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1 On the Annealed VC Entropy for MarginClassi�ers: A Statistical Mechanics Study
Manfred OpperNeural Computing Research Group, Aston University, Birmingham B4 7ET, UK.opperm@aston.ac.ukUsing techniques from Statistical Physics, the annealed VC entropy for hyperplanesin high dimensional spaces is calculated as a function of the margin for a sphericalGaussian distribution of inputs.1.1 IntroductionThe Vapnik Chervonenkis (VC) approach to statistical learning theory [9, 10] allowsto express the complexity of a family of statistical predictors in terms of entropicquantities, the so called VC entropies. For the case of a binary classi�er, theseentropies give the logarithm of the number of di�erent classi�cations of a set ofinput points which are realizable by the family of classi�ers. Upper bounds on theseentropies can be expressed by a single combinatorial quantity, the VC dimension.Classi�ers with large VC complexities can have a large deviation between empiricalerror and generalization error, which for the case of empirical risk minimzationmay lead to strong over�tting, when not enough training data are available. Forthe case of learning in neural networks, the VC approach has been critizised foroverestimating the complexities and giving too pessimistic bounds for a practicalapplication in model selection.e�ective dimen-sions Recently, for margin classi�ers and support vector machines it has been shownthat if global VC dimensions are replaced by e�ective, data dependent dimensions(the so called fat-shattering dimensions[1]), reliable estimates for optimally gener-alizing models can be obtained [10]. In these cases, the e�ective VC dimensionsdepend on the size of the by which positive and negative training inputs can beseparated. Besides from general bounds and simulations, such results may be fur-ther understood from another approach to computational learning theory which
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2 On the Annealed VC Entropy for Margin Classi�ers: A Statistical Mechanics Studyhas its origin in statistical mechanics. Using techniques from the theory of disor-dered systems, a huge variety of results for the typical learning behaviour of largeneural networks have been obtained in the last years. For a review see e.g. [12],[6]and [7]. The approach enables exact calculations for generalization errors and otherproperties of neural networks (assuming speci�c 'nice' distributions of examples) inthe limit where the dimension of input space and the size of the set of examplesare both very large. Although some of these techniques (like many in the �eld ofTheoretical Physics) have not been made fully rigorous sofar, this approach yieldsoften new important results on which other, more general methods can be tested.In the following, I will present a calculation of the annealed VC entropy forclassi�cations by hyperplanes (perceptrons) as a function of the margin. Themethod follows a recent publication [4] which aimed at calculating the capacityof a toy neural network. This latter model can be interpreted as a problem ofunsupervised learning in a perceptron where the output variables must be chosenin such a way that the margin between positive and negative examples is maximal.1.2 VC{EntropyLet us assume a training set of ` input/output pairs (x1; y1) : : : ; (x`; y`) for a binaryclassi�er which are drawn independently at random from a �xed distribution. Inthe following, x1̀ stands for the set of inputs x1; : : : ;x` and y1̀ for the sequence ofoutputs y1; : : : ; y`. The VC approach enables us to bound the deviations betweenthe training error Et(x1̀; y1̀; c) (the number of misclassi�cations on the trainingset) and the generalization error eg(c) (the probability of a misclassi�cation) overa family of classi�ers c 2 F . E.g., it has been shown [10] thatPr�supc2F jEt(x1̀; y1̀; c)� eg(c)j > "� � 4 exp �Hann(2`)� `"2� (1.1)annealed entropy where the is de�ned asHann(`) = ln 
N (x1̀)� ; (1.2)and where N (x1̀) � 2` is the number of classi�cations (or ) of ` inputs which arerealizable by going through the classi�ers c 2 F , and the brackets h: : :i denoteexpectations with respect to the distribution of the inputs.Perceptrons classify inputs x 2 RN by hyperplanes via y = sgn(w � x + b) 2f�1;+1g (the weight vector w 2 RN is normal to the class separating plane andb 2 R is a bias). Throughout this paper we will be concerned with hyperplanesthrough the origin i.e. b = 0 only. For this case, it is well known thatN (x1̀) = 2N�1Xi=0 �`� 1i �; (1.3)independently of the position of the inputs xi (as long as they are in generalposition).
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1.3 The Thermodynamic Limit 3For more complicated types of classi�ers, exact expressions for the VC entropiesare hard to obtain. A remarkable and general combinatorial theorem, proved forthe �rst time by Vapnik and Chervonenkis in the 1960's [11], however gives thegeneral boundN (x1̀) � hXi=0 �ì�; (1.4)in terms of a single number h, the VC dimension of the family F of classi�ers. Thisresult allows us to obtain distribution independent bounds.If we restrict the family of perceptrons to the subclass of all those which achievea margin 
 larger than some positive value �, i.e.
 = maxjjwjj=1mini yi(w � xi) > �; (1.5)the corresponding VC dimension can be much smaller. A bound on the correspond-ing VC dimension h� was given in [9]VC dimension formargin h� = min��R2�2 �+ 1; N� ; (1.6)where R is the radius of the minimal sphere containing all inputs. It is not directlypossible to implement this bound on the VC dimension into the con�dence bound(1.1), when the margin is not �xed in advance but taken from a classi�er trained ona speci�c sample. This is because the bound (1.1) requires a �xed, a priori chosen(nonrandom) family of classi�ers. Somewhat more complicated bounds have beenproved recently for the data dependent case [8]. Nevertheless, we expect that ourcalculations of the annealed entropy for a �xed margin may also give at least aqualitative picture for the data dependent case.1.3 The Thermodynamic LimitWe will show that one can obtain exact expressions for the annealed entropy fora �xed margin for the case of a simple , provided we specialize to the so calledthe 'thermodynamic limit' of large input dimension N , and assume the scaling`;N ! 1, keeping � = Ǹ �xed. To see that such a limit makes sense, we set�V C = hN and apply standard bounds on binomials in terms of binary entropiestogether with a Laplace approximation on the sum (approximated by an integral)to show that (1.4) yields limN!1 1NHann(�N) (1.7)� ( � ln(2) for � � 2�V C�� ��V C� ln(�V C� ) + (1� �V C� ) ln(1� �V C� )� for � > 2�V C :
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4 On the Annealed VC Entropy for Margin Classi�ers: A Statistical Mechanics StudyThis bound becomes an equality for perceptrons without margin. It shows an inter-esting threshold phenomenon. If � > 2�V C := �c, then only an exponentially smallfraction of all 2�N classi�cations can be realized. With probability approaching 1in the , a random choice of output labels y1̀ can not be realized by the classi�er,when � > �c. This result relates the capacity �c of the family of classi�ers, via�c � 2�V C , to its VC{dimension. Implemented into (1.1), we also have with prob-ability one, that deviations " between generalization error and training error largerthan qHann(2l)l will not occur. Hence, since limN!1 Hann(2�N)�N is bounded by aquantity of the order ln�� for large �, the possible deviations " will become arbitrar-ily small as � grows large. For the family of perceptrons through the origin, h = N ,�V C = 1 and the capacity �c = 2.In the following, we will assume that the inputs are drawn independently fromthe spherical Gaussian distributionspherical distribu-tion f(x) = (2�)�N=2e� 12 jjxjj2 : (1.8)In this case, we get jjxjj2=N ! 1 with probability one as N ! 1. Hence,heuristically, we expect that (1.6) applies to this case with R � pN so that thecapacity �c should be bounded by a term which is of the order of 1�2 .1.4 An Expression for the Annealed EntropyIn this section, we present the basic ideas of a calculation for the annealed entropyfor classi�cation with a margin. We begin with the obvious fact, that the numberof dichotomies can be rewritten in terms of �(y1̀;x1̀) 2 f0; 1g asN (x1̀) = Xy1̀2f�1;1g` �(y1̀;x1̀); (1.9)where �(yn1 ;x1̀) = 1, if the labels are realizable with a margin � and 0 else. In thenext step, we have to average (1.9) over the distribution (1.8). By symmetry, all2�N terms in the sum (1.9) give the same contribution and we can restrict ourselvesto the case yi = 1, for all i = 1; : : : ; `. We will denote the corresponding decisionvariable by �(x1̀). Our basic idea for a construction of such a decision variable isbased on the Kuhn Tucker conditions and the feasibility conditions on the primal/dual quadratic optimization problem which is equivalent to (1.5). These conditionsare expressed in terms of Lagrange multipliers �i and readw =Xi yi�i xipN (1.10)yipN (w � xi) � 1 (1.11)�i � 0 (1.12)X�i � yipN (w � xi)� 1� = 0; (1.13)
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1.5 Evaluation in the Thermodynamic Limit 5for i = 1; : : : ; `. We have rescaled all quantities by pN such that for N ! 1, thetypical size of the �i and the components of w remain of order 1. The last conditionstates that positive �i (corresponding to support vectors) satisfy yipN (w � xi) = 1.The resulting margin 
 is given by
2 = N=jjwjj2 = N=Xi �i: (1.14)It is useful to introduce auxiliary variables si by�i = si�(si): (1.15)Inserting the �rst equation into the second, also setting yi = 1, the set (1.10) -(1.13) can be replaced by the single equationsi�(�si) +Xj Cij�j � 1 = 0 (1.16)with the matrix Cij = 1N (xi � xj). �(x) is the unit step function which is 1 forx � 0 and 0 else. Introducing Dirac �� distributions for the condition (1.16), wecan writedecision variable �(x1̀) = Z 1�1 Ỳi=1 dsi �(1=�2 � 1N Xi �i) det(A) (1.17)�Ỳi=1 �0@si�(�si) +Xj Cij�j � 11A :Obviously, the integral is only di�erent from zero, if the condition (1.16) is ful�lledwith a margin above �. The matrix A guarantees proper normalization and is givenby Aij = Cij�(sj) for i 6= j, and Aii = �(�si) + Cii�(si). Since Cii ! 1, withprobability one as N !1, we may also simply set Aii = Cii.As a result, we have expressed the decision variable �(x1̀) as a high dimensionalintegral, reminiscent of partition functions in statistical physics.1.5 Evaluation in the Thermodynamic LimitThe basic strategies employed in the statistical mechanics approach consist in thefollowing steps: Exchanging average and integrations, the average over inputs isperformed �rst. Subsequently, the high dimensional integrations are decoupled byintroducing auxiliary (low dimensional) integrations and are carried out. Finally,the low dimensional integrals are performed in the limit N ! 1 by the method.By the fact that we are calculating the annealed average hN (x1̀)i rather than thequenched average hln(N (x1̀))i, more sophisticated methods (such as the 'replicatrick') are not needed.It is convenient to decompose the decision variable �(x1̀) into contributions from
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6 On the Annealed VC Entropy for Margin Classi�ers: A Statistical Mechanics Studythe di�erent margins above ��(x1̀) = Z 1=�20 Z(q;x1̀) dq (1.18)where now Z(q;x1̀) = Z 1�1 Ỳi=1 dsi �(q � 1N Xi �i) det(A) (1.19)�Ỳi=1 �0@si�(�si) +Xj Cij�j � 11A :To average over Z, we perform the expectation over the distribution of xi �rst,before we carry out the integrations over the si. We have to average over a productof two terms, the determinant and the part with the �� distributions. It is easy tosee that det(A) = det(B), where B is the submatrix of C, which contains all thoseelements Cij , for which si and sj are positive, i.e. for which both xi and xj aresupport vectors. The dimension of B is �sN , where�s = 1N Xi �(yi): (1.20)averages A proper and clean treatment of the determinant would require the introduction ofGrassmann variables [2]. This more complicated route will be pursued somewhereelse. In this article, we will resort to the following simpler heuristic assumption,which was frequently used for the statistical mechanics of similar problems. Weargue that the 
uctuations of the (to leading order of the exponent in N) can beneglected, and we can thus average both parts independently. In fact, it is morepractical to average over 1= det(B) (again neglecting 
uctuations), because this hasthe representation1= det(B) = Z �sNYi=1 dri �sNYi=1 �0@Xj Bijrj � 11A ; (1.21)which again is of a similar form as the �� distribution part. As an argument, whythe 
uctuations of the determinant can be neglected, one can use the fact thatlimN!1N�1hln det(B)i = � limN!1N�1 lnh(1= det(B))i: (1.22)The term on the left can be calculated from the density of eigenvalues of B [5]. Asa result for the average of (1.21) we getlimN!1� 1N lnh(1= det(B))i = ��s � (1� �s) ln(1� �s): (1.23)For the �� distribution part we get*�NYi=1 �0@si�(�si) +Xj Cij�j � 11A+ = (1.24)
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1.5 Evaluation in the Thermodynamic Limit 7exp [� 12Pi (si�(�si)�1)22q ](2�q)�N=2(2�Q)N=2 pNqQ @@q
N (pNq)where q = 1N Xi �i (1.25)Q = 1N Xi �2i (1.26)and 
N (r) is the volume of an N dimensional sphere of radius r. These calculationsare based on the decomposition �NYi=1 �0@si�(�si) +Xj Cij�j � 11A = (1.27)Z dw � w�Xi �i xipN ! �NYi=1 ��si�(�si) + 1pNw � xi � 1� :The average of (1.27) can now be easily calculated from the joint density of the` Gaussian random variables 1pNw � xi and the N dimensional Gaussian vectorPi �i xipN .Since both the conditions (1.25) and (1.26) and (1.20) are of a very simple additivetype, the integrals over si can be decoupled by introducing their de�nitions withinfurther � distributions of the type�0@R� 1N Xj f(�j)1A = N2� Z dR̂ exp0@iNR̂R� iR̂Xj f(�j)1A : (1.28)Note, that here i denotes the imaginary unit. Hence, by using the auxiliary variablesdecoupling q̂, Q̂, �̂s and corresponding integrals, the integrations over the si factorize and canbe carried out. All remains to be done is to perform a 5 dimensional integral whichis of the formhZ(q;x�N1 )i / Z dQ d�s dq̂ dQ̂ d�̂s exp[NG(�̂s; q̂; Q̂; �s; Q; q)]; (1.29)with G(�̂s; q̂; Q̂; �s; Q; q) =��s � (1� �s) ln(1� �s)� �̂s�s + 12 + 12 Q̂Q+ 12 ln q + ln q̂ � q̂q � ln(q̂pQ)+� ln0@exp24� 12q + q̂22Q̂ + �̂s � 12 ln q � ln q̂ + ln( q̂qQ̂ )35 � �(� q̂qQ̂) + �( 1pq )1Awith �(x) = R1x dtp2� e�t2=2. To leading order in N (1.29) can be evaluated bythe saddlepoint method (note, that the integrations over the 'hat' parameters are
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8 On the Annealed VC Entropy for Margin Classi�ers: A Statistical Mechanics Study

Figure 1.1 log of number of dichotomies for a maximal margin close to 
.along the imaginary axis). Hence, limN!1 1N lnhZ(q;x�N1 )i equals the functionG(�̂s; q̂; Q̂; �s; Q; q) evaluated at the values of �̂s; q̂; Q̂; �s; Q for which the deriva-tives of G with respect to these parameters equals zero. One �nds that these valuessatify Q = 1=Q̂, �̂s = ln(1 � �s) and qq̂ = 1 � �s. Treating q̂ and r = q̂pQ̂ asindependent variables, and setting q = 1=
2, the annealed entropy islimN!1 1NHann(�N) = sup
>�S(�; 
) (1.30)where S is given by the expressionS(�; 
) = � ln 2 + limN!1 1N lnhZ(q = 1=
2;x�N1 )i= � ln 2 + ln(
) + minr �� ln r + � ln�e� 
22 + r22 +ln r�ln 
�(�r) + �(
)�� :(1.31)S is 1=N� log of the average number of dichotomies for which the maximal marginis in a small interval around the value 
1.6 Results and DiscussionThe minimization of (1.31) must be done numerically. The resulting function S(�; 
)is displayed in 1.1 for four values of �. We have shown the positive part only, butthe function extends to negative values as well. For � < 2, the maximum of Sis achieved for a margin 
 > 0 which can be found by di�erentiating (1.31) with
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1.6 Results and Discussion 9

Figure 1.2 Capacity �c as a function of the margin �. The dashed line is 1=�2.respect to 
. This results in the equation� Z 1�
 dtp2� e�t2=2(t+ 
)2 = 1: (1.32)Solving for 
, we also �nd that for this �, S(�; 
) = � ln 2. This result means that for� < 2, almost all 2�N dichotomies will be realized with a margin 
 given by (1.32).On the other hand, �xing the margin 
, the value of � given by (1.32) yields thecorresponding �c. Relation (1.32) (Fig.(1.2) is a well known result in the statisticalmechanics of neural networks, which was �rst derived by Elizabeth Gardner [3]capacity using a rather di�erent approach based on the method of replicas. As can be seen,the result is in agreement with the suggested scaling �c � 1=
2 for large margins
. For � > 2, the maximum of S(�; 
) is shifted to 
 = 0 and we obtainS(�; 
 = 0) = � ln�� (�� 1) ln(�� 1); (1.33)which gives the correct result (1.7) for the VC entropy with zero margin. In Fig.1.3,we have displayed the annealed VC entropy (1.30) as a function of �=�c for threevalues of �. While for small �, the decrease of the annealed entropy (divided by �ln2)is similar to the bound (1.7), the decrease becomes faster with increasing margin �.In any case, for � large enough, the annealed entropy also achieves negative valuesin contrast to the bound (1.7). This should not be too surprising, because it simplymeans that for too many inputs, there is a nonzero probability, that none of the 2`classi�cations can be realized with a margin greater than a given � by hyperplanesthrough the origin. Our result shows that for su�ciently large margins, the VCcomplexity of the set of perceptrons is drastically reduced, even stronger thanpredicted by general bounds. Although it is not trivial to express the generalizationerror in terms of the annealed entropy (because the data dependent margin is also a
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10 On the Annealed VC Entropy for Margin Classi�ers: A Statistical Mechanics Study

Figure 1.3 Annealed entropy for three di�erent values of margin � as a functionof the number of inputs/capacity. The upper line gives the bound (1.7).random variable) we expect that our results give a further illustration why marginclassi�ers and supportvector machines generalize so well, when the achieved margin� is large. Although the results have been derived for a , one can expect that inthe limit N !1, by the central limit theorem, any other product distribution forthe components of the input vector x with zero mean and unit variance will leadto the same result. It would be interesting to see if one can proove that our result(by the symmetry of the spherical distribution) may actually give an upper boundon the annealed entropy for any distribution of inputs x with jjxjj2 � N . Such aresult would be helpful for obtaining sharper bounds on the VC entropy.AcknowledgementsI would like to thank Peter Kuhlmann and Andreas Mietzner for their pleasantcollaboration on [4], on which the present calculation is based. I am also gratefulto the referees for their helpful comments.References1. N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale{sensitiveDimensions, Uniform Convergence, and Learnability. Journal of the ACM,44(4):615{631, 1997.2. K. Efetov. Supersymmetry in Disorder and Chaos. Cambridge University Press,Cambridge, 1997.3. E. Gardner. The space of interactions in neural networks. Journal of Physics A,21:257{70, 1988.
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