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Abstract

We give an overview of a direct boundary integral equation method for the numer-
ical solution of the Cauchy problem for the Laplace equation in doubly-connected
domains; the solution domain is contained within two closed boundary surfaces
(curves in the case of two-dimensional domains). This Cauchy problem amounts to
finding the values of a harmonic function and its normal derivative on one of the
two closed boundary parts from information about these quantities on the other
boundary surface. It is an ill-posed problem, where noise in the data can completely
destroy the calculated approximation. We outline and give a survey of a regular-
izing method for the stable determination of the sought after quantities, based on
representing the solution to the Cauchy problem as a single-layer potential. This
representation is then matched against the given data, rendering a system of bound-
ary integral equations having two densities to be determined. We give properties of
this system such as existence and uniqueness of the densities, as well as give strate-
gies for the numerical discretisation in two and three dimensional domains. Also
discussed is adjustment to the case of simply connected solution domains and un-
bounded ones. Numerical examples are included both for two and three dimensional
domains. The numerical results show that the proposed method gives good accuracy
with an economical computational cost.

Keywords: elliptic Cauchy problem; 2- and 3-dimensional double connected do-
mains; single-layer potential; boundary integral equations; trigonometric quadrature
method; discrete projection method; Tikhonov regularization.

3pobJieHO OISl IPSIMOTO METOJY 1HTerpajibHUX PiBHAHD [IJIsi YHCEIBHOTO PO3-
B’azyBanag 3aaa49i Komri jra piBaguns Jlammaca y aBo3s’s3uux 061actax; 001acThb
PO3B’sI3yBaHHs PO3MIIIEHA MiXK JIBOMa 3aMKHEHUMY I'PAHUTHUME MMOBEPXHIAME (KPH-
BUME y BUNQJIKY ABOBUMipHUX obnacreit). 1la 3anaua Komi nongrae y 3naxojzxenni
3HAYEHb rApMOHIYHOT PYHKIII Ta 1T HOpMaJIbHOI [TOXi/IHOT Ha OHi 3 IBOX 3aMKHEHUX
rpaHnilh 3a iHdOpPMAINe0 TPo I BeJIMUWHYN Ha iHIM# moBepxHi. lle € HeKOpekTHA
3ajada, B dKiil IyM y BXiJHUX JAHUX MOXKE TTPUBECTH 0 HEMTPUIATHOTO ODUUCIEHOTO



Hab/IMKeHOro po3B’a3Ky. Mu ommcyemo i 1aeMo Oy Peryaspu3yiodoro MeTOILy
JUI CTIfIKOTO BU3HAYEHHH [TIYKAHUX BEJUYMH, TPYHTYIOUHUCH Ha MOJAHHI PO3B’A3KY
zagaqi Komi y ¢opmi morenmiaxy mpocroro mapy. Take momanHs OPUBOAUTH 1O
CHCTEMU TPAHUTHAX IHTETPAJTbHUX PIBHAHD BIIHOCHO JBOX HEBIIOMUX ycTHH. Bera-
HOBJIEHO ICHYBAHHH 1 €IMHICTH I'YCTHUH Ta 3alIPOIIOHOBAHO CIIOCIO YMCeJIbHOI JUCKDe-
TH3AIl ¥ JIBO- Ta TpUBUMIpHUX 0b6/1acTax. TakoxK JUCKYTYETHCs BUMAI0K O/THO3B g3~
HUX 00J1acTeil Ta BUITAI0K HeoOMexkeHux. IIpruBeieHO YncebHl TPUKIAIN [ JTBO-
Ta TpuBuMipHUX obsacteii. YucenabHi pe3yabTaTH MOKA3YIOTH, IO TTPOIIOHOBAHUN
miaxia gae 1o6py TOUHICTH TPU eKOHOMHUX OOYUC/IIOBAJBHUX 3aTpaTax.

1 Introduction

Let Dy ¢ R? d = 2,3, be a bounded domain with boundary surface I's. This surface
is assumed to be simple (no self-intersections) closed (the surface has itself no boundary
and is connected) and sufficiently smooth. In the case when d = 2, we have a boundary
curve with the similar properties assumed; we shall not explicitly state each time the word
“surface” appear that we also consider planar domains with boundary curves but ask the
reader to keep in mind that the present work also covers the planar case when surfaces
are replaced by curves.

Let then I'; be a simple closed (smooth) surface lying wholly within D, with the
interior of I'y being denoted D;. The solution domain D is the region between the two
surfaces I'; and I'y, thus D = D2\1_717 see further Fig. 1 for examples of the configuration.

Let u € C?(D) N C*(D) be a harmonic function, that is a solution to the Laplace
equation

Au=0 in D (1.1)

and suppose additionally that u satisfies the following boundary conditions on the outer
surface Iy,

u=f onTy and Ou =g onls. (1.2)
ov

The linear inverse problem we study is: Given the function values and normal derivative
on I'y, find a harmonic function u in the domain D, matching this data. In particular,

: du L .
reconstruct the corresponding data v and — on the interior boundary I'y. Here, v is the

outward unit normal varying along the bougdary surfaces.

This type of problem is known as a Cauchy problem, and the given data on one
boundary part is termed as Cauchy data. The problem is known to have a unique solution
(a consequence of the Holmgren theorem), however, the continuous dependence on the
data cannot be guaranteed making it fall into the category of ill-posed problems.

The Cauchy problem has a long history going back to Hadamard [16], and serves as a
typical example of an ill-posed problem. The Cauchy problem has several important ap-
plications, for example, in cardiology, corrosion detection, electrostatics, geophysics, leak
identification, non-destructive testing and plasma physics. Some works, where references
to applications and methods for Cauchy problems can be found, are [18, 19, 7, 10]). We
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Figure 1: Example of a: a) two dimensional and b) three dimensional solution domain D,
with boundary part I'; contained within the outer boundary I's

shall not go further into details or references on history or properties of Cauchy problems,
but only state that we assume that data are compatible such that there exists a solution.

Two possible strategies for the numerical calculation of the solution to a Cauchy prob-
lem are the following. One can recast the problem as an equation for the missing boundary
data, and for the obtained equation Tikhonov regularization is employed for the stable
determination of the solution. The second strategy is to form a sequence of well-posed
problems for the same equation and to prove that this sequence converges to the sought
solution of the ill-posed problem. In either of the strategies, in terms of numerical calcu-
lations, approximations of harmonic functions, and in particular their boundary values,
are needed. We shall outline a method belonging to the first category, a reference to a
method in the second category is [26].

The solution domain of interest can be of different form to the one introduced above,
in particular in some applications it can be unbounded or simply connected. The au-
thors have been involved in developing methods based on boundary integral equations
for Cauchy problems that are flexible in the sense that they can be adjusted to various
solution domains, and numerically efficient since only boundary data are needed. In the
present work, we shall give an overview of one such method and results obtained. This
method corresponds to the first strategy mentioned above. The results presented are
collected from work done by the authors in |1, 2, 4, 9, 10].

The method is based on boundary integral techniques involving parameterisations of
the boundary surfaces. The solution to (1.1)—(1.2) in the region D is represented as a
sum of two single-layer potentials, one for each boundary surface, with unknown surface
densities. Matching the given Cauchy data, a system of boundary integral equations is
derived from which the densities over the two boundary surfaces can be obtained. We note
that single-layer approaches have been used before for ill-posed problems, for example in
inverse acoustic scattering, but seems somewhat overlooked for the Cauchy problem (for
some properties of single-layer potentials and history, see [11]).

We point out that rather than using techniques based on parameterisations of the
boundary surfaces, one can use the boundary element method (BEM) since only bound-
ary data is needed in the Cauchy problem. However, in the BEM, the boundary surfaces
are discretised into simpler ones, such as planes or quadratics, and this is a non-trivial



task in itself for surfaces. If these boundary surfaces are instead known via given param-
eterisations, then it becomes advantageous not to use the BEM but instead make use of
the parameterisations and to incorporate further transformations that can render faster
and more accurate numerical results.

We mention that methods for Cauchy problems based on the BEM have been devel-
oped (mainly for bounded planar regions), see for example, [24, 25| (the authors of these
works have plenty more results on techniques based on the BEM for ill-posed problems).
Recently, meshless techniques have been advocated, see the survey [20]. Methods based on
Finite differences and Finite elements have also been developed, see, for example, [12, 3.
Thus, most of the standard numerical methods for partial differential equations can be
applied for solving the Cauchy problem but they tend to be cumbersome to adjust to, for
example, unbounded domains or are not that efficient for 3-dimensional regions.

For the outline of this work, in Section 2, we present the general approach for the
Cauchy problem (1.1)—(1.2) of representing the solution as a single-layer potential. The
system obtained by matching the representation against the given data is derived together
with properties in terms of uniqueness of a solution. In Section 3, we show how to
discretise the obtained system for two-dimensional solution domains. In Section 4, we
give the corresponding details for the discretisation in 3-dimensional domains based on
Weinert’s method [28]. A note is included at the end of Section 4, discussing how to
adjust the approach for various other types of domains such as unbounded as well as
simply connected ones; references are given where further details can be found. In the
final section, Section 5, we give some numerical results for 2- and 3-dimensional solution
domains.

2 A direct integral equation approach with Tikhonov regular-
ization for the Cauchy problem (1.1)—(1.2)

The solution to the Cauchy problem (1.1)—(1.2) is sought in the form of a sum of single-
layer potentials over the two boundary surfaces,

u(@) = [ o). y)dsy) + [ oo,y ds(y), =€ D, (2.)

where ¢, € C(I';) and ¢ € C(I'2) are unknown densities (we enforce to have continuous
densities for simplicity in terms of interpreting the boundary integrals), and

1 1
— In , d=2,
2r |z =yl
O(z,y) = (2.2)
1 1 J—3
47 |z —y|’ 7

is the fundamental solution of the Laplace equation in IR%.



Using the classical jump properties of the single-layer potential and its normal deriva-
tive, the representation (2.1) satisfies (1.1)—(1.2) provided that the two densities form a
solution pair of the following system

[ o2y ds) + [ 6:(0) 0w, y)dsy) = f(@), @ €T

(2.3)

Sonla / e / oa(y ds(y) = g(a), @ €Ts.

For the moment, we take for granted that it exists a unique pair of densities ¢; and ¢9
to this equation. Using these densities, the sought Cauchy data on the interior boundary
I'y can be found from

7) = [ )0,y ds(y) + [ 6:(9)@(w,y) ds(y), @ €Ty,

(2.4)

ZZ(JC) = —*<I51 /¢1 ) + /¢2 S(y), x ely.

Before continuing, we briefly mention that there exists other ways of representing the
solution to the Cauchy problem, which also will render a system of boundary integral
equations to solve for a pair of densities. For example, one can employ Green’s represen-
tation formula for harmonic functions,

o) = [ (10 G~ ) dso) Q). we D,

with ¢ (z) = 8%(z) and ¥»(z) = u(z) for z € T';, and where

Q) = [ (stwoten) - 107572 asto).

1)

Using jump properties of single- and double-layer potentials, we obtain the system

e )= e + | val) 28 ) = Q). wer,

v (y)
- [ B

Clearly, the sought after Cauchy data on I'; is the solution pair (¢5,4). This approach
however suffers from the drawback of generating a system with a hypersingular kernel
and with a complicated right-hand side.

aq)xy oQ

ds(y) = — 8y()’ xely.




In the present work, we therefore only concentrate on the potential approach (2.1).
We shall make use of the following boundary integral operators

(Siipe) ( /,u (x,y)ds(y), z € T (2.5)

and 8@
xy
Dijp) ( /u ds(y), v €T} (2.6)

with 7,7 = 1,2.
We can rewrite the system (2.3) in the following operator form

{ S9101 + S22 = f on Iy,

1 2.7
(21 + Dzz) ¢2 + Da1gp1 = g on I's. (27)

To investigate solutions to (2.7), we use A : L*(T'y) x L?(T'y) — L?(T'y) x L*(T'y), where

y Sa1 1522 08
-\ Dy §[+D22 . (2:8)

The system (2.7) corresponds to the ill-posed Cauchy problem (1.1)—(1.2), and there-
fore it will inherit the ill-posedness. Thus, rather than showing well-posedness it is im-
portant that the operator A is such that Tikhonov regularization can be applied for the
stable solution. Recalling the steps in [6, Theorem 4.1] with a straightforward extension
to the 3-dimensional setting, the following result can be established:

Theorem 2.1 The operator A defined in (2.8) is injective and has a dense range.

We can then write our inverse problem as an operator equation
Ap=F (2.9)

to be solved for ¢ = (¢1, ¢2) given the data F' = (f,g). To restore stability, Tikhonov
regularization shall be employed, that is we solve the regularized system

(A"A+al)p, = A™F, (2.10)

where A* is the adjoint operator to A, and a > 0 is a regularization parameter to be
chosen appropriately.

We note that other spaces can be considered for the operator A in (2.8). The L%-setting
is rather natural from a practical point of view, since data is typically contaminated with
noise destroying any smoothness assumption on the data. Moreover, the element (2.1)
with square integrable densities has traces in H'(I") and L*(T") for the function values and
normal derivative, respectively. It is typically with such data that theoretical properties of
the Cauchy problem has been derived; for example interior regularity and local estimates,

6



see [17, Theorem 3.3.1|. Tt is possible though to instead consider properties of the operator
A having in mind the natural Sobolev trace spaces H'/2(I'y) and H~/2(T'y) for the Cauchy
data. An analysis in this direction for the Helmholtz equation is given in [5] for densities
in H-Y2(T;), j = 1,2. In this case, for noisy data, smoothing is in general required to
have the given data belong to the required spaces.

In the case of noisy data, we solve

(A*A+ ad)¢® = A*F°. (2.11)

Using the properties of the operator A given in Theorem 2.1, it is known, see Theorem [23,
16.13], that one can devise a rule for choosing the regularizing parameter « such that ¢,
tends to the solution of (2.9), when the noise level ¢ tends to zero. Employing the densities
constituting ¢’ in the representation (2.1), we obtain an element v in H'(D). Applying
estimates for the single-layer operator in terms of the densities, see [27, Theorem 7.1],
we conclude that u? tends to u, with u obtained from the densities in (2.9) and the
representation (2.1). This in turn via the trace theorem implies that we also obtain a
sequence on I'y converging with decreasing noise level to the sought after Cauchy data. In
fact, since the difference u — u?, is a harmonic function, local estimates can be applied to
conclude that u — u’ converges in H**1(D'), for ¢ = 1,2..., and D’ a sufficiently smooth

domain with D’ C D.

3 Full discretization of (2.7) for 2-dimensional domains

In the case of a planar solution domain the two boundary parts I'; and ['s are simple
smooth closed curves, which are assumed given by the parametric representation

Ly o= {pi(t) = (za(t), 2ia(t)), t € [0,27]},

where p;: IR — IR? is 27-periodic with |p}(t)| > 0 for all t € [0,27], p; € C?([0,27] x
[0,27]), i = 1,2.

Using these parametric representations in (2.5) and (2.6), we have the parameterised
integral operators

S0 2 ot

and

(z]w QW/?ﬂ z]tT

where (t) := u(p;i(t)) [pi(t)], for t € [0,27] and 4,j = 1,2. Recalling the fundamental
solution of the Laplace equation for planar domains, see (2.2), the kernels can be written

v
|pi(t) — p;(T)I’

and oy = 2i(1) = pi(t) - v(pil?))
B PO .

7

H;(t,7) =1n t # 7 for i = j,

t #7 fori=j.



The diagonal values of the functions K;; when i = j are

pi(t) - v(pi(t))
2|pi(t)[?

Elementary calculations reveal that the function H;; can be decomposed as

1 4 t—
Hy(t,7) = —5 In < T
e

> + Hy(t,7), t#T,

with

ﬁii(t,T) _ ;hl <(4/6) Sin2(<t — T)/2)> : t% -

pi(t) — pi(7)[?
having the diagonal term

Hi(t,t) = ;m (W) .

Using the above parameterisations of the boundary curves together with the derived
expressions for the kernels in (2.3), we have a parameterised system of integral equations

27
1 1 4  Jt—T
27T0/{11112(15,7)1#1&) + [—2111 (e sin?

)+ Ha(t.7) | () f dr = Fpa().
(3.1)
a(t)
2|pa(t)]

to be solved for ©;(t) = ¢;(p;(t))|pi(t)], i = 1,2, with t € [0,27]. Finding these densities,
we can use (2.4) to find the requested Cauchy data on I'y.

As explained at the end of the previous section, Tikhonov regularization is applied
when solving (3.1) and this means that that the analogous transformations for the cor-
responding adjoint operators to (2.5) and (2.6) are needed. Going down that route will
render a method requiring additional computational cost. This can be avoided by the
simplistic but common approach of first discretizing the parameterised integral equations
(3.1) and then apply regularization. Numerically, the obtained results with this latter
approach tend to match the more computationally demanding strategy. It can be made
rigorous by showing an error estimate between the operator A and the discretised one,
and this can be done following ideas for a similar error estimate for the Symm’s integral
equation, see [21, Section 3.4.2]. One can then devise a parameter choice rule for Tikhonov
regularization of the discretised operator based on the fineness of the discretisation and
the error level.

For the discretisation of the involved integrals, we consider two quadrature rules both
constructed via trigonometric interpolation with 2n equidistant nodal points

= g(pa(1)),

;ﬁ 7{}(12(75, 1 (7) + Kt T)¢2(T)}d7 +

tj::%, j=0,....2n—1. (3.2)



The two quadrature rules are

1 27 4 9 t— T B 2n—1
5| [ (e sin ) dr ~ ;go Ri(t) f (1), (3.3)
and
1 27 1 2n—1
%/o frydr o0 2, fl) (3.4)

with explicit expressions for the weight functions given in [22].
Using the Nystrom method with quadratures (3.3) and (3.4) in the integral equations
(3.1), we obtain the following system of linear equations

1 Qn—li 2n—17 1 B 1 o
% Z ijHlQ(ti?tj) + Z %,j [%Hm(tiatj) - §Rj(ti) = fi7
— —
1 2Jn71 ]1 -1 m (3.5)
2,

9%, ¥ 1< t“t a9 ¥, K tzat :7'7
on ]Z% ¢1,J 12(ti, 1) + on jz% Qﬁgd 29 i)+ J;

2[p5(t:)]|
to be solved for ¢, ; = Y1 (t;) and 1)y ; & 15(t;) with the right-hand side f; = f(p2(t;))
and g; = g(p2(t;)), for i = 0,...,2n — 1. Rearranging (3.5), we arrive at the following
system of linear algebraic equations:

Ax = b, (3.6)

where the matrix A € R"** and x = [{;,¢,]" and b = [f,3]". The matrix A will have
a large condition number due to the ill-posedness of the Cauchy problem, and to obtain
a stable smooth solution regularization of this system is necessary.

As explained at the end of the previous section, to solve (3.6) in a stable way, we
employ Tikhonov regularization; the standard version of Tikhonov regularization amounts
to solve the minimization problem

min {|| Ax — b |3+ X || x5} (3.7)

where A € IR is a regularization parameter that has to be appropriately chosen. The
Tikhonov regularized solution x, in (3.7) is equivalently given as the solution to the
regularized normal equations

(A*A + AD)xy = A*b,

where A* is the transpose of the matrix A. Although there are optimal choices for the
regularization parameter (the discrepancy principle), it is often simpler and faster to use
a heuristic choice such as the L-curve rule |13, 14].

Once the discrete (and regularized) densities ¢, and 1), have been constructed, the
corresponding discrete approximations for the Cauchy data on the interior boundary curve
['; are obtained from (2.4) using the quadratures

2n—1

1 1 — 1 _
u(pi(ti)) = Y {[%Hn(tz’»tj) — §Rj(tz') Y1+ H21(ti7tj)¢2,j}

s 2n



and

ou 1 — 1 22! _ _
5(171(%')) ~ —72|p,1(t4)’¢1,i + on Zo {Kll(tz‘ytj)wl,j + Ko (ti, tj)¢2,j}-
i j=

4 Full discretization of (2.7) for 3-dimensional domains

For planar domains certain parameterisations are assumed for the boundary parts. The
analogous basic assumption for 3-dimensional domains is that the closed boundary sur-
faces I'; and I'y can each be smoothly and bijectively mapped onto the unit sphere S2.
This means that there shall exist one-to-one mappings

Q1282—>F1 and QQIS2—>F2

with smoothly varying Jacobians J,, and J,,, respectively.
We can then rewrite the integral equations (2.7) over the unit sphere and obtain

521% + 522% = f on S?,
1 —~ —~ _ ) (4.1)
(21 + D22> Yo + Doy =g on S7,

with the densities ¥y(Z) = ¢¢(qu(Z)), £ = 1,2, to be determined from the data f(Z) =
f(q2(%)), and §(Z) = g(q2(Z)) for Z € S?. The integral operators involved are parameter-
isations of (2.5)—(2.6) over the unit sphere and given by

(850) @) = [ 60)Les(@.7)ds(d), 7€ & (4.2)
S2

and

(Deio) (@) = [ 6(5)Muy(7,5) ds(g), @ € S (4.3)
S2
Recalling the fundamental solution to the Laplace equation in IR?, see (2.2), the kernels

are found to be R R R .
D(qe(2),q5(9))Jg;(U), L # 7,

Lej(Z,9) = { R(Z,7) .y (4.4)
[z -7’ ’
and
oy ) Amle@ @ T ’
ij (ZE, y) - Rﬁ(f, g) /o j (45)
[z -9’ ’
where
R R
R(#.9) = J, @) { T !ngw) — q(7)] o (4.6)
Wi TP

10



and

(q(Z) — qu(9), v(qe()))

s @ —f s 4
B ZRBIN 28 gy @@ - SaEne WD
- 2J2(7) ey
We used that
i-7 1

M@ —a@)  Tn@)

Points on the unit sphere are given using the standard spherical coordinates,
T=p(0,¢) = (sinfcos p,sinfsin p, cos ), with § € [0, 7], ¢ € [0, 27]. (4.8)

The integral operators Sy and Ea, ¢ = 1,2, are both weakly singular. For approxima-
tion and numerical implementation of these, we make the singularities explicit. In fact,
we can make a transformation and move the singularities to appear at the north pole
1= (0,0, 1) of the unit sphere. Define the orthogonal transformations for ¢» € R by

costyy —siny 0 costyy 0 —sing
Dp(¢) = siny cosyp 0 and Dp(y) = 0 1 0
0 0 1 siny 0 cosy

The linear orthogonal transformation
T; = Dr(¢)Dr(0) Dr(—¢) (4.9)

satisfies that 752 = n for every € S*. Moreover, |z — | = [T (i — )| = |7 — 7], and
n="1y ~ N

Using this transformation in the operators Sy and Dy, £ = 1,2, defined in (4.2)—(4.3),
these operators are transformed into

Rg CL’ TA 77)
S ds(n), ze€$?
and
Re(z, "1 L
(Dud) (@ /¢T“ $>;w)®WL zes?
for { =1,2.

The Cauchy data on the interior surface I'; can, using the representation (2.4), be
written over the unit sphere to get

u = 511% + 5121/)2 on §%
1

9 N _
o (—[ + D11> Y1+ D12ty on SQ,
Oov 2

(4.10)

with the operators defined above.
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To discretise (4.1), the following quadrature is used for integrals over the unit sphere
having a continuous integrand

2n/+1n'+1
/S2 f(y)ds(y) ~ Z_: z_: Loty f(Ys ) (4.11)

Here,
Usy =D(0s,0y), with ¢ = p'm/(n' + 1) and 0y = arccos zy, (4.12)

and zy being the zeros of the Legendre polynomials P, ;; and with p as in (4.8) expressing
an element on the unit sphere. For the coefficients,
2(1 — 22)
Qg —
((n" +1) Py (z))?

and
fp =m/(n' +1).

In the case when the integrand has a weak singularity, we use the quadrature rule

f@) 2n'+1n'+1
T ~ S S figbe f(Gey) (4.13)
@l oo

with weights
Es’ =ay Z -Pi(zs’)-
=0

The above quadratures are both obtained from approximating the regular part of the
integrand using spherical harmonics and then performing exact integration. According to
[15, 28], the chosen quadrature rules have super-algebraic convergence order.

The ill-posed system of integral equations (4.1) is then discretized using a projection
Galerkin method. In the previous section, trigonometric polynomials were used. To follow
the similar idea, the analogue is to invoke spherical polynomials. We shall therefore search
for the densities in terms of spherical polynomials of degree n. An orthonormal basis for
the (n + 1)?-dimensional space of such spherical polynomials are given by the spherical
harmonics.

Thus, we write the approximation of the densities as

¢e(f) ~ 7&4(‘%) = Z Z Ibﬁ,myk}?m('f)? for 7 € 827 = 1727 (414)
where ¢£,m are unknown coeflicients. Here, the real-valued spherical harmonics are

ImY,m, 0<m<Ek,
YR :{m kel = (4.15)

B\ ReYigm, —k<m <0,

12



with Vi (0,¢) = P‘ |(cos 0)e™# the classical (complex-valued) spherical harmonic
functions, P the Legendre functions and

i | 26 41 ( — |m])!
m_ (_1 =—k,....k, k=0,1,...
C ( ) $ A (k—l—]m|)" m ) s vy y Ly

Define a discrete inner product on the space of spherical polynomials of degree n by

2n+1n+1

Z Z/%as O(Jsp)w(Ysp)- (4.16)

p=0 s=1

The coefficients a, and p, are generated as in (4.11) but with the integer n’ replaced by
a possibly different integer n. The expression (4.16) is indeed an inner product on the
space of spherical polynomials of degree n and this is due to the fact that (4.11) is exact
for spherical polynomials of degree 2n.

We then employ the inner product (4.16) to the system of integral equations (4.1).
This means first discretising (4.1) by replacing the densities by (4.14) and approximating
the integrals via (4.11) and (4.13), and then employing the discrete inner product to
identify the coefficients needed in (4.14) (multiplying with the basis elements Y,7 ). This
strategy leads to the linear system

- b 2n+1n+1 _

kz Z <¢km k! mm! @ka k;k mm/ ) = z%] 231 upasf(:fsp)}/k’?m(’fsp)

=0m=—k 70 =

S 5 (A VM) = O S BV ) o
om0 ek km ek mm/ kEm“ ek mm’ ) — == Hp@sG\Tsp) L g ;i\ Lsp

/

where k' =0,....,n,m=—k',... k.
To give expressions for the coefficients in this linear system, let

Vi Fap T T30 ) = s Laj (Bsps By ) 9= 1,
B T B R (Bap B YT, G =2

and

’ ~’L AS , n Y, -~ - ’
VVS km(xsp, Uy 7g§pp ) g lio; («T P ys ) km(ys ) ]
p b RQ(xSP7 ysp )}/k m(y ) + Yk m('rsp) j = 2.

Here, the kernels are given by (4.4)-(4.6), Zs, and gy, are points on the unit sphere
generated as in (4.12), and

Asp_

ysp - ngp ys )

with T given by (4.9).
Then the coefficients in (4.17) can be expressed as
. 241 nt12n +1n 41 , .,
~ S & s R
Ak?ﬂ mm’ Z Z Z Z /Lp/ lu/’as‘/:@j,k,m(xsm ys'p'7yspp )Yk;’ m (‘ISP)

p=0 s=1 p’:() s'=1
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and

! !

2n+1n+12n +1n +1

. 17
Aiif mm/ Z Z Z Z ﬁp/ Mpaswg,k,m(xspﬂ ys/p/ ) yipp )YkE’m’ (ZIJSp),

’

p=0 s=1 y—p §'=1

where j =1,2.

Solving the linear system (4.17), we obtain an approximation to the densities in (2.1)
via the expression (4.14). Invoking the obtained approximation of the densities in the
expression (4.10) together with quadrature, the sought values on I'y are found to be

n' 4120 41 }
7=y Z ( JiLy A ( (T 15y, ')Rl(f,Tglz?gp')+@S'ﬂp'%(@s'p')le(fa@S’p')) (4.18)

= p:()

—_

and

aun

n' 4120 41
NP (el ~ 1=
Z Z (b H’p 77Z}1 TA s /)R1<I7T§ lys,p/> +a /Iup wQ(ys/ /)M12($7ys'p/>>_§¢1<$>7

(4.19)
where 7 € S2.

4.1 Note

The above introduced integral equation method for the elliptic Cauchy problem (1.1)—
(1.2) can be applied not only for doubly-connected domains. For example, the suggested
approach was successfully applied in the following cases: a simply connected 2-dimensional
domain bounded by a simple closed curve, allowed to be non-smooth in the sense of having
corners, see [1], to a semi-infinite 3-dimensional domain containing a cavity [10], and to a
toroidal domain [2]| (for such a domain the boundary surface is not simply connected).

In each of these cases, some adjustment is needed for the numerical implementation:
in the case of a non-smooth domain with corner points, we need to take into account the
possible singularities that can be present at the corner points; for a semi-infinite domain
Green’s functions are incorporated to obtain integral equations over the cavity (which
has a bounded boundary surface); for toroidal domains several transformations are used
to take advantage of the symmetry of such a domain to obtain integral equations over a
planar 2-dimensional domain.

The proposed strategy can also be employed for well-posed problems for the Laplace
equation such as mixed ones (which can be viewed as having incomplete Cauchy data).
Having an efficient solver for mixed boundary value problems, it is possible to apply
iterative regularizing methods for the Cauchy problem (1.1)—(1.2), which at each iterative
step solves such mixed problems. For methods in this direction, such as [26], which
falls under the second category of regularizing methods mentioned in the introduction,
and their numerical implementation for elliptic Cauchy problems in 2- and 3-dimensional
regions can be found in for example [4, §|.

Based on the above research and results, we can conclude that our proposed approach
is lightweight (in terms of computations) and flexible for elliptic Cauchy problems with
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boundary parts consisting of parameterised curves and surfaces isomorphic to the unit
circle respectively the unit sphere.

We end this section by stating that the proposed approach can also be used for other
Cauchy problems for elliptic equations or systems occurring in applications such as elas-
ticity, fluid flow and wave propagation, for example, the Helmholtz equation, the Klein-
Gordon equation and stationary Stokes system.

5 Numerical experiments

In this section, we illustrate by numerical examples the robustness of the proposed integral
equation based method for the reconstruction of the harmonic function satisfying the
Cauchy problem (1.1)—(1.2), for both exact and noisy data. In the case of noisy data,
random pointwise errors are added to the function values f on the outer boundary with
the percentage given in terms of the L?-norm.

a) 2-dimensional domain in Ex. 1 b) 3-dimensional domain in Ex. 2

Figure 2: The solution domain used in a) Ex. 1 and b) Ex. 2

Ex. 1. We use synthetic Cauchy data on the outer boundary part I's, constructed as
follows: the Dirichlet boundary value problem for the Laplace equation with boundary
conditions v = f; on I'y and u = f on I'y, for given boundary functions f; and f, is numer-
ically solved by the above boundary integral equation approach. Then, to generate the
required trace of the normal derivative of the solution on I'y, the following representation
is employed

ou 1

)=o)+ | ) 3 ) + / ) G ds). 2 e Ta (51)

We consider the case when the outer boundary curve I's is a circle of radius 3 and the
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interior boundary I'y is given by the parameterisation (see Fig. 2a)
'y = {p1(t) = r(t)(cost,sint), t € [0,27]}

with the radial function

1 10 2 10\ —
r(t) = ((2 cost) + <3 smt) >

To generate the required synthetic Cauchy with the above explained strategy, the
Dirichlet data functions are choosen as fi(x1,72) = 2% on I'; and f(z1,72) = 1 on I'y.
Then (5.1) is used to find the required normal derivative g.

In the Cauchy problem (1.1)—(1.2), it is data on the inner boundary I'; that has to
be reconstructed from data on the outer boundary I's; the sought function value on I'; is
thus the above chosen function f; restricted to I'; and this shall be compared with the
one obtained numerically with the proposed procedure for the Cauchy problem.

The result of the reconstructions of the sought Cauchy data on the interior curve I'y
are given in Fig. 3 and Fig. 4 for exact and 3% noisy data, respectively.

0.1

a) Exact data b) 3% noisy data

Figure 3: Reconstruction (- - -) of the boundary function u(p;(t)) (—) on I'; in Ex. 1

The discretization parameter (3.2) controlling the number of mesh points on each
boundary curve was taken as n = 64. The value of the regularization parameter used, o*,
was chosen by trial and error; we calculated the numerical solutions for @ = 1077 with
p=1,...,15, and use the value giving the most accurate result. Note here that we have
compared o with the corresponding value for the regularization parameter obtained with
the L-curve rule [14] and this value is near to a*. The table 1 contains discrete Lo-errors
for reconstructions of the function and the normal derivative on I'; depend from o*,
and n.

As has been reported in the references mentioned in Section 4.1, one can change the
solution domain and data, and as long as the distance between the boundary curves and
the growth of the data are of the type as in the presented example, results of the similar
kind are obtained. It is important to have Cauchy data on a sufficiently large boundary
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Figure 4: Reconstruction (- - -) of the normal derivative 2%(p;(t)) (—) on I'y in Ex. 1

part, and in general the derivative is reconstructed with less accuracy compared with the
function values, as expected. Moreover, choosing a too fine mesh (a large number n)
the numerical results will deteriorate since the condition number of the involved matrix
of the linear system solved will have a too large condition number then reflecting the
ill-posedness of the Cauchy problem. Thus, if the reader implements the procedure for a
similar example, no surprises is to be expected but results of the same accuracy shall be
obtained.

Ex. 2. We also include an example in a 3-dimensional domain. Let the solution domain
D be the region having the outer boundary surface being the sphere

Iy = {&(0, ») = 1.5(sinf cos ¢, sin O sin p,cosf), 0 < <, 0< ¢ <27}
and the interior boundary surface being given by the parameterisation
Ty ={&(0,0) =7(0,p)(sinf cos p,sinfsin p,cosh), 0 <0 <7, 0< ¢ <2r}

with the radial function given by
1
= \/cos 20 + /2 — sin? 20,
2y/1++/2

see Fig. 2(b). Both these surfaces satisfy, by construction, the assumption of the existence
of a smooth one-to-one map to the unit sphere needed in the proposed method for the
Cauchy problem (1.1)—(1.2).

We choose as the exact solution of the Laplace equation the function

(0, ¢)

Uee (T) = 275 — 225 + 324,

and this then generates the following Cauchy data

Oy
ov

f(x) = Uex(z), €Ty and g(z) = (), = €Ty,
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*

1 n| « €9 q2

0% | 16 | 107 | 0.07032 | 0.39314
32 | 107° | 0.00281 | 0.02223
64 | 10~8 | 0.00003 | 0.00029
128 | 1071 | 6E — 7 | 0.00002

3% | 16 | 1073 | 0.15164 | 0.55168
32 | 1073 | 0.10286 | 0.33754
64 | 107* | 0.07055 | 0.30161
128 | 10~* | 0.04409 | 0.20125

5% | 16 | 1073 | 0.23139 | 0.75139
32| 1073 | 0.18108 | 0.44474
64 | 10~* | 0.13227 | 0.48922
128 | 107 | 0.07758 | 0.34147

Table 1: Errors for Ex.1

We recall that the integer n is the degree of the spherical harmonic polynomials ap-
proximating the densities via (4.14), n’ is the number of points chosen in the quadrature
(cubature) rules (4.11) and (4.13); the numbers n and n’ enter into the approximation
via (4.18) and (4.19). We give results when n = n/. Given an integer n the number of
discretisation points on each surface is (n + 1)2. Further improvements can possibly be
made by other choices of n’.

The result of the reconstructions of the sought Cauchy data on the interior surface I'y
are given in Fig. 5 and Fig. 6 for exact and 3% noisy data, respectively.

1 1 N
? ? 5
0.5 3 f/ 0.5 J "l/
0 \ ’A'"l{/////l 0 3o ’A"'I/./////IL’V
05 4 0.5
-1 1]
6 ) ; 6 ) ;
2 . 2 2
2 0 o 0 © 0 0 0
a) Exact solution on I’ b) Approximation of function values on I';

Figure 5: The exact (a) values u(&; (0, ¢)) and numerical approximation (b) on the bound-
ary surface I'; with 3% noise for Ex. 2

The similar conclusions as in the planar case can be drawn, see further the references
for higher-dimensional domains given at the end of Section 4.1.
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a) The normal derivative on I'y b) Approximation of the normal derivative on I'y

Figure 6: The exact (a) normal derivative %(£,(6,¢)) and numerical approximation (b)
on the boundary surface I'y with 3% noise for Ex. 2
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