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Abstract

Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro 
hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the 

competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic 

domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the 

deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading 

through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been 

completely elucidated.

Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy 

volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following 
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reascent after 7days at 1525m. UHPLC-MS metabolomics results were correlated to physiological 

and athletic performance parameters.

Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000m, 

and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, 

hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine 

catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism.

Metabolic adaptations were preserved one week after descent, consistently with improved physical 

performances in comparison to the first ascendance, suggesting a mechanism of metabolic 

memory.
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Introduction

Understanding systemic adaptations to hypoxia is a challenging task, one of relevance to a 

broad community of researchers and clinicians involved in cardiovascular research,1 

pulmunology2, transfusion medicine,3 and intesive care medicine4. Of note, unraveling the 

mechanisms of adaptation to hypoxia might influence our understanding of evolutionary 

adaptations as extreme as mammalian hibernation,5 a poorly understood phenomenon that 

holds potential clinical, military or space-travel translational applications6. Other than for 

clinical/research purposes, understanding systemic adaptations to hypoxia might also 

influence the daily lives of millions of healthy people around the world. Approximately 140 

million people live permanently, or travel to high altitudes (>2500 m) in North, Central and 

South America, East Africa, and Asia.7 Many people successfully adjust to the hypoxic 

environment at very high altitudes (~5000 m), where oxygen pressures are about half of 

those registered at sea level.

Despite decades of strides in the field8–14, the current mechanistic understanding of human 

in vivo adaptations to hypoxia is still incomplete. Undoubtedly, red blood cells (RBCs) play 

a clear role in adaptations to hypoxia, in line with their vital role in oxygen transport and 

delivery.8–14 Increases in red cell volume (RCV) and total hemoglobin mass (Hbmass) are 

observed as early as one or two weeks after exposure to high altitude, even though these 

adaptations are eventually lost following descent to low altitude.14,15 Besides, while hypoxia 

can induce systemic increase of erythropoietin (EPO) levels within hours of hypobaric 

hypoxia16, EPO-stimulated production of mature RBCs from the bone marrow can take days 

to occur.17

Cellular adaptations to hypoxia also involve the stabilization of hypoxia-inducible factors 

(HIFs), a family of transcriptional factors18 involved in metabolic regulation, as it is 

increasingly emerging in cancer19 and pulmonary hypertension.20 HIF degradation is 

mediated through HIF hydroxylation by O2-sensing protein hydroxylases (PHDs).19 

Mutations of PHD221 results in decreased degradation of HIF1α, that in turn 
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transcriptionally regulates numerous metabolic enzymes22, thereby contributing to adaptive 

metabolic responses to hypoxia such as increased erythropoiesis21 in patients carrying the 

mutation. At the same time, hypoxia-induced uncoupling of the electron transport chain 

promotes increases in the levels of Krebs cycle intermediates, which in turn promote the 

stabilization of HIF1α through the direct inhibition of PHDs, suggesting a crosstalk between 

metabolic adaptation and gene expression phenotypes under hypoxia.23

Decades of laboratory studies aimed at understanding RBC responses to deoxygenation and 

hypoxia have fostered great advances in structural and functional biochemistry, introducing 

the concept of allosteric modulation24. Over the years, structural and functional evidence has 

been produced about the hypoxia-dependent promotion of hemoglobin oxygen off-loading 

through the stabilization of the deoxygenated tense state (T) by negatively charged high 

phosphate compounds adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (DPG)8. In 

the last twenty years, the model has been expanded as to introduce the concept of the 

“transport metabolon”, which involves band 3. As the most abundant RBC membrane 

protein (1×106 copies/cell), band 3 modulates CO2 gas transport in erythrocytes through the 

so-called “chloride shift” (HCO3
−/Cl− exchange), thereby contributing to pH homeostasis 

and oxygen off-loading by promoting the “Bohr effect”.25 The “transport metabolon” model 

is based on the observation that the N-terminal cytosolic domain of band 3, which contains 

numerous acidic residues, might stabilize deoxyhemoglobin through direct binding.26–29 

However, the N-terminal region of band 3 also serves as a docking site for key glycolytic 

enzymes, including phosphofructokinase (PFK), aldolase (ALDO) and glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). These enzymes are functionally inhibited by binding 

to band 3 at high oxygen saturation, thereby promoting late glycolytic blockade and a shift 

towards the anti-oxidant NADPH-generating pentose phosphate pathway (PPP). 26–29 

Binding of deoxyhemoglobin to band 3 promotes the displacement and activation of late 

glycolytic enzymes, thus favoring glycolysis.26–29 According to this model, 26–29 as much as 

92% of glucose is catabolized through the classic Embden-Meyerhoff glycolytic pathway 

under normoxia, while anoxia triggers consumption of as much as 90% of glucose via the 

PPP. This model has been supported by in vitro evidence30 and in silico prediction based on 

metabolomics data of ex vivo aging RBCs under anaerobic conditions31,32. However, 

evidence of in vivo RBC metabolic adaptations to hypoxia has not been hitherto produced.

Here we hypothesize that exposure to high-altitude hypoxia triggers dramatic metabolic 

modulation of RBCs in humans. These metabolic adaptations might underlie adaptations to 

high altitude hypoxia, a phenomenon that is partially retained upon later re-ascent.33 RBC 

metabolic phenotypes have been here correlated to physiological tests, as to understand 

whether metabolic adaptations might at least partially explain retention of improved 

performances upon adjustment to hypoxia during second ascents.

Methods

The study was performed as part of the AltitudeOmics research program, as previously 

reported15,33–39. Twenty-one healthy volounteers (12 males and nine females, 19–23 years - 

Supplementary Table 1) were enrolled upon written consent, in agreement with the 

Declaration of Helsinki. The study was approved by the Institutional Review Boards of the 
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Universities of Colorado and Oregon and by the Human Research Protection Office of the 

U.S. Department of Defense. Exclusion criteria included: being born at >1500 m; having 

traveled to altitudes >1000 m in the past three months (including air travel); using 

prescription medications; smoking; self or familial history of migraine; known hematologic 

or cardiovascular abnormality; pulmonary function or diffusion capacity for carbon 

monoxide <90% of predicted.

Timeline

Subjects were studied near sea level (SL) (130 m, average PB = 749 mmHg), and over three 

study periods at Mt Chacaltaya, Bolivia (5260 m; average PB = 406 mmHg; fed ad libitum), 

on the first, seventh and sixteenth days at 5260 m (ALT1, ALT7, ALT16; n=20), and again 

upon reascent to 5260 m, after 7 (n = 14) days at low altitude (POST). Subjects breathed 

supplemental oxygen (2 L/min, nasal cannula or mask) during the drive for the first ascent to 

5260 m.

Blood processing and metabolomics extraction

Whole blood was drawn from an antecubital venous catheter and immediately processed to 

sort plasma and cell components at the same time of the day (noon) at SL, and on ALT1, 7, 

16 and POST at high altitude. RBCs were snap frozen in liquid nitrogen and stored at −80°C 

prior to metabolomics analyses. RBCs (100 μl) were extracted in lysis/extraction buffer 

(methanol:acetonitrile:water 5:3:2, −20°C) at 1:9 dilution, as previously reported40. Samples 

were vortexed at 4°C for 30 min and then centrifuged at 10,000g for 15min at 4°C to pellet 

proteins and collect the supernatants for metabolomics analyses.

Metabolomics analysis

RBC extracts (10 μl) were injected into an UHPLC system (Ultimate 3000, Thermo, San 

Jose, CA, USA) and run on a a Kinetex XB-C18 column (150×2.1 mm i.d., 1.7 μm particle 

size – Phenomenex, Torrance, CA, USA), as reported41. MS analyses through a QExactive 

mass spectrometer (Thermo, San Jose, CA, USA) and metabolite identification through 

Maven42 (Princeton, NJ, USA), the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

pathway database, and a library of >800 standard compounds (SIGMA Aldrich, St. Louis, 

MO, USA; MLSMS, IROATech, Bolton, MA, USA) were performed as reported40,41.

Measurements of nitrite, nitrate, S-NO and H2S

Methods for the measurement of nitrate (NO3
−) and nitrite (NO2

−) and H2S were performed 

as extensively reported.43,44

Statistical Analysis

Integrated peak area values were exported into Excel (Microsoft, Redmond, CA, USA) for 

statistical analysis including T-Test and ANOVA (significance threshold for p-values < 0.05; 

false discovery rate cutoffs set to 0.01 for initial screening and 0.05 for time point-specific 

comparisons) and partial least square discriminant analysis (PLS-DA), calculated through 

the macro MultiBase (freely available at www.NumericalDynamics.com). To exclude 

overfitting of PLS-DA elaboration, we repeated the clustering analysis by performing 
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random permutations. Hierarchical clustering analysis (HCA) was performed through the 

software GENE-E (Broad Institute, Cambridge, MA, USA). Pearson’s correlations and XY 

graphs were calculated and plotted through GraphPad Prism 5.0 (GraphPad Software Inc., 

La Jolla, CA, USA). Figure panels were assembled through Photoshop CS5 (Adobe, 

Mountain View, CA, USA).

Results

A total of 229 metabolites were monitored in RBC extracts from 21 subjects enrolled in this 

study at sea leavel, or 1, 7 and 16 days at high altitude, or upon ascending for a second time 

to high altitude after 7 days at low altitude (SL, ALT1, 7 and 16 and POST time points in 

Supplementary Table S1). Relative ion counts (integrated peak areas of extracted ion 

chromatograms for each metabolite) are provided, together with KEGG pathway compound 

IDs, pathway names (color coded, in agreement with the legend at the bottom of the table), 

the experimental mass to charge ratios and retention times, and the polarity in which each 

metabolite has been assayed. Elaboration files for PLS-DA, HCA and ANOVA are included 

in Supplementary Table S1 and S2, and the results of both statistical analyses are plotted in 

Figure 1.A and B, respectively. PLS-DA of RBC metabolic profiles clearly discriminated the 

sample groups across two main principal components (PCs) (Figure 1.A). The top ten 

metabolites (loading variables) contributing to the PLS-DA clustering pattern are highlighted 

in Figure 1.B, and include metabolites involved in energy metabolism (adenosine 

triphosphate – ATP, bisphosphoglcyerate – BPG), glutathione homeostasis (glutathione - 

GSH, cysteine-glycine, gamma-glutamate), and polyamines (spermidine, putrescine). HCA 

highlighted three main trends for metabolite relative abundances during adaptation, 

including (i) metabolites that accumulate during adaptation (blue to red); (ii) metabolites 

that transiently increase (blue-red-blue); and (iii) metabolites that decrease following 

exposure to hypoxia (red to blue - from top to bottom, left to right in Figure 1.B, extended 

version in Supplementary Figure S1).

To ease data interpretation, metabolites showing statistically significant changes (q<0.05 
ANOVA) in at least one time point compared to SL measurements were grouped by pathway 

in Figures 2–5, including (i) glycolysis and pentose phosphate pathway (PPP) (Figure 2); (ii) 

nitrogen metabolism and purine homeostasis (Figure 3); (iii) amino acid metabolism, GSH 

homeostasis and transamination (Figure 4); (iv) sulphur and arginine metabolism (Figure 5).

Glycolysis and Pentose Phosphate Pathway

Glycolytic precursor glucose 6-phosphate accumulated from day 1 to 7, and decreased again 

from day 7 to 16. On the other hand, late glycolytic end products downstream of triose 

phosphates (glyceraldehyde 3-phosphate) accumulated significantly on day 1. Decreases in 

phosphoglycerate and phosphoenolpyruvate and increases in pyruvate and lactate are 

suggestive of rapid fluxing through glycolysis in response to hypoxia (Figure 2). In parallel, 

we observed decreases in the levels of oxidative phase metabolites of the PPP (6-

phosphogluconolactone and 6-phosphogluconate –Figure 1).
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Amino acids, glutathione homeostasis and transamination

Despite depression of PPP (Figure 2), hypoxia promoted GSH accumulation and oxidized 

glutathione (GSSG) depletion, consistent with reduced oxidative stress or increased de novo 
biosynthesis (also supported by the progressive depletion of GSH precursors glutamine/

glutamate and cysteine – Figure 3). Glutamate depletion might be influenced by increased 

transamination of pyruvate (an accumulating byproduct of glycolysis – Figure 2) into 

alanine (Figure 3).

Nitrogen metabolism

Partially functional urea cycle metabolism is present in mitochondria-devoid RBCs,45–47 as 

well as a functional nitric oxide synthase48, that competes with arginase for the substrate L-

arginine to generate nitric oxide (NO) under ischemic/reperfusion conditions in RBCs49. Of 

note, in human lung endothelial cells, arginase is upregulated by hypoxia50. Arginine was 

consumed without accumulation of urea cycle intermediates (citrulline levels oscillated after 

early significant increases at ALT1, while ornithine levels increased significantly only in 

POST samples). At the same time, polyamine accumulation was observed transiently at 

ALT7 (spermidine, spermine). Asymmetric dimethyl-arginine increased after one week and 

sixteen days (Figure 4). Early arginine consumption, polyamine accumulation at 

intermediate time points and urea cycle activation after desecent/renascent were observed 

(Figure 4). Nitrite and nitrate levels increased at ALT1 and ALT16 in comparison to baseline 

sea level (p<0.01 and 0.001, respectively - Figure 4). Higher than baseline nitrite and nitrate 

levels were retained after reascending.

Altered purine homeostasis was also mirrored by the significant accumulation of adenine, 

adenosine, hypoxanthine and nicotinamide proportionally to the duration of exposure to high 

altitude (Figure 4).

Arginine and sulphur metabolism

Arginine consumption could also be tied to the observed increase in creatine metabolism, as 

confirmed by the accumulation of creatine, creatinine and phosphocreatine before descent 

after ALT16 (Figure 5). While arginine catabolism might contribute to nitric oxide (NO) 

homeostasis, additional vasodilation mechanisms can possibly be explained by decreased 

levels of taurine/hypotaurine (Figure 5) together with cysteine consumption (Figure 4) to 

mirror altered function of H2S-generating pathways.51 Direct measurements of hydrogen 

sulfide (H2S) showed significant decreases after exposure to high altitude hypoxia, and H2S 

levels remained significantly lower than baseline values during the second reascent 

(p<0.0001 – Figure 5).

Correlation with physiological parameters

Within the framework of the AltitudeOmics project, physiological, athletic performance and 

reaction time tests were performed at either sea level, 1 and 16 days at high altitude.15,33–39 

Here we correlated raw metabolomics data for each metabolite in each biological replicate at 

SL, ALT1 and 16 to other data available for each subject (Supplementary Table S3). Linear 

correlation values (r) were used to perform HCA (Supplementary Figure S2) with the goal of 

highlighting a core set of metabolites and physiological/athletic parameters that show strong 
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correlations (> |0.6|). The strongest correlations were selected and plotted in Figure 6, and 

highlight a high correlation of metabolite levels to gaseous measurements (PaO2, PaCO2) 

especially for the PPP final product ribose phosphate and sphingosine 1-phosphate.

Metabolite levels were correlated among each other at each time point (including SL, ALT1, 

7 and 16 and POST - Figure 7). As a result, highest significant correlations (p<0.0001, 

~0.7<r<0.99) were observed between several metabolites and, in particular, for trioses 

(glyceraldehyde 3-phosphate, phosphoglycerate), purine metabolites (adenosine, adenosine 

monophosphate – AMP) and metabolites involved in glutathione homeostasis (5-oxoproline, 

glutamate – Figure 7).

We thus calculated the sum of the absolute values of linear correlations for all metabolites 

and physiological values (Figure 7). This elaboration has been thought to suggest whether a 

set of metabolites with the highest total correlative values with other metabolites and 

physiological parameters might be regarded as key players in RBC metabolic adaptations to 

high altitude hypoxia. Results further indicated a preminent role for glyceraldehyde 3-

phosphate, ribose phosphate and adenosine (Figure 7).

Discussion

The present study is part of the AltitudeOmics research program, a project that was designed 

to gain insights into adaptation to hypoxia and the retention of adaptation after return to low 

altitude through the study of physiological and metabolomics responses. This project 

involved twenty-one lowland volunteers in the field who were taken rapidly to 5260 m, 

where they acclimatized for 16 days. They then descended to 1525 m for 7 days, after which 

they returned quickly to 5260 m and were retested for physiological, behavioral, and 

physical parameters, as previously published.15,33–39 In parallel to these tests, RBC samples 

were collected at sea level (baseline), after 1, 7 and 16 days at high altitude, and following 

reascent after 7 days living at 1525m.

In the present study, we seek to investigate whether RBCs, key players in oxygen transport/

delivery and a sink for the plasma metabolome, are metabolically influenced by exposure to 

high altitude hypoxia. This hypothesis was formulated in the light of in vitro evidence 

showing the presence of an oxygen-dependent metabolic modulation in RBCs. 26–30 Such 

adaptive mechanism results in the accumulation of NADPH for anti-oxidant purposes 

through the PPP under high oxygenation, since late glycolytic enzymes are sequestered 

(inhibitory binding) at the level of the cytosolic domain of band 3 and metabolic fluxes 

through the Embden-Meyerhof pathway are depressed. On the other hand, under low 

oxygenation, deoxyhemoglobin binding to the N-terminal cytosolic domain of band 3 

displaces bound/inhibited glycolytic enzymes, thus promoting glycolysis and DPG 

generation, which in turn stabilizes the T state of hemoglobin. Ongoing glycolysis also 

promotes intracellular acidification. Increased proton availability thus favors the protonation 

of distal histidine and other key residues under deoxygenation,52 resulting in oxygen off-

loading, a phenomenon referred to as the “Bohr effect”. While these metabolic adaptations 

have been consolidated through laboratory studies over the years, in vivo metabolomics 

evidence has not been generated yet, especially on a rare sample set such as lowlanders 
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exposed to high altitude hypoxia. Mass spectrometry-based metabolomics is a useful tool to 

provide a broad overview of RBC metabolism under extreme conditions or various 

pathophysiological states, such as hereditary spherocytosis53 or sickle cell anemia45, in vitro 
aging of stored packed RBCs54–56 for transfusion purposes, and metabolic responses of 

RBCs to in vitro hypoxia31,32.

Here we confirmed for the first time that exposure to hypoxia results in an immediate 

enhancement of glycolysis and shut down of PPP in vivo in humans (a few hours after 

exposure on day 1), as evidenced by the significant and progressive accumulation of key 

triose phosphates and late glycolytic byproducts. However, while hypoxia is supposed to 

limit the antioxidant potential of RBCs in vitro30 and promote oxidative/reductive oxidative 

and nitrosative stress at high altitude,57 here we show that RBC metabolic adaptations to 

hypoxia in vivo result in higher levels of GSH and decreased GSSG. This finding is either 

suggestive of decreased oxidative stress or increased de novo biosynthesis of GSH, an ATP-

dependent phenomenon58 that could be favored by transient increases of ATP levels during 

early responses observed on day 1 to 7, consistent with recent observations on anaerobically 

stored erythrocyte concentrates for transfusion purposes.59 This adaptation is notably lost at 

the POST time point, which showed a decrease in GSH levels and an increase in GSSG 

levels mirroring increased oxidative stress associated with transient re-exposure to 

normoxia.

Higher availability of ATP also resulted in the accumulation of AMP and adenosine, which 

in the light of the progressive accumulation of the non-oxidative phase PPP product ribose 

phosphate, is suggestive of ongoing phosphoribolysis. This effect is relevant in that 

circulating purines are known to stimulate coronary vasodilation60 in a nitric oxide-

independent fashion,61 through targeting of specific receptors such as adenosine A(2B).62,63 

Together with the accumulation of hypoxanthine, an adenine deamination byproduct that 

does not contribute to adenosine-induced coronary vasodilation64, these results are 

consistent with recent observations suggesting a mechanistic role for the purinergic system 

in driving RBC metabolic adaptations to hypoxia.63 Moreover, RBC xanthine 

oxidoreductase has been implicated in the erythrocytic activation of nitrite homeostasis65. 

Though follow-up targeted studies are mandatory to elucidate the regulatory mechanisms 

triggered by purine metabolites during adaptation to hypoxia, this hypothesis is further 

supported by correlative analyses showing a strong metabolic linkage between purine 

metabolites and triose phosphates generated by late glycolysis. In this view, it should be 

further noted that other purine analogues such as caffeine, a xanthine alkaloid, have been 

questioned to either have a beneficial or deleterious effect on adaptative responses (e.g. 

vasodilation).66

Nitric oxide-generating pathways (arginine catabolism and citrulline accumulation) were 

apparently upregulated upon early exposure to hypoxia, but were down-regulated after 7 

days at high altitude, consistent with the hereby observed increase in asymmetric dimethyl-

arginine, a nitric oxide synthase inhibitor.67 Of note, significant nitrite and nitrate increase 

were observed after 1 and 16 days at high altitude, and were preserved at the time of 

reascending one week after returning to 1525 m. Inorganic anions nitrate and nitrite were 

previously thought to be inert end products of endogenous nitric oxide (NO) metabolism.68 
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However, NO3
− and NO2

− can be recycled in vivo to form NO, a phenomenon mediated by 

xanthine oxidorectuase, ascorbate, polyphenols, myoglobins and protons or, in RBCs, by 

deoxyhemoglobin68. NO generation through reduction of nitrite by RBCs and 

deoxyhemoglobin promotes hypoxic vasodilation, inhibition of platelet reactivity through 

the activation of cGMP signaling.69–73,74 Our observations are thus consistent with the 

hypothesis that these anions might represent an important alternative source of NO to the 

classical L-arginine-NO-synthase pathway, in particular in hypoxic states.68

Arginine consumption could be also interpreted in the light of increases in creatine 

anabolism, especially after 7 and 16 days at high altitude. These results might indirectly 

mirror analogies between RBC metabolic adaptations to hypoxia and the role of the creatine 

pool and the quick availability of phosphocreatine in particular as a fast-mobilizing energy 

source for anaerobic activity in the muscle. In support of this finding, creatine 

supplementation has beneficial neuroprotective effects against transient cerebral hypoxia-

ischemia in rats.75 These results are consistent with improved athletic performances of the 

AltitudeOmics subjects following 16 days at high altitude,33 even though it will be important 

to evaluate metabolic adaptations to high altitude hypoxia in relation to this pathway within 

the context of muscle metabolism.

Consumption of thiol/sulphur containing compounds cysteine, taurine and hypotaurine are 

here suggestive of alterations of sulphur metabolism during adaptation to hypoxia. In the 

absence of flux analyses, decreased levels of these compounds as seen here might either 

indicate increased consumption or decreased biosynthesis. An inhibitory effect of hydrogen 

sulfide (H2S) on hypoxia-inducible factor 1 (HIF1) in response to hypoxia has been 

previously reported.76 H2S is a RBC catabolic byproduct of sulphur-containing metabolites 

and a vasorelaxing molecule modulating vascular blood flow and pressure.51 Consistently, 

exposure to high altitude resulted in immediate decreases in H2S, an adaptation that was 

preserved after one week at 1525m.

Correlative analyses indicated a linkage between triose phosphates, pentose phosphate, 

sphingosine signaling and adaptive responses to hypoxia affecting physical performances, 

including gas transport (e.g. PaO2, PaCO2). Even though correlation does not imply 

causation, it is worthwhile to stress how metabolic reprogramming correlates with oxygen 

and CO2 homeostasis, two key variables mediating acclimatization to high altitude hypoxia. 

However, direct correlations with physical performance parameters >|0.5| were not observed. 

Of note, sphingosine kinase is a target of HIF signaling and participates in angiogenesis 

signaling to improve responses to hypoxia77,78. Overall, correlative results are indicative of 

“metabolic linkages” between pathways, such as glycolysis and salvage reactions. The 

current analysis also expands upon current knowledge of RBC metabolism, and the 

intertwinement of specific metabolic pathway adaptations within hours of exposure to 

hypoxia in vivo. Of note, these results inform about the preservation (“metabolic memory”) 

of such adaptations after one week from descent to lower altitudes, when other physiologic 

adaptations (higher hematocrit and hemoglobin levels12) are no longer retained, despite the 

persistence of measurable advantages in physical activity performances.33. In this view it is 

worth noting that also not all metabolic adaptations are retained after a second reascent, such 

as for example those related to the total levels of reduced glutathione, polyamines, creatine 
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and carnitine metabolism. This is relevant in that it suggests that some of these metabolic 

adaptations observed during prolonged exposure to high altitude hypoxia may be a 

secondary effect of the main adaptations (e.g. glycolysis/PPP ratios, purine metabolism, 

nitrogen and hydrogen sulphide metabolism) that are actually needed to drive improved 

oxygen delivery and physical performances. Alternatively, some of these adapations may be 

necessary to compensate up/down-regulation of other pathways immediately after exposure 

to hypoxia(e.g. carnitine and creatine metabolism in energy/nitrogen metabolism), a 

mechanism that becomes unnecessary after acclimatization is established. Alternatively, this 

observation may rather indicate that prolonged and continuous stimuli are necessary to retain 

changes in those pathways that are restored to pre-ascent level upon transient descent to 

lower altitudes.

Conclusion

Here we applied metabolomics technologies to investigate the metabolic adaptation of 

human RBCs to high altitude hypoxia. The results impact the understanding of RBC 

responses to hypoxia in vivo, a basic biological question that expands beyond the scope of 

altitude research and into the fields of cardiovascular,1 polmunology2, trauma/hemorrhagic 

shock-induced hypoxemia4, and transfusion medicine3. We provide for the first time 

supportive evidence of RBC metabolic adaptations (bottom right panel - Figure 7) that ensue 

within hours from exposure to high altitude hypoxia.

Increases in glycolysis and deregulation of PPP was observed in RBCs from human 

volunteers ascending to 5260m, consistent with well-established in vitro models of oxygen-

dependent metabolic modulation in human RBCs26–29. However, antioxidant potential in 

human RBCs was not limited by tuning down of PPP. Indeed, increased levels of the 

glutathione pool and decreased levels of precursor amino acids are suggestive of increased 

de novo synthesis of reducing equivalents. Arginine metabolism fueled the early 

accumulation of nitrite and nitrate (oxidation products of NO and a sink for NO generation 

under hypoxia). Arginine catabolism also corresponded to increases in the creatine pool, 

mirroring potential metabolic adaptations in muscles where increases in the creatine pool 

provide fast mobilizable energy sources to fuel physical activity under hypoxic conditions. 

Alterations to sulphur metabolism, as mirrored by altered levels of taurine, hypotaurine, 

cysteine and methionine, paralleled the observed adaptive deregulation of H2S in response to 

hypoxia. Finally, we provide the first in vivo evidence of the metabolic centrality of purines, 

triose and pentose phosphates, and sphingosine 1-phosphate in RBCs from volunteers 

exposed to high altitude hypoxia. We present correlative evidence between the levels of 

these metabolites and improved physiological parameters upon adaptation to hypoxia, such 

as gas transport, substantiating a role for metabolic modulation as an avenue to improve 

adaptive responses to hypobaric hypoxia.

Finally, we show that, contrary to other transient physiological adaptations (hematocrit and 

hemoglobin levels33), metabolic adaptations are retained after descending to lower altitude 

for one week, consistent with improved physical performance.
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Figure 1. Partial least-square discriminant analysis (PLS-DA) and hierarchical clustering 
analysis (HCA) of metabolomics data from AltitudeOmics red blood cells
In A, PLS-DA of red blood cells metabolomics data from the volunteers involved in the 

AltitudeOmics study, either collected at sea level, after one, seven or sixteen days at high 

altitude (ALT1, 7 and 16, respectively), or following volunteer reascending to the mountain 

7 days after descending to 1525m. In the top panel each node represents a different sample. 

In the bottom panel, each node represents a metabolite (variable) in the loading plot. Top ten 

metabolites with the highest loadings along principal components 1 and 2 (PC1 and PC2) 

are shown. Percentages of variances are provided for each component.

In B, HCA (1-Pearson’s correlation) of metabolites in each sample across each time point 

are plotted as heat maps. Z-score normalizations have bene performed intra-row and values 

are color coded from blue to red (low to high). Pathways are color coded in the right hand 

legend. An extended version of this panel, also including metabolite and sample names is 

provided in Supplementary Figure 1.
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Figure 2. Glycolysis and pentose phosphate pathway in RBC AltitudeOmics samples
Glycolytic and Pentose Phosphate Pathway metabolites from RBC AltitudeOmics samples 

are graphed as interpolation curves (solid red line) ± standard deviations (gaped red lines) 

across each time point, color coded as indicated in the left hand legend. In the center, the 

figure schematizes the expected effect of oxygen-dependent metabolic modulation through 

competitive inhibitory binding of glycolytic enzyme and deoxyhemoglobin to the N-terminal 

cytosolic domain of band 3. In each graph, the y axis indicates integrated peak areas 

normalized against the highest reading at any time point.
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Figure 3. Glutathione homeostasis and transamination pathways in RBC AltitudeOmics samples
Glutathione homeostasis and transamination pathways (pathway schematized in the center) 

metabolites from RBC AltitudeOmics samples are graphed as interpolation curves (solid red 

line) ± standard deviations (gaped red lines) across each time point, color coded as indicated 

in the right hand legend. In each graph, the y axis indicates integrated peak areas normalized 

against the highest reading at any time point.
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Figure 4. Nitric oxide and purine homeostasis pathways in RBC AltitudeOmics samples
Nitric oxide, urea cycle and purine homeostasis (pathway schematized in the center) 

metabolites from RBC AltitudeOmics samples are graphed as interpolation curves (solid red 

line) ± standard deviations (gaped red lines) across each time point, color coded as indicated 

in the right hand legend. In each graph, the y axis indicates integrated peak areas normalized 

against the highest reading at any time point.
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Figure 5. Sulphur and arginine metabolic pathways in RBC AltitudeOmics samples
Sulphur and arginine pathways (pathway schematized in the center) metabolites from RBC 

AltitudeOmics samples are graphed as interpolation curves (solid red line) ± standard 

deviations (gaped red lines) across each time point, color coded as indicated in the right 

hand legend. In each graph, the y axis indicates integrated peak areas normalized against the 

highest reading at any time point.
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Figure 6. Linear correlations of metabolite levels and physiological parameters
Physiological parameters assayed in AltitudeOmics volounteers were correlated to 

metabolite levels at matched time points (sea level – SL, altitude 1 and 16 – ALT1 and 

ALT16), color-coded as per the right hand legend. Linear correlations and statistical 

significance are shown for each panel.
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Figure 7. Linear correlation of metabolite levels in AltitudeOmics RBCs and the concept of 
metabolic linkage
Metabolite levels at each time point (sea level – SL, altitude 1, 7, 16 – ALT1, 7, 16, or 

following reascending 7 days after descending to 1525m – POST; color coded as detailed in 

the right hand panels) were correlated (Pearson linear correlation). Linear correlations (r) 

and statistical significance are provided for each panel. Metabolites showing linear 

correlations as high as ~0.9 are suggestive of the existence of a “metabolic linkage” between 

those metabolites, i.e. the relative levels of these metabolites are significantly dependent 

among each other. Sums were calculated by adding absolute values for linear correlations for 
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each metabolite against other metabolites and physiological parameters. Results were thus 

sorted to obtain a rank of metabolites with the highest total correlations with other 

metabolites and physiological parameters, indicating their centrality in metabolic 

adaptations to hypoxia.

The bottom right panel summarizes the main metabolic adaptations observed in RBCs after 

acute and chronic exposure to high altitude hypoxia. Pathways are color-coded and arrow 

widths indicate relative fluxes through the pathway.
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