th	International	Conference	on	Information	
Technology	and	Applications	in	Biomedicine,	1–4.	
http://doi.org/10.1109/ITAB.2009.5394295	

Klados,	M.	A.,	Simos,	P.,	Micheloyannis,	S.,	Margulies,	D.,	&	Bamidis,	P.	D.	(2015).	ERP	
measures	of	math	anxiety:	how	math	anxiety	affects	working	memory	and	mental	
calculation	tasks?	Frontiers	in	Behavioral	Neuroscience,	9.	
http://doi.org/10.3389/fnbeh.2015.00282	

Klimesch,	W.	(1999).	EEG	alpha	and	theta	oscillations	reflect	cognitive	and	memory	
performance:	A	review	and	analysis.	Brain	Research	Reviews.	
http://doi.org/10.1016/S0165‐0173(98)00056‐3	

Knyazev,	G.	G.	(2011).	Cross‐frequency	coupling	of	brain	oscillations:	An	impact	of	state	
anxiety.	International	Journal	of	Psychophysiology,	80(3),	236–245.	
http://doi.org/10.1016/j.ijpsycho.2011.03.013	

Lewis,	A.	G.,	Wang,	L.,	&	Bastiaansen,	M.	(n.d.).	Fast	oscillatory	dynamics	during	language	
comprehension:	Unification	versus	maintenance	and	prediction?	
http://doi.org/10.1016/j.bandl.2015.01.003	

Liao,	W.,	Xu,	Q.,	Mantini,	D.,	Ding,	J.,	Machado‐de‐Sousa,	J.	P.,	Hallak,	J.	E.	C.,	…	Chen,	H.	
(2011).	Altered	gray	matter	morphometry	and	resting‐state	functional	and	
structural	connectivity	in	social	anxiety	disorder.	Brain	Research,	1388,	167–177.	
http://doi.org/10.1016/j.brainres.2011.03.018	

Lithari,	C.,	Klados,	M.	A.,	Papadelis,	C.,	Pappas,	C.,	Albani,	M.,	&	Bamidis,	P.	D.	(2012).	How	
does	the	metric	choice	affect	brain	functional	connectivity	networks?	Biomedical	
Signal	Processing	and	Control,	7(3),	228–236.	
http://doi.org/10.1016/j.bspc.2011.05.004	

Liu,	F.,	Zhu,	C.,	Wang,	Y.,	Guo,	W.,	Li,	M.,	Wang,	W.,	…	Chen,	H.	(2015).	Disrupted	cortical	
hubs	in	functional	brain	networks	in	social	anxiety	disorder.	Clinical	
Neurophysiology,	126(9),	1711–1716.	http://doi.org/10.1016/j.clinph.2014.11.014	

Luo,	Q.,	Cheng,	X.,	Holroyd,	T.,	Xu,	D.,	Carver,	F.,	&	Blair,	R.	J.	(2013).	Theta	band	activity	
in	response	to	emotional	expressions	and	its	relationship	with	gamma	band	
activity	as	revealed	by	MEG	and	advanced	beamformer	source	imaging.	Frontiers	in	
Human	Neuroscience,	7,	940.	http://doi.org/10.3389/fnhum.2013.00940	

Lyons,	I.	M.,	&	Beilock,	S.	L.	(2012a).	Mathematics	Anxiety:	Separating	the	Math	from	the	
Anxiety.	Cerebral	Cortex,	22(9),	2102–2110.	
http://doi.org/10.1093/cercor/bhr289	

Lyons,	I.	M.,	&	Beilock,	S.	L.	(2012b).	When	math	hurts:	math	anxiety	predicts	pain	
network	activation	in	anticipation	of	doing	math.	PloS	One,	7(10),	e48076.	
http://doi.org/10.1371/journal.pone.0048076	

Maloney,	E.	A.,	Ansari,	D.,	&	Fugelsang,	J.	A.	(2011).	The	effect	of	mathematics	anxiety	on	
the	processing	of	numerical	magnitude.	Quarterly	Journal	of	Experimental	
Psychology	(2006),	64(1),	10–16.	http://doi.org/10.1080/17470218.2010.533278	

Maloney,	E.	A.,	Risko,	E.	F.,	Ansari,	D.,	&	Fugelsang,	J.	(2010).	Mathematics	anxiety	affects	
counting	but	not	subitizing	during	visual	enumeration.	Cognition,	114(2),	293–7.	
http://doi.org/10.1016/j.cognition.2009.09.013	

Martin,	R.	B.,	Cirino,	P.	T.,	Sharp,	C.,	&	Barnes,	M.	(2014).	Number	and	counting	skills	in	
kindergarten	as	predictors	of	grade	1	mathematical	skills.	Learning	and	Individual	
Differences,	34,	12–23.	http://doi.org/10.1016/j.lindif.2014.05.006	

Mattia,	D.,	Cincotti,	F.,	Astolfi,	L.,	de	Vico	Fallani,	F.,	Scivoletto,	G.,	Marciani,	M.	G.,	&	



	 27

Babiloni,	F.	(2009).	Motor	cortical	responsiveness	to	attempted	movements	in	
tetraplegia:	evidence	from	neuroelectrical	imaging.	Clinical	Neurophysiology :	
Official	Journal	of	the	International	Federation	of	Clinical	Neurophysiology,	120(1),	
181–9.	http://doi.org/10.1016/j.clinph.2008.09.023	

Nitschke,	J.	B.,	Heller,	W.,	Palmieri,	P.	A.,	&	Miller,	G.	A.	(1999).	Contrasting	patterns	of	
brain	activity	in	anxious	apprehension	and	anxious	arousal.	Psychophysiology,	
36(5),	628–637.	http://doi.org/10.1017/S0048577299972013	

Nitschke,	J.	B.,	Sarinopoulos,	I.,	MacKiewicz,	K.	L.,	Schaefer,	H.	S.,	&	Davidson,	R.	J.	(2006).	
Functional	neuroanatomy	of	aversion	and	its	anticipation.	NeuroImage,	29(1),	106–
116.	http://doi.org/10.1016/j.neuroimage.2005.06.068	

Nitschke,	J.	B.,	Sarinopoulos,	I.,	Oathes,	D.	J.,	Johnstone,	T.,	Whalen,	P.	J.,	Davidson,	R.	J.,	&	
Kalin,	N.	H.	(2009).	Anticipatory	activation	in	the	Amygdala	and	Anterior	Cingulate	
in	generalized	anxiety	disorder	and	prediction	of	reatment	response.	American	
Journal	of	Psychiatry,	166(3),	302–310.	
http://doi.org/10.1176/appi.ajp.2008.07101682	

Nolte,	G.,	Bai,	O.,	Wheaton,	L.,	Mari,	Z.,	Vorbach,	S.,	&	Hallett,	M.	(2004).	Identifying	true	
brain	interaction	from	EEG	data	using	the	imaginary	part	of	coherency.	Clinical	
Neurophysiology :	Official	Journal	of	the	International	Federation	of	Clinical	
Neurophysiology,	115(10),	2292–307.	http://doi.org/10.1016/j.clinph.2004.04.029	

Onnela,	J.‐P.,	Saramäki,	J.,	Kertész,	J.,	&	Kaski,	K.	(2005).	Intensity	and	coherence	of	
motifs	in	weighted	complex	networks.	Physical	Review	E,	71(6),	65103.	
http://doi.org/10.1103/PhysRevE.71.065103	

Pannekoek,	J.	N.,	Veer,	I.	M.,	van	Tol,	M.‐J.,	van	der	Werff,	S.	J.	A.,	Demenescu,	L.	R.,	
Aleman,	A.,	…	van	der	Wee,	N.	J.	A.	(2013).	Resting‐state	functional	connectivity	
abnormalities	in	limbic	and	salience	networks	in	social	anxiety	disorder	without	
comorbidity.	European	Neuropsychopharmacology,	23(3),	186–195.	
http://doi.org/10.1016/j.euroneuro.2012.04.018	

Pascual‐Marqui,	R.	D.	(2002).	Standardized	low‐resolution	brain	electromagnetic	
tomography	(sLORETA):	technical	details.	Methods	and	Findings	in	Experimental	
and	Clinical	Pharmacology,	24	Suppl	D,	5–12.	Retrieved	from	
http://www.ncbi.nlm.nih.gov/pubmed/12575463	

Passolunghi,	M.	C.	(2011).	Cognitive	and	Emotional	Factors	in	Children	with	
Mathematical	Learning	Disabilities.	International	Journal	of	Disability,	Development	
and	Education,	58(1),	61–73.	http://doi.org/10.1080/1034912X.2011.547351	

Pletzer,	B.,	Kronbichler,	M.,	Nuerk,	H.‐C.,	&	Kerschbaum,	H.	H.	(2015).	Mathematics	
anxiety	reduces	default	mode	network	deactivation	in	response	to	numerical	tasks.	
Frontiers	in	Human	Neuroscience,	9,	202.	
http://doi.org/10.3389/fnhum.2015.00202	

Raghubar,	K.	P.,	Barnes,	M.	A.,	&	Hecht,	S.	A.	(2010).	Working	memory	and	mathematics:	
A	review	of	developmental,	individual	difference,	and	cognitive	approaches.	
Learning	and	Individual	Differences,	20(2),	110–122.	
http://doi.org/10.1016/j.lindif.2009.10.005	

Roy,	A.	K.,	Fudge,	J.	L.,	Kelly,	C.,	Perry,	J.	S.	A.,	Daniele,	T.,	Carlisi,	C.,	…	Ernst,	M.	(2013).	
Intrinsic	Functional	Connectivity	of	Amygdala‐Based	Networks	in	Adolescent	
Generalized	Anxiety	Disorder.	Journal	of	the	American	Academy	of	Child	&	
Adolescent	Psychiatry,	52(3),	290–299.e2.	
http://doi.org/10.1016/j.jaac.2012.12.010	

Rubinsten,	O.,	&	Tannock,	R.	(2010).	Mathematics	anxiety	in	children	with	
developmental	dyscalculia.	Behavioral	and	Brain	Functions,	6(1),	46.	



	 28

http://doi.org/10.1186/1744‐9081‐6‐46	

Saramäki,	J.,	Kivelä,	M.,	Onnela,	J.‐P.,	Kaski,	K.,	&	Kertész,	J.	(2007).	Generalizations	of	the	
clustering	coefficient	to	weighted	complex	networks.	Physical	Review	E,	75(2),	
27105.	http://doi.org/10.1103/PhysRevE.75.027105	

Schlögl,	A.,	Keinrath,	C.,	Zimmermann,	D.,	Scherer,	R.,	Leeb,	R.,	&	Pfurtscheller,	G.	(2007).	
A	fully	automated	correction	method	of	EOG	artifacts	in	EEG	recordings.	Clinical	
Neurophysiology :	Official	Journal	of	the	International	Federation	of	Clinical	
Neurophysiology,	118(1),	98–104.	http://doi.org/10.1016/j.clinph.2006.09.003	

Spielberger,	C.	D.	(2010).	Test	Anxiety	Inventory.	In	The	Corsini	Encyclopedia	of	
Psychology.	Hoboken,	NJ,	USA:	John	Wiley	&	Sons,	Inc.	
http://doi.org/10.1002/9780470479216.corpsy0985	

Spielberger,	C.,	Gorsuch,	R.,	&	Lushene,	R.	(1970).	Manual	for	the	state‐trait	anxiety	
inventory.	

Suárez‐Pellicioni,	M.,	Núñez‐Peña,	M.	I.,	&	Colomé,	À.	(2013).	Abnormal	Error	Monitoring	
in	Math‐Anxious	Individuals:	Evidence	from	Error‐Related	Brain	Potentials.	PLoS	
ONE,	8(11),	e81143.	http://doi.org/10.1371/journal.pone.0081143	

Sylvester,	C.	M.,	Corbetta,	M.,	Raichle,	M.	E.,	Rodebaugh,	T.	L.,	Schlaggar,	B.	L.,	Sheline,	Y.	
I.,	…	Lenze,	E.	J.	(2012).	Functional	network	dysfunction	in	anxiety	and	anxiety	
disorders.	Trends	in	Neurosciences,	35(9),	527–535.	
http://doi.org/10.1016/j.tins.2012.04.012	

Tadel,	F.,	Baillet,	S.,	Mosher,	J.	C.,	Pantazis,	D.,	&	Leahy,	R.	M.	(2011).	Brainstorm:	a	user‐
friendly	application	for	MEG/EEG	analysis.	Computational	Intelligence	and	
Neuroscience,	2011,	879716.	http://doi.org/10.1155/2011/879716	

Tobias,	S.	(1978).	Anxiety	and	cognitive	processing	of	instruction.	In	R.Schwarzer	(Ed.),	
Self‐Related	Cognitions	in	Anxiety	and	Motivation	(pp.	35–54).	(Hillsdale,	
NJ:Lawrence	ErlbaumAssociates.	

Tobias,	S.,	&	Deutsch,	T.	(1980).	Prior	achievement,	anxiety	and	instructional	method.	
Paper	Presented	at	the	Annual	Meeting	of	the	Americal	Psychological	Association	
(88th,	Montreal,	Quebec,	Canada,	September	1‐5,	1980).	

Turner,	J.	C.,	Midgley,	C.,	Meyer,	D.	K.,	Gheen,	M.,	Anderman,	E.	M.,	Kang,	Y.,	&	Patrick,	H.	
(2002).	The	classroom	environment	and	students’	reports	of	avoidance	strategies	
in	mathematics:	A	multimethod	study.	Journal	of	Educational	Psychology,	94(1),	88–
106.	http://doi.org/10.1037/0022‐0663.94.1.88	

Van	Belle,	G.	(2008).	Statistical	rules	of	thumb.	Wiley.	

Wine,	J.	(1971).	Test	anxiety	and	direction	of	attention.	Psychological	Bulletin,	76(2),	92–
104.	http://doi.org/10.1037/h0031332	

Young,	C.	B.,	Wu,	S.	S.,	&	Menon,	V.	(2012).	The	neurodevelopmental	basis	of	math	
anxiety.	Psychological	Science,	23(5),	492–501.	
http://doi.org/10.1177/0956797611429134	

Zakaria,	E.,	Zain,	N.	M.,	Ahmad,	N.	A.,	&	Erlina,	A.	(2012).	Mathematics	anxiety	and	
achievement	among	secondary	school	students.	American	Journal	of	Applied	
Sciences,	9(11),	1828–1832.	http://doi.org/10.3844/ajassp.2012.1828.1832	

Zalesky,	A.,	Fornito,	A.,	&	Bullmore,	E.	(2012).	On	the	use	of	correlation	as	a	measure	of	
network	connectivity.	NeuroImage,	60(4),	2096–106.	
http://doi.org/10.1016/j.neuroimage.2012.02.001	

	


