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Ras signaling in aging and metabolic
regulation
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Abstract. Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations
that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of
the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and
mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic
regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions
between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining
age-related health may have important implications for the development of interventions that could not only increase lifespan

but also delay the onset and/or progression of age-related functional decline.
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1. Introduction

Increased age is the predominant risk factor
for several major human pathologies, including
cancer, diabetes, cardiovascular disease and neu-
rodegeneration [1-5]. Long considered an inevitable
consequence of life, recent advances have revealed
that aging has an underlying biological process, influ-
enced by both genetic and environmental factors [6].
Similar biological manipulations have been shown to
extend lifespan and delay the adverse effects of aging
across different organisms including yeast, worms,
flies and mice [7]. Such striking evolutionary con-
servation suggests that understanding the molecular
mechanisms that drive aging in these laboratory mod-
els are key to the development of pharmacological
interventions to improve lifelong human health.

*Corresponding author: Cathy Slack, School of Life and Health
Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET,
UK. Tel.: +44 121 201 4017; E-mail: c.slack @aston.ac.uk.

Among the most robust, evolutionary conserved
longevity-assurance mechanisms identified to date
are caloric or dietary restriction (DR), defined
as reduced nutrient intake without malnutrition,
and genetic down-regulation of nutrient signaling
pathways, such as the insulin/insulin-like growth
factor (IGF) signaling (IIS) and mechanistic tar-
get of rapamycin (mTOR) pathways [7]. Extensive
cross-talk exists between these key regulators of
organismal aging. Reciprocal regulation at multiple
nodes between the IIS and mTOR signaling pathways
results in a complex and highly-connected nutri-
ent signaling network [8] while increasing evidence
from genetic interaction studies suggests that signal-
ing via the IIS/mTOR network plays an important
role in mediating the longevity response to DR [9].
The IIS/mTOR network may therefore provide prime
targets for pharmacological interventions to delay
aging. Indeed, recent studies have demonstrated
that pharmacological modulation of mTOR signal-
ing can similarly extend lifespan and protect against
age-related pathologies in laboratory animals. For
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example, the mTOR kinase inhibitor, rapamycin,
both extends lifespan in multiple organisms, includ-
ing mammals, and improves several physiological
outputs during aging [10-14]. Furthermore, inhibi-
tion of mTOR using rapamycin-like molecules or
rapalogues in humans has been shown to improve
age-related immunosenescence [15]. The underlying
cellular mechanisms that elicit the longevity response
upon exposure to chemical inhibition of mTOR
are still not entirely understood but may include
inhibition of protein synthesis and induction of
autophagy [10].

Lifespan extension via pharmacological inhibition
of IIS has, until recently, proved somewhat more
elusive. In mammals, a well-known signaling inter-
mediary of the IIS pathway is the oncogenic Ras
protein. Ras is a small GTPase, the activation of
which initiates a signal transduction cascade via the
extracellular signal-regulated kinase (ERK)/mitogen
activated protein kinase (MAPK). Both Ras and
its downstream signaling effector, ERK/MAPK, can
modulate the activities of key regulatory molecules
within the IIS/mTOR signaling network, including
PI3K and mTOR, as well as cellular mediators of
the response to DR such as AMPK. Thus, Ras or
downstream components of its signal transduction
pathway may offer novel targets for pharmacologi-
cal manipulation of the IIS/mTOR nutrient signaling
network.

Studies have recently demonstrated a role for Ras
signal transduction itself as an important modulator
of aging in both invertebrates and mammals [16, 17].
Interestingly, studies in mammals have also high-
lighted a key role for components of the Rass/MAPK
pathway in metabolic regulation, particularly in the
regulation of fat metabolism. Further exploration of
these functions of Ras signaling may therefore offer
new avenues for therapeutic interventions for both
aging and metabolic disease.

2. The Ras signaling pathway

The Ras proteins are members of a superfamily of
small GTPases that play a fundamental role in sig-
nal transduction from cell-surface receptor tyrosine
kinases (RTKs) in response to a variety of extracel-
lular stimuli including growth factors, hormones and
cytokines [18]. Their primary function is to assemble
intracellular signaling complexes thereby activat-
ing downstream cell signaling pathways (Fig. 1).
As such, Ras proteins coordinate multiple cellular
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Fig. 1. The Ras/MAPK signaling pathway. The Ras/MAPK signal-
ing pathway responds to extracellular cues to control cell survival,
proliferation and metabolism. Growth factor binding to receptor
tyrosine kinases (RTK) activates autophosphorylation of the recep-
tor which generates binding sites for the Grb2 and Shc adaptor
proteins. These adaptor proteins recruit the Ras GTPase exchange
factor (GEF), SOS, to the inner surface of the membrane. SOS
catalyses the exchange of GDP to GTP on Ras and then the acti-
vated Ras-GTP recruits Raf to the complex. Raf then initiates a
downstream phosphorylation cascade via MEK and ERK. Acti-
vated ERK phosphorylates multiple cytoplasmic and cytoskeletal
proteins including ribosomal S6 kinase (RSK). In addition, acti-
vated ERK can translocate to the nucleus, where it phosphorylates
and activates members of the the E-twenty-six (ETS) transcription
factor family.

responses including proliferation, differentiation,
apoptosis, senescence and metabolism [19].

Ras proteins function as binary molecular
switches, cycling between inactive GDP-bound and
active GTP-bound states. The balance of active versus
inactive Ras is determined by the competing activi-
ties of guanine nucleotide exchange factors (GEFs)
and GTPase activating proteins (GAPs): Ras GEFs
catalyse the replacement of GDP by GTP and Ras
GAPs increase the rate of GTP hydrolysis [20, 21].
In the active GTP-bound conformation, two regions
within the Ras protein, the Switch regions I and
II, undergo significant structural changes, forming a
GTP-dependent interface for binding to downstream
effector molecules with high affinity and specificity
[22]. Oncogenic mutations in Ras usually arise as
a result of amino acid substitutions that prevent the
GAP-dependent hydrolysis of GTP, thereby generat-
ing constitutively active Ras molecules [23].
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Upon RTK activation, Ras facilitates the assem-
bly of signaling complexes to the inner surface of the
plasma membrane by specific protein-protein inter-
actions [21] (Fig. 1). The cytoplasmic tail of the
activated RTK recruits the Grb2 adaptor protein either
via a direct SH2 domain-phosphotyrosine interac-
tion or through association with the adaptor protein,
Shc. Grb2 in turn then binds to the Ras-GEF, SOS,
localising Ras to the activated RTK-bound complex.
Active GTP-bound Ras then binds to and activates
its effector molecules, including Raf, initiating a
phosphorylation cascade via MEK and the extracellu-
lar signal-regulated kinase (ERK)/mitogen-activated
protein kinase (MAPK). Activated ERK phosphory-
lates multiple cytoplasmic and cytoskeletal proteins,
including MAPK-activated protein kinases and ribo-
somal S6 kinase [24]. In addition, activated ERK
can translocate to the nucleus, where it phospho-
rylates and activates several transcription factors
including members of the the E-twenty-six (ETS)
transcription factor family [25]. The target speci-
ficity of activated ERK is therefore controlled by
substrate availability, subcellular localisation and
ERK scaffolding, in which scaffolding proteins
tether ERK or its upstream kinase, MEK, to spe-
cific substrates and/or subcellular compartments
[24]. Hence, signal transduction through Ras and
its downstream effectors influences several cellu-
lar processes including proliferation, migration and
differentiation. Increasing evidence suggests Ras sig-
naling may also play an important role in animal

aging.

3. A role for Ras signaling in aging
3.1. Yeast

Lifespan in the budding yeast, Saccharomyces
cerevisiae, is measured by two metrics: replica-
tive lifespan which corresponds to the number of
daughter cells produced by an individual mother
cell and chronological lifespan that measures the
survival time of non-dividing cells in the station-
ary phase [26]. The first genes that were implicated
in yeast longevity were the two Ras homologues,
RASI and RAS2, which influence both replicative
and chronological lifespan. Deletion of RAS extends
replicative lifespan while deletion of RAS2 extends
chronological lifespan [27, 28]. In yeast, the Ras
proteins form part of a nutrient signaling pathway

that includes cyclic AMP (cAMP) and protein kinase
A (PKA). The effects of RASI or RAS2 deletion
on yeast lifespan were shown to be mediated via
altered signaling through this pathway [27]. Fur-
thermore, direct deletion or inactivation of several
components of the pathway were also found to
increase both replicative and chronological lifespan
[29-31]. The stress responsive transcription factors,
Msn2 and Msn4, which are activated in response to
RAS-cAMP-PKA signaling, were required for the
effects of reduced RAS-cAMP-PKA signaling on
chronological lifespan [30] and may also mediate the
effects of RAS-cAMP-PKA inhibition on replicative
lifespan [32].

The differential effects of RAS/ and RAS2 dele-
tion on replicative versus chronological lifespan are
interesting particularly as they both signal through
cAMP-PKA to influence yeast aging. The relation-
ship between replicative and chronological lifespan is
not clear butincreasing evidence suggests that the two
are linked. For example, chronological aging results
in a subsequent decrease in replicative lifespan [33].
The most obvious difference between replicative and
chronological aging is the increased metabolic activ-
ity of actively replicating cells compared to cells in
the stationary phase which themselves will be more
subjected to stress. Thus, the divergent outcomes
of RASI and RAS2 deletion on either replicative or
chronological aging may reflect differential effects of
RAST1 and RAS?2 functions on metabolic and stress
resistance pathways.

3.2. Neurospora

Neurospora crassa also possesses two RAS genes:
ras-1 [34] and ras-2 [35], and at least three genes
predicted to encode Ras-GEFs [36]. The band (bd)
mutation, a long known and widely used tool in the
study of Neurospora circadian biology, was recently
identified as adominant mutation in ras-1 [37], result-
ing in an amino acid substitution within the switch
region II, which mediates the interaction of Ras with
its GEFs [38]. Mutation of similar residues in yeast
may be important for proper activation of adenylyl
cyclase [39]. Interestingly, the ras-1°? mutation has
recently been shown to increase chronological lifes-
pan in Neurospora [40]. The ras-1¢ mutation does
not seem to cause dramatic effects on Ras activ-
ity as there are no reproducible differences in the
levels of active GTP-bound Ras in ras-1°¢ mutants
compared to wild-type [37]. The signaling dynamics
downstream of ras-1 in this organism are not well



198 C. Slack / Ras signaling in aging and metabolic regulation

described but it is likely that the ras-1°¢ mutation
elicits its effects by affecting the interaction of Ras
with one or more GEFs and/or downstream effectors
of signaling.

3.3. Flies

In the fruit fly, Drosophila melanogaster, key out-
puts of Ras activation during development are the two
ETS transcription factors: Pointed (Pnt), a transcrip-
tional activator which is stimulated in response to Ras
activation, and Anterior open (AOP), a transcriptional
repressor that is inhibited by Ras activation. Both
Pointed and AOP regulate expression of the same
genes by binding to the same regulatory elements
but with opposing outcomes [41-43]. Expression of
an activated form of AOP was previously shown
to be sufficient for lifespan extension in flies [44],
implicating the Ras signal transduction pathway in
Drosophila aging. More recent studies have demon-
strated a direct role for Ras signaling during aging in
this animal model as genetic inhibition of either Ras
itself or ERK were found to extend lifespan [17]. Fur-
thermore, these effects on lifespan were dependent
on activation of AOP. Importantly, pharmacological
inhibition of ERK using trametinib, a small molecule
inhibitor of the upstream kinase, MEK, also resulted
in longevity [17], thereby identifying a direct role
for inhibition of the canonical Ras/MAPK signaling
pathway as a pro-longevity assurance mechanism in
an animal model.

3.4. Worms

The canonical Ras signaling pathway is conserved
in the nematode worm, Caenorhabditis elegans [45].
Ras itself is encoded by the let-60 gene, mutation
of which disrupts several developmental processes
including development of the vulva and excretory
systems and sex-myoblast migration [45]. Down-
stream effectors of Let-60 signaling in worms include
the ETS transcription factor, Lin-1, that is potentially
regulated by MAPK phosphorylation [46]. Simi-
lar to the Drosophila Ras protein, Let-60 has been
implicated in signal transduction downstream of the
insulin receptor, Daf-2, during aging [47]. However,
in worms, extension of lifespan by mutation of daf-2
is associated with activation rather than inhibition of
Let-60 activity [47]. An important distinction in the
signal transduction cascade between flies and worms
is the absence of an AOP orthologue in C. elegans.

Differences in the transcriptional output downstream
of Ras may therefore explain the differential effects
of Ras inhibition on lifespan in these two animal
models.

Interestingly, the ETS transcription factor, ETS-
4, has recently been identified as a longevity
determinant in worms [48]. Epistasis analysis of loss-
of-function alleles places ETS-4 in a parallel pathway
to Daf-2 during aging and in a similar manner to AOP,
ETS-4 shares common transcriptional targets with the
FOXO transcription factor, Daf-16 [48]. This sug-
gests that despite the divergent roles of Ras signaling
in lifespan, the ETS and FOXO transcription factors
regulate the expression of common target genes that
influence lifespan, a function that is conserved from
worms to flies.

3.5. Mammals

In mammals, there are four members of the
Ras protein family, N-RAS, H-RAS, K-RAS4A and
K-RAS4B, expressed from three genes. A role for
Ras signaling in mammalian aging by direct genetic
disruption of Ras has yet to be demonstrated. Mice
deficient for H-RAS, N-RAS or K-RAS4A are viable
and do not show any obvious health deficits in early
adulthood [49-51]. Yet, with the exception of K-
RAS4A which does not impact on lifespan [52], the
long-term effects of RAS deficiency on animal lifes-
pan is still to be addressed.

Several studies have implicated downstream com-
ponents of the Ras signaling pathway in mammalian
aging. For example, fibroblasts isolated from long-
lived species of mammals and birds as well as
long-lived mouse mutants show altered kinetics of
ERK phosphorylation in response to stress associ-
ated with increased stress resistance, linking ERK
activation to longevity [53, 54].

Mice deficient for the p66 isoform of the adapter
protein, Shc, which forms part of the intracellular sig-
naling complex coupling activated Ras to activated
RTKs, has also been implicated as a determinant
of mammalian longevity. Mice carrying a targeted
knockout of p66shc show a 30% increase in lifes-
pan compared to control littermates [55]. However,
while the p66 isoform of Shc binds to activated RTKs
and forms stable complexes with Grb2, it does not
appear to facilitate MAPK activation [56] suggesting
that the effects of p66shc mutation on mouse lifes-
pan were not mediated via inhibition of the canonical
Ras/MAPK signal transduction pathway. It should
be noted that the role of p66Shc as a longevity
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protein has been recently disputed as in a sepa-
rate study, no significant differences in lifespan was
observed between p66Shc deficient animals and their
controls [57].

Recently, more direct evidence of a role for Ras
signaling in mammalian aging was described as mice
deficient for the tissue specific Ras-GEF, RasGrfl,
which is predominantly expressed within the pancre-
atic islets and in certain regions of the brain including
the hippocampus and hypothalamus [58], were not
only long-lived but also exhibited better motor coor-
dination in older animals compared to their control
littermates [16]. The longer lifespan of RasGrf1 defi-
cient mice was shown to not simply be caused by
a protection against cancer because tumor-free sur-
vival was also increased in these animals. Instead, old
RasGrfl mutant animals showed enhanced protec-
tion against oxidative stress, lower circulating IGF-1
levels and increased SIRT1 expression compared
to controls, all of which may have contributed to
their longer lifespan [16]. Furthermore, RasGrf1 lies
downstream of both the insulin and IGF-1 receptors,
supporting a role for reduced Insulin/IGF-1 signal-
ing in the beneficial effects of RasGrfI deficiency on
lifespan [59]. Functional analysis has demonstrated
that the RasGrfl protein stimulates the dissocia-
tion of GDP from Ras [59]. However, RasGrf1 also
shows affinity for other ligands in addition to Ras,
including Rac, Rho, microtubules, PI[4,5]P2, and fas-
fatidic acid [60] and so it remains unclear whether
RasGrf1-dependent longevity is a direct result of spe-
cific inhibition of Ras and its downstream signaling
cascade.

In humans, mutations in HRAS are associated with
Costello Syndrome, a rare multi-systemic disorder
characterised by a failure to thrive, short stature,
developmental delay or intellectual disability, soft
skin and distinctive facial features [61]. As the disor-
der progresses with age, patients often show signs of
premature aging including osteoporosis and osteope-
nia, potentially linking Ras activity with human aging
[61]. Genome-wide association studies have also
identified genetic variants of HRAS] that are asso-
ciated with longevity in humans [62]. Furthermore,
genetic variants of HRAS! and APOE have been
shown to interact synergistically and are associated
with both exceptional longevity and healthy aging
[63]. In addition, chronological aging in humans as
well as progeria are associated with activation of ERK
signaling [64]. Thus, both HRAS and downstream
ERK activity may play important roles in human

aging.

4. Ras signaling interacts with other aging
pathways

4.1. Caloric restriction

Caloric or dietary restriction, defined as a reduc-
tion in nutrient intake without malnutrition, has been
shown to extend lifespan in multiple species. In yeast,
caloric restriction by glucose deprivation results in
extension of chronological lifespan and is associated
with down-regulation of the RAS-cAMP-PKA sig-
naling pathway [65]. Moreover, the transcriptional
activities of the RAS-cAMP-PKA responsive tran-
scription factors, Msn2 and Msn4, were increased in
response to caloric restriction and their deletion was
sufficient to block the effects of caloric restriction on
yeast lifespan [32]. Thus, at least part of the tran-
scriptional response to caloric restriction in yeast is
mediated via inhibition of Ras signaling.

Several studies in mammals have also linked
caloric restriction to Ras and/or ERK activity. Cells
isolated from the skin of calorically restricted rats had
reduced HRAS expression and increased DNA methy-
lation at the HRAS locus [66, 67]. Hyper-methylated
promoters will often be recognised by transcrip-
tional repressor complexes and so may lead to HRAS
silencing which could contribute to the reduced can-
cer incidence in calorically restricted animals [66].
Calorically restricted rodents also show reduced lev-
els of both activated Ras-GTP and activated ERK
[66, 68] suggesting that signal transduction down-
stream of Ras is also impaired upon caloric restriction
but whether these changes in Ras signal transduc-
tion contribute to lifespan extension remains to be
determined.

4.2. Insulin/IGF-1 signaling

Ras is a well-established signaling intermediary of
the mammalian insulin/IGF-1-signaling (IIS) path-
way [69], which plays an evolutionary conserved role
in the modulation of animal lifespan [6, 7, 70]. A
central factor in the ability of reduced IIS to extend
lifespan is activation of the Forkhead boxO (FOXO)
transcription factors via inhibition of the lipid kinase
PI3K and its downstream target AKT [7]. The acti-
vated insulin receptor also recruits activated Ras via
insulin receptor substrate (IRS) proteins that couple
the receptor to the Ras-GEF, SOS, by binding to the
Grb2 adaptor protein [69]. In Drosophila, selective
mutation of the insulin receptor substrate, chico, that
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disrupts signaling via the Ras/MAPK pathway was
found to extend lifespan [17]. Moreover, the Ras-
responsive transcription factor, AOP, was required for
lifespan extension by chico mutation [17]. Thus, in
flies at least part of the longevity response to reduced
IIS occurs via inhibition of Rass/MAPK signal trans-
duction.

Extensive cross-talk occurs between Ras/MAPK
signaling and PI3K/AKT signaling via both stim-
ulatory and inhibitory mechanisms (Fig. 2). For
example, activated Ras-GTP can bind directly to and
allosterically activate the catalytic subunit of PI3K
[71]. During growth, such an interaction is required
for maximal PI3K activation [72]. Also, ERK phos-
phorylation of FOXO3A directs the transcription
factor for degradation via the ubiquitin-proteasome
system [73]. Meanwhile, AKT can negatively reg-
ulate ERK activation by phosphorylating inhibitory
sites in Raf, sequestering it within the cytosol away
from Ras and MEK [74]. Thus, the two signaling
branches downstream of the insulin receptor are intri-
cately connected.

4.3. mTOR

Both genetic and pharmacological inhibition of
the mechanistic target of rapamycin (mTOR) kinase
results in longevity in both invertebrates and mam-
mals [10, 12, 75]. mTOR resides within two distinct
cellular complexes, mTOR complex 1 (mTORC1)
and mTOR complex 2 (mTORC2). Each complex
contains a different repertoire of protein compo-
nents and targets different downstream substrates for
phosphorylation. Thus, n"TORC1 responds to growth
factors, energy status, amino acid levels, and cel-
lular stress and is acutely inhibited by rapamycin.
mTORC?2 is activated in response to insulin/IGF-1
signaling via PI3K.

The mTORC1 complex comprises the mTOR
kinase coupled with the RAPTOR scaffold protein,
PRAS40 and the mLST8/GbL protein, which is
involved in mTORCI1 assembly and stability [76].
Activation of canonical Ras/MAPK signaling has
been shown to increase mMTORC1 activity. Activated
ERK phosphorylates RAPTOR promoting mTORC1
phosphorylation of its downstream target, 4E-BP
[77]. mTORCI1 activation by the tuberous sclerosis
complex (TSC) is also influenced by ERK activity.
The TSC functions as a GAP for the small GTPase,
RHEB, that binds to and activates mTORC]1. Phos-
phorylation by ERK functions to inhibit the TSC’s

Insulin Receptor

Fig. 2. Integration of Ras/MAPK signaling with other aging path-
ways. The Ras/MAPK signaling pathway is intricately connected
to other cellular pathways that impact on aging. Ras signaling is
activated downstream of the activated insulin receptor. Ras can
directly bind to and allosterically activate PI3K. Activated ERK
phosphorylates an inhibitory site on AMPK negatively regulat-
ing its activation. Phosphorylation of the TSC by ERK increases
mTORCI activity. Phosphorylation by ERK inhibits the TSC’s
GAP function [76] thereby increasing mTORCT1 activity. ERK also
activates mTORCI via phosphorylation of RAPTOR. ERK phos-
phorylation of the FOXO3A transcription factor leads to FOXO3A
degradation via the ubiquitin proteasome system. Dietary restric-
tion (DR) inhibits Ras-GTP and ERK activity, activates AMPK,
inhibits mTOR and may inhibit insulin signaling via PI3K and
AKT. Positive regulatory interactions are indicated by arrows.
Negative regulatory interactions are shown as blunt-ended lines.

GAP function [78] thereby increasing mTORCI
activity (Fig. 2).

4.4. AMPK

The AMP-activated protein kinase (AMPK) is a
major regulator of energy metabolism, stress resis-
tance and proteostasis. Several studies have shown
that AMPK signaling declines during aging sug-
gesting that AMPK inhibition may contribute to the
aging process [79]. Moreover, activation of AMPK is
sufficient to extend lifespan across different species
[80-82]. AMPK activity is regulated both positively
and negatively by phosphorylation. Activated ERK
can directly phosphorylate AMPK on Ser485, an
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inhibitory AMPK site [83] (Fig. 2) and stress-induced
ERK activation can promote the translocation of
AMPK from the cytoplasm to the nucleus [84]. In
addition, the kinase suppressor of Ras (KSR), which
acts as a scaffold for ERK at the cell membrane to
co-localise ERK with its upstream kinases, also pos-
itively regulates AMPK activation [85].

5. Ras, cellular senescence and aging

Cellular senescence describes the process whereby
proliferating cells cease dividing and enter an irre-
versible state of growth arrest associated with
several distinctive phenotypic changes. These include
widespread changes in chromatin and gene expres-
sion, the secretion of pro-inflammatory chemokines
and cytokines, growth factors, and proteases, a
characteristic feature of senescent cells called the
senescence-associated secretory phenotype (SASP),
and the activation of tumor suppression pathways
[86]. Several factors act as triggers to induce cells
to senesce including telomere shortening, DNA dam-
age and activation of oncogenic pathways including
activation of Ras and chronic stimulation of MAPK
signal transduction [87]. Together, cellular senes-
cence and the SASP are thought to provide an
effective safeguard against tumorigenesis by pre-
venting the proliferation of damaged and potentially
cancerous cells.

Cellular senescence has long been linked to aging
and the development of age-related pathologies. In
mammals, including primates, senescent cells accu-
mulate in mitotically active tissues in association with
both increased age [88] and age-associated diseases
such as osteoarthritis and Alzheimer’s Disease [89].
Several mechanisms for how senescent cells may
promote age-related pathology have been proposed.
The accumulation of senescent cells may negatively
impact on the regenerative potential of aging tissues
by depleting the number of actively dividing cells.
Alternatively, senescent cells may contribute to the
disruption of the aging stem cell niche via the SASP
[86]. Importantly, the clearance of senescent cells
within a progeroid murine model was able to delay
the progression of age-related pathologies but did not
reverse their effects [90].

Oncogenic mutations in Ras that result in its hyper-
activation can trigger senescence [91]. Similarly,
chronic activation of ERK/MAPK signaling, which
has been observed in aging tissues [64, 92], can
also induce senescence. Inhibition of the Ras/s/MAPK

signal transduction pathway may therefore promote
longevity by preventing cellular senescence. In sup-
port of this, down-regulation of RasGrfl in VSELs
(very small embryonic-like stem cells) prevents
senescence and age-related depletion of these cells in
adult tissues which may contribute to the longevity
of RasGrfl deficient mice [58].

6. Ras signaling and metabolic regulation

Identification of the oncogenic Ras signaling path-
way as a conserved modulator of animal aging joins
an emerging theme that manipulating the activity of
cancer-promoting pathways, either by increasing the
activity of tumor suppressor proteins or by inhibition
of oncogenes, can promote longevity. Other examples
include increasing the activity of the tumor suppres-
sor PTEN or inhibition of PI3K, a direct target for
PTEN activation, increasing expression of the tumor
suppressor proteins encoded in the Ink4/Arflocus, or
inhibition of the Myc oncogene, all of which lead to
longevity in murine models [93-96]. Interestingly,
lifespan extension in these models could not sim-
ply be attributed to their protective effects against
cancer as cancer-free individuals were still longer-
lived. Similarly, mice deficient for RasGrfl showed
decreased cancer incidence but lifespan extension
was also observed in cancer-free animals [16]. Also,
pharmacological inhibition of MEK in Drosophila
did not prevent hyperplasia of the adult intestinal
epithelium [17], a cancer-like pathology caused by
over-proliferation of the intestinal stem cells. Ras
signaling may therefore, at least to some extent, influ-
ence lifespan independently of its well-established
oncogenic functions.

One intriguing potential mechanism by which inhi-
bition of Ras signal transduction could promote
longevity is through changes in metabolic regula-
tion, particularly fat metabolism. Aging in several
animal models is often accompanied by metabolic
dysfunction, especially aberrant fat metabolism. In
humans, increased fat deposition, particularly in vis-
ceral fat stores, commonly leads to metabolic disease
including type 2 diabetes and cardiovascular dis-
ease. Surgical removal of visceral fat in rodents
extends lifespan and improves several metabolic out-
comes with age including insulin sensitivity [97].
Similarly, long-lived dietary restricted mouse models
and mutants with impaired IIS or mTOR signal-
ing are often lean and show improved age-related
metabolic profiles [98]. However, other long-lived
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mouse mutants, such as the growth hormone defi-
cient mouse, show increased fat mass [99] suggesting
that total lipid levels themselves may not be a key
determinant of aging. Instead, age-related deteriora-
tion in tissue function may result from lipotoxicity,
the ectopic deposition of fat that occurs when
the adipocyte fat storage capacity is exceeded or
impaired.

Multiple studies have linked activation of ERK to
aberrant fat metabolism or accumulation. Mice lack-
ing ERK1 have fewer adipocytes and decreased adi-
posity compared to their controls [100]. Conversely,
in several models of obesity, including high-fat feed-
ing or genetic interventions such as in ob/ob mice,
activated ERK levels were elevated in metabolically
active tissues such as the liver and white adipose
tissue [101-103]. Reducing the levels of activated
ERK can also provide beneficial outcomes in obesity
models. Thus, ERKI deficient mice were more
resistant to obesity when challenged with a high-
fat diet [100]. Similarly, mice exposed to a small
molecule inhibitor of MEK not only showed low-
ered levels of activated ERK but improved metabolic
profiles in response to high-fat feeding [102]. Inter-
estingly, these interactions between ERK activity and
metabolism appear to be conserved. In Drosophila,
activities of the Ras-responsive ETS transcription
factors, Pnt and AOP, are also associated with
metabolic functions [44].

7. Conclusions and future perspectives

The assignment of new roles for Ras signaling in
animal aging and metabolic regulation offers substan-
tial opportunity for new therapies to target aging and
age-related disease. An effective strategy for devel-
oping new treatments for aging is the repurposing
of existing drugs that have already been approved
for human use. Such drugs have known mecha-
nisms of action and have been well screened for
both safety and toxicity effects. The Ras signaling
pathway has been intensively studied in the context
of cancer. Thus, Ras and its downstream signaling
effectors have been the focus of extensive screen-
ing to identify compounds that inhibit the pathway
for use as cancer treatments. Such strategies have
already isolated several small molecule inhibitors
of the Ras/MAPK pathway that have entered clini-
cal trials or are already in clinical use. Interestingly,
one of these small molecule inhibitors, trametinib,
which targets the MEK kinase with high specificity,

extends lifespan in Drosophila [17] and offers pro-
tection against deleterious metabolic effects of both
diet- and genetically-induced obesity in mice [102].
Moreover, the therapeutic concentration in which
trametinib elicited these metabolic effects was much
lower than that required to inhibit tumor growth in
xenograft models.

A direct role for Rass/MAPK signaling in mam-
malian aging has yet to be demonstrated. However,
the high degree of evolutionary conservation within
this signal transduction cascade suggests that the
function of reduced Ras/MAPK signaling as a
longevity assurance mechanism is also likely to
be conserved. Determining the extent to which the
metabolic effects of Rass/MAPK inhibition are rel-
evant for aging and their contribution to longevity
will be a major challenge for the future. Nevertheless,
such studies could identify important new targets for
interventions to diminish the detrimental effects of
aging, moving towards direct clinical applications to
improve lifelong health.
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