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Abstract 
We studied the rules by which visual responses to luminous targets are combined across the two 
eyes.  Previous work has found very different forms of binocular combination for targets defined 
by increments and by decrements of luminance, with decrement data implying a severe 
nonlinearity before binocular combination. We ask whether this difference is due to the luminance 
of the target, the luminance of the background, or the sign of the luminance excursion. We 
estimated the pre-binocular nonlinearity (power exponent) by fitting a computational model to 
ocular equibrightness matches. The severity of the nonlinearity had a monotonic dependence on 
the signed difference between target and background luminance. For dual targets, in which there 
was both a luminance increment and a luminance decrement (e.g. contrast), perception was 
governed largely by the decrement. The asymmetry in the nonlinearities derived from the 
subjective matching data made a clear prediction for visual performance: there should be more 
binocular summation for detecting luminance increments than for detecting luminance decrements. 
This prediction was confirmed by the results of a subsequent experiment. We discuss the relation 
between these results and luminance nonlinearities such as a logarithmic transform, as well as the 
involvement of contemporary model architectures of binocular vision. 
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1  Introduction 
 
Binocular combination of luminance has been 
studied for over 150 years (e.g. Fechner, 1860). 
A typical experimental paradigm involves 
matching the brightness (i.e. the perceptual 
experience of luminance) of a standard binocular 
stimulus—with the same luminance in each 
eye—to a matching stimulus with different 
luminances in each eye. By varying the 
interocular ratio of luminances in the matching 
stimulus, an equibrightness contour can be 
constructed, on which each point represents a 
stimulus combination (L, R) with equivalent 
brightness to the standard (B) (see Levelt, 1965; 
Engel, 1970; Anstis & Ho, 1998). 
 

An example of such a contour is shown in Figure 
1a, normalized and replotted from Engel (1970). 
Also shown are three canonical curves 
representing linear summation of left and right 
luminance excursions (B = L + R), quadratic 
summation (B2 = L2 + R2) and a winner-take-all 
operation (B = MAX[L R]). The data fall close to 
the linear contour over most of the range, but 
fold back to lower luminance excursions close to 
each axis. The fold back is related to Fechner’s 
paradox—the observation that the appearance of 
unequal luminances in the two eyes can seem 
dimmer than the brighter luminance viewed 
monocularly (Fechner, 1860, Curtis & Rule, 
1980). 
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Figure 1: Equibrightness contours for stimuli with various luminance levels in each eye. (a) Data are replotted from 
Engel (1970; Figure 5a) for luminance increments against a dark background, normalized to the standard 
luminance. Results are averaged over six target sizes and two observers. (b) Data are replotted from Anstis & Ho 
(1998; Figure 9c). The conditions are similar to those in (a) except they are for luminance decrements against a 
light background (0.7° disc, decrement of 70% of background luminance, data for one observer).  In both panels, 
the thin lines/curves show predictions for linear, quadratic and winner-take-all combination rules, as described in 
the text. We use the term ‘excursion’ to mean ‘difference from background’, which can apply to increments or 
decrements of luminance, or contrast. 
 
This finding is typical when the target region 
involves luminance increments against a dark 
background (Levelt, 1965; Engel, 1970; Anstis & 
Ho, 1998). However, very different results have 
been reported when the target luminances are 
lower than their background (Anstis & Ho, 1998). 
For this arrangement, the results are much closer 
to the winner-take-all prediction, implying that 
the eye viewing the darker target (i.e. the greater 
luminance excursion relative to the background) 
determines perceived brightness (see Figure 1b).  
 
What is the critical factor for obtaining these 
different types of results (Fig. 1)? There are three 
possibilities: the absolute luminance of the target, 
the absolute luminance of the background, and the 
polarity (increment or decrement) of the target 
relative to the background. To answer this 
question and to better understand the rules of 
binocular combination, we performed a series of 
binocular luminance matching experiments for a 
stimulus set that included both increments and 
decrements in luminance and combinations of the 
two (i.e. changes in contrast). Our results are 
described by a simple equation and discussed in 
relation to other results in the literature, similarly 
(re-)analysed. We also discuss more elaborate 
models, such as a contemporary binocular gain 
control model, and consider contrast metrics that 
might be applied to increment and decrement 
stimuli. 
 
 
 

2 Methods 
 
2.1 Apparatus & Stimuli 
 
All stimuli were presented on a Clinton Monoray 
monitor using a ViSaGe stimulus generator 
(Cambridge Research Systems, Kent, UK) 
controlled by a PC. Ferro-electric shutter goggles 
(CRS, FE-1) allowed presentation of different 
stimuli to the left and right eyes with negligible 
crosstalk. The monitor was gamma corrected 
using a four-parameter function that accounted for 
the true luminance output at an input level of 0 
(i.e. the ‘black level’). This ensured that a dark 
background was as close to 0 luminance as 
possible. We measured the luminance range using 
a photometer (Minolta LS-110) as having a 
minimum of <0.01cd/m2 and a maximum of 
160cd/m2.  All luminances were subject to a 
further eightfold attenuation (0.9 log units) by the 
frame-interleaving shutter goggles, which are 
equivalent to a neutral density filter. All 
luminances reported below are those at the eye, 
following this attenuation. 
 
The main stimulus was a disc 1° in diameter, 
displayed in the centre of a square background 
region 18.5° wide. The luminance of the disc and 
that of the background were manipulated in the 
experiments (with 14-bit resolution). We also ran 
a condition in which the target was a bipartite 
field, the upper half of which was an increment 
relative to the background and the lower half a 
decrement of equal magnitude. Examples of all 
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stimuli are shown in Figure 2. The luminances of 
the standard were 1, 2, 4 and 8 cd/m2 for the 
increment on a dark background. For the mid-grey 
background, standard luminance excursions for 
increments and decrements were ±0.5, 1, 2 and 4 
cd/m2. For the bipartite field, the standard 
contrasts were 5, 10, 20 and 40%, where contrast 
is percent Michelson contrast (=100*(Lmax-
Lmin)/(Lmax+Lmin), where L is luminance).  

 
(b)

(c) (d)

(a)

 
Figure 2: Example stimuli and details of experimental 
conditions. (a) Luminance increment on a dark 
background (<0.01cd/m2). (b) Luminance increment on 
a mid-grey background (10cd/m2). (c) Luminance 
decrement on a mid-grey background. (d) Bipartite 
stimulus used in the contrast conditions. In the 
experiments, the square background had a width of 
18.5°. 

 
2.2 Procedure 
 
Experiments were conducted in a windowless 
room, in which the only light source was the 
monitor. Observers viewed the display from a 
distance of 57cm, with their head in a support on 
which the goggles were mounted. The 
experiments were carried out in separate sessions 
for each target and background type. Within each 
session, blocks of trials were run with trials 
interleaved to measure the point of subjective 
equality for an individual ratio of left:right and 
right:left eye intensities.  
 
A two-interval matching procedure was used to 
estimate the point of subjective equality at which 
the standard and matching stimuli appeared equal 
in luminance or contrast. The standard always had 
the same luminance or contrast in each eye, the 
magnitude of which was varied experimentally.  
The matching stimulus had a fixed ratio of 
luminance (or contrast) across the eyes, the 
absolute magnitude of which was controlled by a 
pair of 1-up, 1-down staircases (Meese, 1995) 
moving in logarithmic steps of luminance (or 

contrast). The ratios of left:right eye magnitude 
were 0, 0.16, 0.32, 0.51, 0.73 and 1, with 
equivalent values for the right:left eye ratios. 
Stimuli were presented for 200ms, with an 
interstimulus interval of 400ms. The staircase data 
were fit with a cumulative log-normal function 
using Probit analysis (Finney, 1971) to estimate 
the point of subjective equality, which was plotted 
as a function of left- and right-eye intensity (see 
Figures 3-6). Note that for data gathered this way, 
the error bars lie on radial lines that converge at 
the origin1. 
 
2.3 Observers 
 
Two of the authors served as observers (DHB & 
SAW). Both were psychophysically experienced 
and had normal stereopsis, no abnormalities of 
binocular vision and no need for optical 
correction. 
 
3 Results 
 
Results for luminance increments on a dark 
background are shown in Figure 3. These are 
consistent with typical findings in the literature 
(Levelt, 1965; Engel, 1970; Anstis & Ho, 1998), 
showing near-linear behaviour for much of the 
function but folding back near to each axis. The 
linear portion of the functions extend over a 
greater range at higher standard luminances 
(stated in each panel), particularly for DHB. 
 
For increments on a lighter (mid-grey) 
background, the results were markedly different 
(Figure 4), with fewer points falling near the 
linear predictions shown by the oblique dotted 
lines.  These results imply a stronger nonlinearity 
underlying binocular combination on a light 
background than on a dark background, although 
the nonlinearity is not as severe as winner-take-all 
behaviour (dashed lines).  
 
This change in character could be caused by either 
the higher background luminance or the smaller 
difference between background and target 
luminances in this condition. Legge & Rubin 
(1981) reported similar functions for full-field 
luminance increments on a background (pedestal) 
luminance of 10cd/m2. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	   A	   data	   point	   lying	   on	   an	   axis	   had	   a	   left:right	   eye	  
luminance	   excursion	   ratio	   of	   1:0	   (i.e.	   it	   was	  
monocular),	   so	   the	   error	   bar	   is	   constrained	   to	   lie	  
only	   along	   the	   axis.	   For	   a	   ratio	   of	   1:1,	   the	  
luminances,	  and	  hence	  the	  errors,	  are	  equal	  in	  both	  
x	   and	   y	   directions,	   so	   the	   error	   bar	   is	   at	   45°.	  
Intermediate	   ratios	   produce	   error	   bars	   at	   angles	  
between	  these	  extremes.	  
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8cd/m24cd/m2

1cd/m2 2cd/m2

8cd/m24cd/m2

 
Figure 3: Results for luminance increments against a dark background. Data are normalized to the appropriate 
standard luminance and shown for two observers in different panels. The standard luminance is given in the upper 
right corner of each plot and the background luminance was always <0.01cd/m2. The error bars (showing ±1SE) 
are radial because the matching luminances for the left and right eyes were constrained to be a fixed ratio for each 
point (see the Procedure section). In most cases these are smaller than the symbols. The dotted and dashed lines 
show predictions of linear and winner-take-all combination rules respectively (see Figure 1). Curves are the best 
fit of an equation described in the text, which had one free parameter. 
 
 
 

0.5cd/m2 1cd/m2

4cd/m22cd/m2

0.5cd/m2 1cd/m2

4cd/m22cd/m2

 
Figure 4: Results for luminance increments on a mid-grey background (10cd/m2), plotted in the same format as 
Figure 3. 
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Figure 5 shows results for a condition in which 
the background luminance (10 cd/m2) was the 
same as in the previous experiment but the 
central target  luminance was lower than this 
(i.e. it was a luminance decrement).  The red 
curves fall increasingly close to the winner-take-
all predictions as the standard decrement 
becomes larger. This result is consistent with the 
findings of Anstis & Ho (1998) and is most 
profound for the greatest decrements, as we 

demonstrate and discuss in the modeling section 
below.  
 
In a fourth condition, we manipulated target 
contrast using a bipartite field as the stimulus.  
The curves measured in this condition (Figure 6) 
resemble those for decrements on a mid-grey 
background (Figure 5). We also found similar 
results for one observer (DHB) using a 1c/deg 
Gabor patch as a target (not shown). 

 
 

0.5cd/m2 1cd/m2

4cd/m22cd/m2

0.5cd/m2 1cd/m2

4cd/m22cd/m2

 
Figure 5: Results for luminance decrements on a mid-grey background (10cd/m2), plotted in the same format as 
Figure 3. Note that here the luminance excursion was a reduction in luminance relative to the background. 

 
 
4 Computational modeling 
 
4.1 A descriptive model 
 
Several computational models have been proposed 
to describe binocular luminance and contrast 
matching results (see Grossberg & Kelly, 1999 for 
a review). One of the earliest and most general is 
the equation proposed by the physicist Erwin 
Schrödinger (1926; see MacLeod (1972) for 
details). This is defined as, 
 

  

! 

B =
L2" + R2"

L" + R"
,  (1) 

 

 
where L and R are the left and right eye absolute 
luminance deviations (e.g. L = abs(Lcentre-Lsurround)) 
or, for the bipartite fields, target contrasts, and γ is 
the only free parameter. Varying γ produces a 
family of equibrightness contours of differing 
curvature, as shown in Figure 7a. Note that the 
denominator term influences the overall 
nonlinearity, so that even when 2γ=1, the model is 
not equivalent to the simple linear model discussed 
in the Introduction. The other effect of the 
denominator is to produce the fold back close to 
the axes, often observed empirically but not a 
property of the more simplistic binocular 
combination schemes described above. 

 
 



Baker,	  Wallis,	  Georgeson	  &	  Meese	  (2012)	  Vision	  Research,	  56:	  1-‐9	  
doi:10.1016/j.visres.2012.01.008	  

This	  post-‐print	  version	  was	  created	  for	  open	  access	  dissemination	  through	  institutional	  repositories.	  

5% 10%

40%20%

5% 10%

40%20%

 
Figure 6: Results for the bipartite stimulus for which contrast matching was performed against a mid-grey 
background (10cd/m2). Data are plotted in the same format as Figure 3, except that here the excursions refer to 
Michelson contrast. 
 

 
Figure 7: Example luminance- or contrast-matching predictions for equation 1. (a) Equibrightness curves 
produced by  equation 1 for different values of γ. The dotted and dashed lines indicate linear and MAX operations 
for comparison. (b) Example fit of equation 1 to data for DHB for a standard luminance increment of 4cd/m2 on a 
dark background. Data are normalized to the standard luminance and the error of the fit was calculated in the 
radial direction. 
 
Equation 1 provides a good description of the 
family of curves obtained in binocular 
luminance and contrast matching experiments. 
The value of the single parameter (γ) provides a 
quantitative index of the nonlinearity implied by 
an equibrightness contour. We exploit this 
property in order to simplify the presentation of 
our results and to address the relationship 
between the effects of target and background 
luminance in binocular combination. 
 
Each set of equibrightness data was normalized 
by expressing it as a percentage of the 

luminance (or contrast) of the appropriate 
standard. We then used a simplex algorithm (in 
Matlab) to find the value of γ that minimised the 
root mean square (RMS) error between model 
and data in logarithmic (dB) units and in the 
radial direction. An example fit is shown in 
Figure 7b and model curves for each condition 
are plotted in Figures 3-6. Fits produced a mean 
RMS error across the data set of 0.83dB (N=32 
equibrightness contours) with the poorest fit in 
the set having an RMS error of 1.32dB (lower 
right panel of Figure 3a). 
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Figure 8: Fitted exponents as a function of luminance difference between target and background. (a) 
Exponents from the present study (the parameter γ in equation 1). (b) Exponents for fits to data from the 
literature. (c,d) Equivalent to (a,b) but using the log luminance ratio between target and background as the 
input to equation 1. Symbol conventions follow those of Figures 3-6, with symbol edges denoting background 
luminance (dark or grey), and symbol centres indicating either increment, decrement or edge-contrast. Symbol 
shapes indicate observer (a, c) or study (b, d), as detailed in the figure legends, and are unrelated to the shape 
of the target in a given experiment. Negative luminance differences indicate decrements (where the target is 
lower in luminance than the background). Values for contrast are also plotted this way, except for in the inset 
to panel (a) (see text). 
 
As might be expected from examining the raw 
data, increments tend to produce lower 
exponent values (i.e. less nonlinear behaviour) 
than decrements. Figure 8a shows the fitted 
exponents plotted against the luminance 
difference between target and background 
(negative differences indicate decrements). The 
relationship between luminance difference and 
exponent is monotonic and approximately 
linear when plotted with a logarithmic ordinate 
(as here). Also included are exponent values 
for the bipartite contrast condition (data from 
Figure 6).  These are plotted against the 
luminance difference between the background 
and the decrement portion of the bipartite field. 
This provides a good correspondence with the 
exponents from the other conditions, whereas 
plotting the exponent against the difference 

between the background and the increment 
portion does not (see inset to Figure 8a). This 
provides a powerful demonstration that the 
decrement region of the bipartite field 
determines the character of binocular 
combination (when inputs are expressed in 
linear units – see below). 
 
Figure 8b shows exponent values derived from 
our fits to previous results in the literature. 
(Data were scanned in from the relevant figures 
and then fitted in the same way as those from 
the present study. See figure legend for the 
origin of each data point.) These results follow 
a similar trend to our own (Figure 8a). Note 
that the range of luminance values within the 
meta analysis (Figure 8b) is considerably 
greater than was available to us in our own 
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study. Neither plot (Figure 8a or 8b) appears 
well disposed to delivering a precise relation 
between luminance difference and exponent. 
However, the clear message from both analyses 
is the general trend that the exponent increases 
as the luminance difference decreases.  
Luminance increments tend to produce quasi-
linear binocular summation (low exponents, 
g~0.25-0.5), while luminance decrements 
promote winner-take-all (high exponents, g~2-
4). 
 
4.2 Metrics for luminance and contrast 
 
One of the central aims of this study was to 
attempt to understand binocular matching for 
luminance increments, luminance decrements 
and contrast changes within a single 
framework. To do this it is necessary to derive 
an appropriate metric that can describe all three 
conditions. Plotting results as luminance and 
contrast excursions (Figs 3-6) is equivalent to 
using the delta contrast metric (D = 
∆L/Lbackground; see e.g. Peli, 1997), which is 
linear with respect to ∆L for both increments 
and decrements. We wondered whether a 
luminance nonlinearity could account for the 
variation in exponent value that we found when 
the difference between luminance target and 
background was varied (Figure 8a). 
 
One commonly used metric is Michelson 
contrast (M =(Lmax-Lmin)/(Lmax+Lmin)), which is 
linear with ∆L for DC-balanced luminance 
excursions (e.g. a sinusoidal or bipartite 
stimulus), and mildly nonlinear for increments 
and decrements against a light background. 
However, it is not useful for increments against 
a dark background, since it produces M=1 for 
all target luminances (when Lmin = 0, M = 
Lmax/Lmax). 
 
An alternative metric for contrast is that 
proposed by Whittle (1986), which is similar in 
form (W = (Lmax-Lmin)/Lmin) to the Michelson 
contrast equation. This metric produces an 
output which is linear with ∆L for all 
increments but  nonlinear for both decrements 
and DC-balanced contrast. Although W was 
first proposed to explain luminance 
discrimination (i.e. objective performance) 
data, it is also relevant to matching and scaling 
(i.e. subjective perceptual) tasks (Whittle, 
1992). We found that using W as the input to 
equation 1 reduced but did not eliminate the 
dependency of g on luminance difference (not 
shown).  
 
Our reviewers suggested using a logarithmic 
transform on the ratio of target and background 

luminances. Specifically, |log(Ltarget/Lbackground)| 
has the desirable properties of accelerating 
(with respect to ∆L) for decrements (when 
Ltarget < Lbackground) and saturating (with respect 
to ∆L) for increments (when Lbackground < Ltarget). 
(Note that this is equivalent to taking the 
difference of log luminances). This log 
luminance metric successfully removed the 
dependency of γ on signed luminance 
difference for our data (Figure 8c), with the 
caveats that Lbackground = 1 for a dark 
background to avoid division by zero, and that 
for contrast stimuli Ltarget was the luminance of 
the dark part of the stimulus (see Figure 8a). 
The slope of the best fit regression line reduced 
to near zero, and the (geometric) mean 
exponent value was γ=1.11. Using the log 
luminance difference did not increase the 
number of free parameters (this remained at 
one per curve), and did not affect the goodness 
of fit (mean RMS error was 0.83dB using both 
methods). 
 
We confirmed that the log luminance ratio 
removed the effect of luminance sign on the 
exponent in equation 1 by calculating the 
Pearson correlation between luminance 
difference and exponent. For the present data, 
the correlation was highly significant (R2=0.61, 
p<<0.01) for linear scaling (Figure 8a), but not 
significant (R2=0.0002, p=0.94) for the log 
luminance metric (Figure 8c). For the data 
from previous studies, the correlation was 
greatly reduced (from R2 = 0.55 to R2 = 0.13) 
by the use of the log luminance ratio. Although 
both correlations were significant at p<0.05, 
the latter correlation (Figure 8d) was strongly 
influenced by the outlier sitting on the x-axis of 
this panel. Removing this outlier further 
reduced the correlation, below the level of 
significance (R2 = 0.10, p>0.06). These 
analyses demonstrate that the log luminance 
ratio successfully accounted for the apparent 
change in nonlinearity as a function of 
luminance difference between target and 
background. 
 
4.3 Binocular summation 
 
Binocular summation is the improvement in 
sensitivity for two eyes compared with one. If 
luminance increments are processed in a more 
linear fashion than decrements, they should 
also produce higher binocular summation ratios 
(BSRs). This is because the amount of 
binocular summation is controlled by the 
nonlinearities placed before binocular 
combination, as illustrated by the curve in 
Figure 9b (see also Meese et al., 2006; Baker, 
Meese & Summers, 2007). In this section we 
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assume that the binocular response can be 
approximated as resp = Lm + Rm, where L and 
R are the input contrast or luminance values for 
the left and right eyes, and m is an exponent. 
The value of m is assumed to encompass all 
nonlinearities occurring prior to binocular 
combination. It is thus the net nonlinearity (x-
axis of Figure 9b), and so is not equivalent to 
the g parameter of equation 1. 
 
A linear system (m = 1) produces linear 
summation (BSR = 2), because to reach a 
criterion (threshold) response, a single eye 
must be given twice the input required by two 
eyes (assuming late additive noise). A system 
which squares its monocular inputs (m = 2) 
before binocular combination (e.g. the 
quadratic summation model of Legge, 1984b) 
will produce weaker summation (BSR = √2) 
because a single eye requires less than twice 
the input given to two eyes in order to produce 
the same response (since 22 > (12 + 12)). 
Further nonlinearities after binocular 
combination do not affect summation (BSR), 
since equal responses at combination will 
remain equal thereafter, regardless of which 
eye(s) produced the response. 
 
A consequence of the above exposition is that 
we should expect stimuli processed with a 
weak nonlinearity (i.e. increments) to show 
substantial binocular summation. Those 
processed with a strong nonlinearity (i.e. 
decrements) should show less summation. 
Despite the large number of studies reporting 
binocular summation for contrast (see Meese et 
al., 2006 for a review), we are not aware of any 
work that has investigated both increments and 
decrements in isolation. Part of the reason for 
this may be that experiments with increments 
are typically performed on a dark background, 
measuring the smallest detectable luminance. 
This requires that observers dark adapt for an 
extended period (>30 minutes) before reaching 
a stable detection threshold (e.g. Thorn & 
Boynton, 1974). Dark adaptation shifts the 
adaptive state of the retina into a very different 
dynamic range, making comparison with 
decrements problematic. 
 
These issues can be sidestepped by performing 
summation experiments on a pedestal.  As we 
have demonstrated previously (Meese et al., 
2006), binocular summation can be measured 
by comparing discrimination thresholds for one 
or both eyes, with a pedestal present in both 

eyes in all conditions. This avoids confounding 
the number of eyes tested with the number of 
eyes seeing the pedestal (e.g. Legge, 1984a), 
allowing the summation process to be 
measured without the potentially interfering 
effects of counter-suppression between the eyes 
(Meese et al, 2006; Meese & Baker, 2011).  
 
To test the prediction that there is greater 
summation for luminance increments, we 
performed a binocular summation experiment 
for both polarities of luminance target using the 
equipment and stimuli described above. 
Increments were on a black background 
(<0.01cd/m2) with a pedestal of 8cd/m2. 
Decrements were relative to a bright 
background (20cd/m2) with a (decrement) 
pedestal of -8cd/m2. An illustration of the 
conditions is shown in Figure 9a. Both 
observers (DHB and SAW) completed four 
repetitions of a 2IFC luminance discrimination 
task in which the increments and decrements 
were presented either monocularly or 
binocularly against a binocular pedestal. We 
pooled the data across all four repetitions for 
each condition and estimated thresholds (75% 
correct) using Probit analysis. Binocular 
summation was calculated as the ratio of the 
mean monocular threshold to the binocular 
threshold. 
 
The results of this experiment are shown in 
Figure 9b and are very clear. Summation was 
strong for increments, around 6dB (a ratio of 2; 
white filled symbols) for each observer. For 
decrements, we found much weaker 
summation, around 3dB (a ratio of √2; black 
filled symbols). The data are plotted at the 
appropriate points on the curve to permit 
estimation of the total effective monocular 
exponent implied by each summation value 
(e.g. the net nonlinearity before binocular 
summation, assumed to be a power function). 
For increments, the exponent is essentially 
linear, whereas for decrements it is around 2. 
This is qualitatively consistent with the results 
from our matching experiments showing that 
decrements are governed by a stronger 
nonlinearity than increments. Also plotted for 
comparison are summation ratios for 1c/deg 
gratings from Meese et al. (2006, values given 
on pages 1227 and 1235), both at and above 
detection threshold. These sit between the 
points for increments and decrements, implying 
an intermediate nonlinearity (~1.3). 
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Figure 9. Details and results of a binocular summation experiment. (a) The conditions for a final experiment 
measuring binocular summation for increments and decrements. Large rectangles represent the pedestal 
luminances, and small ones the target increment or decrement. Each pair of bars indicates the stimulus to the left 
and right eyes. (b) Results from the luminance summation experiment, along with those from Meese et al. (2006) 
using sinusoidal grating stimuli. The curve is the level of summation expected for a range of monocular 
exponents, defined as BSR = 21/m, where m is the combination of all exponents prior to binocular combination 
(assumed to approximate a power function). Note that the curve is not a fit to the data. Rather, the data are 
superimposed onto the curve at x-values that permit estimation of the implied exponent from the empirical 
summation ratios. 
 
5 Discussion 
 
The purpose of this study was to investigate 
how target and background luminance affect 
the nonlinearity underlying binocular 
brightness perception. Our principal finding is 
that although this nonlinearity appears much 
stronger for decrements (Anstis & Ho, 1998) 
than for increments (Levelt, 1965; Engel, 1970; 
Anstis & Ho, 1998), a logarithmic transform of 
the ratio of target and background luminances 
removes this difference. We also demonstrate 
that a measure of binocular performance—the 
binocular summation ratio for luminance 
excursions—is similarly affected by the 
nonlinearities that we have observed. 
 
5.1 Alternative models 
 
Equation 1 is a simple construct and provides a 
useful description of our data. It must be noted, 
however, that many alternative models have 
been proposed to account for luminance 
matching results (e.g. Engel, 1969; deWeert & 
Levelt, 1974; Lehky, 1983; Anderson & 
Movshon, 1989; Grossberg & Kelly, 1999). 
Our aim was not to compare all of these models 
exhaustively, since this has been attempted 
elsewhere (Grossberg & Kelly, 1999). 
However, we note that many such models are 
elaborations of equation 1, often incorporating 
alternative weights or additional parameters 
into the same basic form. The influential model 
of Ding & Sperling (2006, 2007) is essentially 

identical to equation 1 for matching tasks at 
high contrast (see equation 15.27 of Ding & 
Sperling, 2007). 
 
5.2 The two-stage contrast gain control model 
 
One alternative model is the first stage of the 
two-stage binocular contrast gain control model 
of Meese, Georgeson & Baker (2006). (The 
second stage is an output nonlinearity, which is 
irrelevant to the matching paradigm.)  That 
model was designed to explain data from 
contrast detection and discrimination 
experiments containing various ocular 
arrangements of pedestal and target (see also, 
Baker, Meese & Georgeson, 2007). The 
equivalent expression is, 
 

  

! 

B =
L
m

+ R
m

S + L + R
,         (2) 

 
which has obvious parallels with equation 1. 
For contrast tasks, the numerator exponent, m, 
takes on a value of around 1.3, and the 
denominator exponent is implicitly set to unity. 
However, it is plausible that one or both of 
these exponent values might differ for light and 
dark disks in the manner described above (see 
Figure 8). As might be expected from these 
formal similarities, the two-stage model 
successfully describes some of the contrast 
matching results from Legge & Rubin (1981) 
(see Figure 6D of Meese et al., 2006). With the 
addition of the second stage, the model also 



Baker,	  Wallis,	  Georgeson	  &	  Meese	  (2012)	  Vision	  Research,	  56:	  1-‐9	  
doi:10.1016/j.visres.2012.01.008	  

This	  post-‐print	  version	  was	  created	  for	  open	  access	  dissemination	  through	  institutional	  repositories.	  

provides a good account of detection and 
discrimination results, including dichoptic 
masking, and is readily extended to incorporate 
cross-channel suppressive effects (e.g. Baker, 
Meese & Summers, 2007) as well as spatial 
summation (Meese & Baker, 2011). 
 
The main departure from equation 1 is the 
inclusion of an extra parameter, termed S. This 
is typically small (S≈1 for contrasts scaled to 
the range 0:100), and performs a similar 
function to the semisaturation constant in the 
Naka-Rushton equation (Naka & Rushton, 
1966), influencing the sensitivity of the model 
at low inputs. For high input levels, S has a 
negligible impact, and matching curves are 
similar to those shown in Figure 7a (see black 
and red curves in Figure 10). At lower input 
levels (where L≈R≈S), the equibrightness 
contours do not fold back as much when 
approaching either axis. This produces a 
summation effect at low input levels (e.g. bin > 
mon, see orange and green curves in Figure 
10), which has been reported for previous 
contrast matching experiments (Legge & 
Rubin, 1981; Baker et al., 2007a) and is evident 
in some of the results here (Figures 3-5, 
particularly for smaller standard increments 
and decrements).  
 

 
Figure 10: Example equibrightness contours for the 
two-stage model. Different colours represent 
different standard levels, relative to the model 
parameter S. When the magnitude of the standard is 
similar to S, there is a summation effect close to 
each axis. At higher input levels, the curves fold 
back toward the points [0, 100] and [100, 0].  
 
5.3 Luminance matching without contours 
 
If the difference between target and 
background luminance is important, how does 
binocular combination behave in situations 
where there is no obvious background region? 
Using Ganzfeld (i.e. full field luminance) 

stimuli, Engel (1970) found that matching 
behaviour was very noisy and did not produce 
a reliable curve. This could be due to the lack 
of an ‘anchor point’ (a region of fixed 
luminance) to which the target luminances 
could be compared (Gilchrist et al. 1999). 
However, Bolanowski (1989) reported linear 
summation of Ganzfeld brightness using a 
rating scale method, so obtaining successful 
binocular brightness judgements from 
Ganzfelds may be task dependent. Legge & 
Rubin (1981) performed matching experiments 
using full-field stimuli but not Ganzfelds, so 
other regions of the image (e.g. the edge of the 
monitor, or other objects in the room) might 
have been used to anchor luminance 
judgements in their study.  
 
5.4 Separate processes for light and dark bars 
 
In matching experiments with gratings and 
bipartite fields, we found that the overall 
nonlinearity (γ) appears to depend on the dark 
region of the target more than the light region 
(Figure 8a and inset). Based on experiments in 
which target gratings were deconstructed into 
their light and dark bars, McIlhagga & Peterson 
(2006) concluded that observers behave as 
though the light and dark parts of gratings are 
subject to their own luminance nonlinearities – 
the decrement nonlinearity being the more 
severe – before optimal combination. If that 
were the case here, then the more expansive 
decrement nonlinearity would be expected to 
dominate at high contrasts, where its 
contribution outweighs that from the 
increment. This should result in a greater 
overall nonlinearity for contrast stimuli relative 
to increment-only stimuli, just as we found. 
Overall then, dark bars dominate over light 
bars for the experimental situations studied 
here. 
 
5.6 Interpreting luminance nonlinearities 
 
The benefit of the log luminance ratio is that it 
removes the effect of (background and target) 
luminance on the value of the monocular 
nonlinearity for the stimulus conditions here. 
However, as McIlhagga & Peterson (2006) 
point out, a realistic contrast metric should be 
local rather than global (though see Gilchrist et 
al., 1999). Considered from a biological 
perspective, the luminance ratio might 
represent a cell with a centre-surround 
arrangement, such as a retinal ganglion cell. 
The logarithmic transform could represent local 
light adaptation or saturation in the retina, 
which can also be approximated by the Naka-
Rushton function (Shapley & Enroth-Cugell, 
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1984). Indeed, a logarithmic transform may not 
be the only possibility - in principle, any 
function that is more expansive for decrements 
(see Figure 14 of Kingdom & Whittle, 1996) 
than for increments might serve our present 
purposes equally well. It is important to note 
that any nonlinearities revealed by our study 
must occur at a pre-binocular locus, placing 
them at or before primary visual cortex. 
 
6 Conclusions 
 
We have demonstrated that the difference 
between target and background luminance 
determines the effective nonlinearity governing 
binocular brightness perception. This allows 
experimental results for increments and 
decrements, which appear very different, to be 
understood within a single framework. We also 
find that the perception of binocular luminance 
contrast is controlled primarily by the 
decrement region of the stimulus. It remains to 
be seen whether this result is limited to 
binocular combination, or if it might extend to 
contrast perception in general. 
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