A variational radial basis function
approximation for diffusion processes

Michail D. Vrettas, Dan Cornford and Yuan Shen *

Aston University - Neural Computing Research Group
Aston Triangle, Birmingham B4 7ET - United Kingdom

Email : {vrettasm, d.cornford, y.shen2}@aston.ac.uk

Abstract. In this paper we present a radial basis function based exten-
sion to a recently proposed variational algorithm for approximate inference
for diffusion processes. Inference, for state and in particular (hyper-) pa-
rameters, in diffusion processes is a challenging and crucial task. We show
that the new radial basis function approximation based algorithm con-
verges to the original algorithm and has beneficial characteristics when
estimating (hyper-)parameters. We validate our new approach on a non-
linear double well potential dynamical system.

1 Introduction

Inference in diffusion processes is a well studied domain in statistics [5], and
more recently machine learning [6]. In this paper we employ a radial basis
function [3, 7] framework to extend the variational treatment proposed in [6].
The motivation for this work is inference of the state and (hyper-)parameters in
models of real dynamical systems, such as weather prediction models, although
at present the methods can only be applied to relatively low dimensional models,
such as might be found for chemical reactions or simpler biological systems.

The rest of the paper is organised as follows. In Section 2 we put forward
the recently developed variational Gaussian processes based algorithm. Section
3 introduces the new RBF approximation which is tested for its stability and
convergence in Section 4. Conclusions are given in Section 5.

2 Approximate inference in diffusion processes

Diffusion processes are a class of continuous-time stochastic processes, with con-
tinuous sample paths [1]. Since diffusion processes satisfy the Markov property,
their marginals can be written as a product of their transition densities. However
these densities are unknown in most realistic systems making exact inference
challenging. The approximate Bayesian inference framework that we apply is
based on a variational approach [8].

In our work we consider a diffusion process with additive system noise [6],
although re-parametrisation makes it possible to map a class of multiplicative
noise models into this additive class [1]. The time evolution of a diffusion process
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can be described by a stochastic differential equation, henceforth SDE, (to be
interpreted in the Ito sense):

dX; = fo(t,X;)dt + ZY2dW,, (1)

where fg(t,X;) € RP is the non-linear drift function, ¥ = diag{o?,...,0%}
is the diffusion (system noise covariance matrix) and dW, is a D dimensional
Wiener process. This (latent) process is partially observed, at discrete times,
subject to error. Hence, Y, = HX;, + €, , where Y}, € R denotes the k-th
observation, H € R4*P is the linear observation operator and €;, ~ N(0,R) €
R? i.i.d. Gaussian white noise, with covariance matrix R € £9*¢. The Bayesian
posterior measure is given by:
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using Radon-Nikodym notation, where K denotes the number of noisy observa-
tions and Z is the normalising marginal likelihood (i.e. Z = p(Y1.x)).

The key idea is to approximate the true (unknown) posterior process by an-
other one that belongs to a family of tractable Gaussian processes. We minimise
the variational free energy, defined as follows:

Fr(q,0) = — <1n p(Y, X|0. %) E)>
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where p is the true posterior process and ¢ is the approximate Gaussian process
(dropping time indices). Fx(q,0) provides an upper bound to the negative log
marginal likelihood (evidence).

The approximating Gaussian process implies a linear SDE:

dX, = (—AX, + b,)dt + ZV2dW, (4)

where Ay, € RP*P and by € RP define the linear drift in the approximating
process. A; and b;, are time dependent functions that need to be optimised.
The time evolution of this system is given by two ordinary differential equations
for the marginal mean m; and covariance S;, which must be enforced to ensure
consistency in the algorithm. To enforce these constraints, within a predefined
time window [to — t¢], the following Lagrangian is formulated:
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where A; € R and ¥, € RP*P are time dependant Lagrange multipliers, with
W, being symmetric. Given a set of fixed parameters for the system noise 3 and
the drift 8, the minimisation of this quantity (5) and hence of the free energy
(3), will lead to the optimal approximate posterior process. Further details of
this variational algorithm (henceforth VGPA) can be found in [6, 9, 10].



3 Radial basis function approximation

Radial basis function networks are a class of neural networks [2] that were in-
troduced as an alternative to multi-layer perceptrons [3]. In this work we use
RBF's to approximate the time varying variational parameters (A; and b;). The
idea of approximating continuous (or discrete) functions by RBFs is not new [7].
In the original variational framework (VGPA), these functions are discretized
with a small time discretisation step (e.g. dt = 0.01), resulting in set of discrete
time variables that need to be optimised during the process of minimising the
free energy. The size of that set (number of variables) scales proportional with
the length of the time window, the dimensionality of the data and the time dis-
cretisation step. In total we need to infer Nyoy = (D +1) x D x [ty — to| x dt™*
variables, where D is the system dimension, ¢, and t; are the initial and final
times and dt must be small for stability. In this paper we derive expressions and
present the one dimensional case (D = 1).
Replacing the discretisation with RBFs we get the following expressions:

~ M a ~ My,
A= aigi(t), b= bimi(t) (6)
i=1 i=1

where a;,b; € R are the weights, ¢;(t),m;(t) : Rt — R are fixed basis functions
and M4, My € N are the total number of RBFs considered. The number of
basis functions for each term, along with their class, need not to be the same.
However, in the absence of particular knowledge about the functions we suggest

the same number of Gaussian basis functions seems reasonable. Hence we have
My = My and ¢;(t) = m;(t), where:
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where ¢; and A; are the i-th centre and width respectively and ||.|| is the Euclidean
norm. Having precomputed the basis function maps ¢;(t) Vi € {1,2,---,Ma}
and V t € [to — t¢], the optimisation problem reduces to calculating the weights
of the basis functions with M;,; = 2M 4 parameters. Typically we expect that
Mot € Nyot, making the optimisation problem smaller. The derivation of the
equations is beyond the scope of this paper, but in essence the problem still re-
quires us to minimise (5) with the variational parameters being the basis function
weights.

In practice the computation of the free energy (3) is achieved in discrete
time, using precomputed matrices of the basis function maps. To improve sta-
bility and convergence a Gram-Schmidt orthogonalisation is employed. The
gradients of the Lagrangian (5) w.r.t. a and b are used in a scaled conjugate
gradient optimisation algorithm. In practice around 60 iterations are required
for convergence.



4 Numerical experiments

To test the stability and the convergence properties of the new RBF approxi-
mation algorithm, we consider a one dimensional double well system, with drift
function fo(t, X;) = 4X4(0 — X2), 6 > 0, and constant diffusion. This is a
non-linear dynamical system, whose stationary distribution has two stable states
X; = +60. The system is driven by white noise and according to the strength of
the random fluctuation (system noise coefficient 3) occasionally flips from one
stable state to the other (Figure 1(a)).

In the simulations we consider a time window of ten units (to = 0, ty = 10).
The true parameters, that generated the sample path, are 3., = 0.8 and
0t = 1.0. The observation density was fixed to two per time unit (i.e. twenty
observations in total). To provide robust results one hundred different realisa-
tions of the observation noise were used. The basis functions were Gaussian
(7) with centres ¢; chosen equal spaced within the time window and widths \;
sufficiently large to permit overlap of neighbouring basis functions.

In Figure 1(b), we compare the results obtained from the RBF approxima-
tion algorithm, with basis function density M = 40, per time unit, (M,: = 800)
against the true posterior obtained from a Hybrid Monte Carlo (HMC) method.
We note that although the variance of the RBF approximation is slightly under-
estimated, the mean path matches the true HMC results quite well, as was the
case in VGPA. The new RBF approximation algorithm is extremely stable and
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(a) True sample path (b) HMC vs RBF approximation

Fig. 1: (a) Sample path of a double well potential system used in the experiments. In
(b) we compare the approximated marginal mean and variances (of a single realisation)
between the “true” HMC estimates (solid lines) and the RBF variational algorithm
(dashed lines) solutions. The crosses indicate the noisy observations.

converges to the original VGPA, given a sufficient number of basis functions.
Figure 2(a) shows convergence of the free energy of the RBF approximation to
the VGPA results after thirty five basis functions per time unit (My,; = 700) and
this is also apparent in comparing the “correct” KL(p,q) divergence [4], between
the approximations ¢ and the posterior p derived from the HMC, Figure 2(b).
The computational time for the RBF method is similar or slightly higher, how-
ever it is more robust and stable in practice. The VGPA approximation can also
be used to compute marginal likelihood based estimates of (hyper-)parameters
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Fig. 2: (a) Comparison of the free energy, at convergence, between the RBF algorithm
(squares, dashed lines) and the original VGPA (solid line, shaded area). The plot shows
the 25, 50 and 75 percentiles (from 100 realisations) of the free energy as a function of
basis function density. (b) shows a similar plot (for one realisation) for the integral of
the KL(p,q), between the “true” (HMC) and approximate VGPA (dashed line, shaded
area) and RBF (squares, dashed lines) posteriors, over the whole time window [to —¢f].

including the system noise and the drift parameters [9]. In the RBF version this
is also possible and empirical results show that this is faster and more robust
compared to VGPA. As shown in profile marginal likelihood plots in Figures
3(a) and 3(b), even with a relative small basis function density, the ¥ and 6
minima are very close to the ones determined by the VGPA. For the ¥ we need
around thirty basis functions (M = 30), to reach the same minimum, whereas
for the @ parameter the minimum is almost identical using only ten basis func-
tions (M = 10), per time unit. These conclusions are supported by further
experiments on 100 realisations (not shown in the present paper), which show
consistency in the estimates of the maximum marginal likelihood parameters
both in value and variability.
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(a) X profile (b) 6 profile

Fig. 3: (a) Profile marginal likelihood for the system noise coefficient ¥ keeping the
drift parameter 6 fixed to the true one. (b) as (a) but for the drift parameter 6 keeping
3 fixed to its true value. Both simulations run for M = 10, M = 20 and M = 30 and
compared with the profiles from the VGPA on a typical realisation of the observations.



5 Conclusions

We have presented a new variational radial basis function approximation for in-
ference for diffusion processes. Results show that the new algorithm converges
to the original VGPA with a relatively small number of basis functions per time
unit, needing only 40% of the number of parameters required in the VGPA. We
expect that further work on the choice of the basis functions will further reduce
this. Thus far only Gaussian basis functions have been considered, with fixed
centres and widths. A future approach should include different basis functions
that will better capture the roughness of the variational (control) parameters
of the original algorithm, along with an adaptive (re)estimation scheme for the
widths of the basis functions. We go on to show estimation of (hyper-)parameters
within the SDE is remarkably stable to the number of basis functions used in
the RBF. Reducing the number of parameters makes it possible to apply the
RBF approximation to larger time windows, although this is limited by the un-
derlying discrete computational framework. We are investigating the possibility
of computing entirely in continuous time using the basis function expansion.
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