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Using techniques from Statistical Physics, the annealed VC entropy for hyperplanes
in high dimensional spaces is calculated as a function of the margin for a spherical
Gaussian distribution of inputs.

1.1 Introduction
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The Vapnik Chervonenkis (VC) approach to statistical learning theory [9, 10] allows
to express the complexity of a family of statistical predictors in terms of entropic
quantities, the so called VC entropies. For the case of a binary classifier, these
entropies give the logarithm of the number of different classifications of a set of
input points which are realizable by the family of classifiers. Upper bounds on these
entropies can be expressed by a single combinatorial quantity, the VC dimension.
Classifiers with large VC complexities can have a large deviation between empirical
error and generalization error, which for the case of empirical risk minimzation
may lead to strong overfitting, when not enough training data are available. For
the case of learning in neural networks, the VC approach has been critizised for
overestimating the complexities and giving too pessimistic bounds for a practical
application in model selection.

Recently, for margin classifiers and support vector machines it has been shown
that if global VC dimensions are replaced by effective, data dependent dimensions
(the so called fat-shattering dimensions[1]), reliable estimates for optimally gener-
alizing models can be obtained [10]. In these cases, the effective VC dimensions
depend on the size of the by which positive and negative training inputs can be
separated. Besides from general bounds and simulations, such results may be fur-
ther understood from another approach to computational learning theory which

1998/07/27 08:39



On the Annealed VC Entropy for Margin Classifiers: A Statistical Mechanics Study

has its origin in statistical mechanics. Using techniques from the theory of disor-
dered systems, a huge variety of results for the typical learning behaviour of large
neural networks have been obtained in the last years. For a review see e.g. [12],[6]
and [7]. The approach enables exact calculations for generalization errors and other
properties of neural networks (assuming specific nice’ distributions of examples) in
the limit where the dimension of input space and the size of the set of examples
are both very large. Although some of these techniques (like many in the field of
Theoretical Physics) have not been made fully rigorous sofar, this approach yields
often new important results on which other, more general methods can be tested.

In the following, I will present a calculation of the annealed VC entropy for
classifications by hyperplanes (perceptrons) as a function of the margin. The
method follows a recent publication [4] which aimed at calculating the capacity
of a toy neural network. This latter model can be interpreted as a problem of
unsupervised learning in a perceptron where the output variables must be chosen
in such a way that the margin between positive and negative examples is maximal.

1.2 VC-Entropy

annealed entropy

Let us assume a training set of £ input/output pairs (x1,y1) ..., (x¢, y¢) for a binary
classifier which are drawn independently at random from a fixed distribution. In
the following, x¢ stands for the set of inputs xi,...,x, and y{ for the sequence of
outputs yi1,...,y,. The VC approach enables us to bound the deviations between
the training error Fj;(x%,y?,c) (the number of misclassifications on the training
set) and the generalization error e,(c) (the probability of a misclassification) over
a family of classifiers ¢ € F. E.g., it has been shown [10] that

Pr (sup |E (x4, 9%, ¢) — eg(c)| > 6) < dexp [Hunn(20) — (7] (1.1)
ceF

where the is defined as
Hann(f) = In <N(x‘12)> ) (1.2)

and where NV (x{) < 2¢ is the number of classifications (or ) of £ inputs which are
realizable by going through the classifiers ¢ € F, and the brackets (...) denote
expectations with respect to the distribution of the inputs.

Perceptrons classify inputs x € RY by hyperplanes via y = sgn(w -x + b) €
{—1,+1} (the weight vector w € R" is normal to the class separating plane and
b € R is a bias). Throughout this paper we will be concerned with hyperplanes
through the origin i.e. b = 0 only. For this case, it is well known that

N(x‘f)—2Ni1 (£_1> (1.3)
1) — p ’L ) .

independently of the position of the inputs x; (as long as they are in general
position).
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VC dimension for
margin

For more complicated types of classifiers, exact expressions for the VC entropies
are hard to obtain. A remarkable and general combinatorial theorem, proved for
the first time by Vapnik and Chervonenkis in the 1960’s [11], however gives the
general bound

"o
NEH <> (Z) (1.4)
=0

in terms of a single number A, the VC dimension of the family F of classifiers. This
result allows us to obtain distribution independent bounds.

If we restrict the family of perceptrons to the subclass of all those which achieve
a margin 7 larger than some positive value k, i.e.
v = max min y;(W-x;) > K, (1.5)

[lwll=1 i

the corresponding VC dimension can be much smaller. A bound on the correspond-
ing VC dimension h,, was given in [9]

h, = min ([f—j] + 1,N> , (1.6)

where R is the radius of the minimal sphere containing all inputs. It is not directly
possible to implement this bound on the VC dimension into the confidence bound
(1.1), when the margin is not fixed in advance but taken from a classifier trained on
a specific sample. This is because the bound (1.1) requires a fixed, a priori chosen
(nonrandom) family of classifiers. Somewhat more complicated bounds have been
proved recently for the data dependent case [8]. Nevertheless, we expect that our
calculations of the annealed entropy for a fixed margin may also give at least a
qualitative picture for the data dependent case.

1.3 The Thermodynamic Limit

We will show that one can obtain exact expressions for the annealed entropy for
a fixed margin for the case of a simple , provided we specialize to the so called
the 'thermodynamic limit’ of large input dimension N, and assume the scaling
{,N — oo, keeping A = % fixed. To see that such a limit makes sense, we set
Ave = % and apply standard bounds on binomials in terms of binary entropies
together with a Laplace approximation on the sum (approximated by an integral)

to show that (1.4) yields

. 1
lim ﬁHmm()\N) (1.7)

N—oo
< An(2) for A < 2A\ye
T | A [2%eIn(2¥e) + (1 - 2¥e)In(1 - 2¥e)] for A > 2\yc.
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spherical distribu-
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This bound becomes an equality for perceptrons without margin. It shows an inter-
esting threshold phenomenon. If A > 2Ayc = A., then only an exponentially small
fraction of all 2*V classifications can be realized. With probability approaching 1
in the , a random choice of output labels y{ can not be realized by the classifier,
when A > A.. This result relates the capacity A. of the family of classifiers, via
Ae < 2Ay e, to its VC—dimension. Implemented into (1.1), we also have with prob-

ability one, that deviations € between generalization error and training error larger

Heonn(20) Heonn(2AN)

quantity of the order % for large A, the possible deviations ¢ will become arbitrar-
ily small as A grows large. For the family of perceptrons through the origin, h = N,
Ave = 1 and the capacity A\, = 2.

In the following, we will assume that the inputs are drawn independently from
the spherical Gaussian distribution

will not occur. Hence, since limy_, is bounded by a

f(x) = (2m) V2= IXIE, (1.8)

In this case, we get ||z||2/N — 1 with probability one as N — oo. Hence,
heuristically, we expect that (1.6) applies to this case with R = VN so that the
capacity ). should be bounded by a term which is of the order of Kl—g

1.4 An Expression for the Annealed Entropy

In this section, we present the basic ideas of a calculation for the annealed entropy
for classification with a margin. We begin with the obvious fact, that the number
of dichotomies can be rewritten in terms of f(y{,x}) € {0,1} as

NED= D 6t.x), (1.9)

yie{-1,1}¢

where 0(y',x%) = 1, if the labels are realizable with a margin x and 0 else. In the
next step, we have to average (1.9) over the distribution (1.8). By symmetry, all
22N terms in the sum (1.9) give the same contribution and we can restrict ourselves
to the case y; = 1, for all i = 1,...,¢. We will denote the corresponding decision
variable by 6(x¢). Our basic idea for a construction of such a decision variable is
based on the Kuhn Tucker conditions and the feasibility conditions on the primal/
dual quadratic optimization problem which is equivalent to (1.5). These conditions
are expressed in terms of Lagrange multipliers a; and read

Yit; X
w= Z N (1.10)

i) 21 (1.11)

a; >0 (1.12)

3 (%(w Cx;) — 1) —0, (1.13)
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decision variable

for i = 1,...,¢. We have rescaled all quantities by v/ N such that for N — oo, the
typical size of the a; and the components of w remain of order 1. The last condition
states that positive a; (corresponding to support vectors) satisfy \}’N(w %) = 1.

The resulting margin v is given by

¥ = N/|jwl = N/ Y a. (119)

It is useful to introduce auxiliary variables s; by
o; = 516(51) (1.15)

Inserting the first equation into the second, also setting y; = 1, the set (1.10) -
(1.13) can be replaced by the single equation

829(—&) + ZCUO{]‘ —1=0 (1.16)
J

with the matrix Cj; = %(x; - x;). O(z) is the unit step function which is 1 for
z > 0 and 0 else. Introducing Dirac é— distributions for the condition (1.16), we

can write

0o 2
6(xt) = /mi];[lds,» 0(1/x* —%;ai) det(A) (1.17)

4
><H5 si®(—si)+20ijaj—1
i=1 i

Obviously, the integral is only different from zero, if the condition (1.16) is fulfilled
with a margin above k. The matrix A guarantees proper normalization and is given
by Ai]' = CZ]@(SJ) for ¢ 75 j, and A“ = @(—Si) + C’“@(sz) Since C“ — 1, with
probability one as N — oo, we may also simply set A4;; = C;.

As a result, we have expressed the decision variable §(x{) as a high dimensional
integral, reminiscent of partition functions in statistical physics.

1.5 Evaluation

in the Thermodynamic Limit

The basic strategies employed in the statistical mechanics approach consist in the
following steps: Exchanging average and integrations, the average over inputs is
performed first. Subsequently, the high dimensional integrations are decoupled by
introducing auxiliary (low dimensional) integrations and are carried out. Finally,
the low dimensional integrals are performed in the limit N — oo by the method.
By the fact that we are calculating the annealed average (NV'(x{)) rather than the
quenched average (In(N'(x{))), more sophisticated methods (such as the ’replica
trick’) are not needed.

It is convenient to decompose the decision variable #(x%) into contributions from

__ Generic author design sample pages 1998/07/27 08:39



averages

__ Generic author design sample pages

On the Annealed VC Entropy for Margin Classifiers: A Statistical Mechanics Study

the different margins above &

1/K2
GMFA Z(a,x) dg (1.18)

where now

o ¢
Z(g.x) = [ Tldsioa—5 Y a) deta) (1.19)
=00 =1 i

12
X H5 829(—82) + ZCUO{]‘ -1
i=1 j

To average over Z, we perform the expectation over the distribution of x; first,
before we carry out the integrations over the s;. We have to average over a product
of two terms, the determinant and the part with the 6— distributions. It is easy to
see that det(A) = det(B), where B is the submatrix of C, which contains all those
elements C;;, for which s; and s; are positive, i.e. for which both x; and x; are
support vectors. The dimension of B is \; N, where

1
&=N;mw. (1.20)

A proper and clean treatment of the determinant would require the introduction of
Grassmann variables [2]. This more complicated route will be pursued somewhere
else. In this article, we will resort to the following simpler heuristic assumption,
which was frequently used for the statistical mechanics of similar problems. We
argue that the fluctuations of the (to leading order of the exponent in N) can be
neglected, and we can thus average both parts independently. In fact, it is more
practical to average over 1/ det(B) (again neglecting fluctuations), because this has
the representation

<N

AsN A
1/ det(B) =/Hdr,- 61> Biyri-1], (1.21)
i=1 i j

1

which again is of a similar form as the §— distribution part. As an argument, why
the fluctuations of the determinant can be neglected, one can use the fact that

lim N !(Indet(B)) = — lim N !ln((1/det(B))). (1.22)

N—o00 N—o00

The term on the left can be calculated from the density of eigenvalues of B [5]. As
a result for the average of (1.21) we get

. 1
Jim ——In((1/ det(B))) = =X, — (1= A) In(1 = \,). (1.23)

For the 6— distribution part we get

AN
<H5 Si('a(—sz') + ZCijozj -1 > = (1.24)
i=1 J
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decoupling

7

€xp [—lZi (e 9( ) 2
Er Q) e
where

1

=¥ > a (1.25)
1

=¥ > o (1.26)

and Qp (r) is the volume of an N dimensional sphere of radius r. These calculations
are based on the decomposition

AN
H ) si@(—si) + Zci]‘a]’ -1 = (1.27)
1 ;

/dw6 <w—;oi;%i> ﬁé(si(a(—si)—l—%w-xi—l).

The average of (1.27) can now be easily calculated from the joint density of the
/ Gaussmn random variables \/ﬁw x; and the N dimensional Gaussian vector

Since both the conditions (1.25) and (1.26) and (1.20) are of a very simple additive
type, the integrals over s; can be decoupled by introducing their definitions within
further § distributions of the type

N . s =
R——Zf aj) :%/dR exp zNRR—zRZf(aj) . (1.28)
J
Note, that here i denotes the imaginary unit. Hence, by using the auxiliary variables
4, @, \s and corresponding integrals, the integrations over the s; factorize and can
be carried out. All remains to be done is to perform a 5 dimensional integral which
is of the form

(Z(g,xt™N)) / dQ d, dj dQ d)\s exp[NG()s,4,Q,\s,Q,q)], (1.29)
with

G(Xs,4,Q,0s,Q,9) =
R 1 1 4 1
X = (1= 2) (1= A) = Ads + 5+ 5QQ + s Ing +1Ing ~ dg — In(4+/Q)

1 ¢ < 1 . q d 1
+aln | exp —2—q+ﬁ+/\s—§1nq—1nq+1n(%) ¢(—\/—5)+¢(%)

with ¢(z) = [ L ¢~#*/2. To leading order in N (1.29) can be evaluated by

Tz V2r
the saddlepoint method (note, that the integrations over the ’hat’ parameters are
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Figure 1.1 log of number of dichotomies for a maximal margin close to 7.

along the imaginary axis). Hence, limy_. 7 In(Z(q, x{")) equals the function

~

G(s, 4,0, s, Q,q) evaluated at the values of \,,d, @, \s,Q for which the deriva-
tives of G with respect to these parameters equals zero. One finds that these values
satify @ = 1/Q, As = In(1 — ;) and ¢¢ = 1 — A,. Treating § and r = % as

independent variables, and setting ¢ = 1/4?, the annealed entropy is
1
lim — Hgpp(AN) =sup S(A,7) (1.30)
N—ooo N >k

where S is given by the expression
1
S(A7) =An2+ lim —In(Z(g = 1/7°, "))
N—ooo N
A2 2
= Aln2 + In(y) 4+ min {— Inr + aln <67+7+1“T1“7¢(—r) + qb(fy)) } (1.31)

S is 1/N x log of the average number of dichotomies for which the maximal margin
is in a small interval around the value v

1.6 Results and Discussion
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The minimization of (1.31) must be done numerically. The resulting function S(}, ¥)
is displayed in 1.1 for four values of A. We have shown the positive part only, but
the function extends to negative values as well. For A < 2, the maximum of S
is achieved for a margin v > 0 which can be found by differentiating (1.31) with

1998/07/27 08:39



1.6 Results and Discussion 9

capacity
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Figure 1.2 Capacity ). as a function of the margin . The dashed line is 1/x2.

respect to . This results in the equation
e dt 2

/\/ —— e 2t 49)? =1 1.32
Vo (t+7) (1.32)

Solving for -y, we also find that for this A, S(},v) = aln 2. This result means that for
A < 2, almost all 2*V dichotomies will be realized with a margin + given by (1.32).
On the other hand, fixing the margin vy, the value of A given by (1.32) yields the
corresponding A.. Relation (1.32) (Fig.(1.2) is a well known result in the statistical
mechanics of neural networks, which was first derived by Elizabeth Gardner [3]
using a rather different approach based on the method of replicas. As can be seen,
the result is in agreement with the suggested scaling \. ~ 1/42 for large margins
7. For A > 2, the maximum of S(, ) is shifted to ¥ = 0 and we obtain

SAy=0)=AlnA—(A—1)In(A—1), (1.33)

which gives the correct result (1.7) for the VC entropy with zero margin. In Fig.1.3,
we have displayed the annealed VC entropy (1.30) as a function of A/A. for three
values of k. While for small k, the decrease of the annealed entropy (divided by Ain2)
is similar to the bound (1.7), the decrease becomes faster with increasing margin «.
In any case, for A large enough, the annealed entropy also achieves negative values
in contrast to the bound (1.7). This should not be too surprising, because it simply
means that for too many inputs, there is a nonzero probability, that none of the 2¢
classifications can be realized with a margin greater than a given x by hyperplanes
through the origin. Our result shows that for sufficiently large margins, the VC
complexity of the set of perceptrons is drastically reduced, even stronger than
predicted by general bounds. Although it is not trivial to express the generalization
error in terms of the annealed entropy (because the data dependent margin is also a
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lim N Hgpn /(X In 2)

Figure 1.3 Annealed entropy for three different values of margin x as a function
of the number of inputs/capacity. The upper line gives the bound (1.7).

random variable) we expect that our results give a further illustration why margin
classifiers and supportvector machines generalize so well, when the achieved margin
k is large. Although the results have been derived for a , one can expect that in
the limit N — oo, by the central limit theorem, any other product distribution for
the components of the input vector x with zero mean and unit variance will lead
to the same result. It would be interesting to see if one can proove that our result
(by the symmetry of the spherical distribution) may actually give an upper bound
on the annealed entropy for any distribution of inputs x with ||x||> < N. Such a
result would be helpful for obtaining sharper bounds on the VC entropy.
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